
Version 1.0, 09/15/97 B-1

APPENDIX B
TECHNOLOGY ABSTRACTS

This appendix provides further detail regarding technologies used within the candidate framework
architectures. These overviews are not exhaustive; rather they intended to provide a management overview
only. Specific technologies or technology classes described within this appendix are:

• Middleware.
• X Window System.
• Transport Control Protocol/Internet Protocol (TCP/IP).
• Executive Information Systems/Decision Support Systems (EIS/DSS).
• Relational Database Management Systems (RDBMS).
• Data Warehousing.
• Operating Systems.
• Electronic Data Interchange (EDI).
• Network Infrastructure Technologies.
• Online Transaction Processing (OLTP) Monitors.
• Web-based Distributed Systems.

Version 1.0, 09/15/97 B-2

TECHNOLOGY: Middleware

TECHNOLOGY DESCRIPTION:

Middleware1 provides distributed application component connectivity through a set of operating system
and network services. These services are typically made available to the developer via an application-
programming interface (API)2. Using middleware, developers need not be masters of multiple
communication technologies – an undertaking that would require considerable engineering effort. Instead,
middleware isolates application developers from the details of complex communication protocols, services,
and interfaces. Developers are thus able to focus on solving business problems. Many of the features and
facilities provided by middleware have existed for many years. However, the integration of these services
under a unified construct that operates without regard for operating environment and network infrastructure
distinguishes middleware and gives it value.

Middleware can be broadly categorized as either vendor-specialized or generalized. Each of these software
classes are appropriate within certain problem domains, but only standards based generalized middleware
can enable truly open solutions.

Vendor-specialized middleware is inherently proprietary and typically used within remote data access
client/server architectures -- commonly referred to as Remote Data Access (fat client) solutions.
Middleware within this classification is
generally provided as an extension of a
vendor's server product, such as a
relational database management
system, and only works with that
specific product3. Although these
products do isolate the application
developer from the complications of
distributed interprocess
communication, their use does not
result in an open systems architecture.
On the contrary, these middleware
solutions merely trade the hardware dependencies found in the monolithic systems for a new reliance on
vendor-specific software solutions -- the result is software lock-in4. This is not to say vendor-specialized
middleware products aren't viable solutions. These technologies tend to be easier to use than generalized
middleware technologies and don't further compromise "openness" in those architectures where the

 1The terms "glueware" and "socketware" are also used to refer to the "middleware" software
category.

2 These services generally provide functionality defined within the top three layers of the Open
System Interconnection reference model (OSI). The OSI is a framework for defining standards that
facilitate interconnection of heterogeneous, open operating environments. Specifically, the model is
concerned with the capability of systems to cooperate by being interconnected through some standardized
communications facility and by executing standardized protocols. The top three OSI layers define
application, presentation, and session interconnection services.

3Examples of vendor specialized middleware include Oracle's SQL*Net and Sybase's Open
Server/Open Client products.

4It should be noted that this argument is made by many within the IT industry regarding the use of
stored procedures and SQL that is not ANSI compliant. As a result of these complications, practical
tradeoffs must currently be made between performance and openness.

Figure B-1. Three Tiered Client/Server Architecture

Version 1.0, 09/15/97 B-3

proprietary features of server products are being used (often a necessity if acceptable performance is to be
achieved).

Generalized middleware tends to be based on symmetric communication mechanisms that are independent
of vendor-provided server products. As a result, these technologies offer enhanced application design
flexibility and can be used to develop vendor-independent functions that support a variety of client/server
distribution strategies. This flexibility is made possible through a set of services that enable application
components to:

• Interoperate without regard to the underlying computer architecture. This is made
possible by isolating application components from operating environments and
associated infrastructure. This isolation is facilitated via an abstract interface, the
middleware API, which decouples application components from native operating
environment implementations, resulting in
more portable applications.

• Interoperate without regard for the underlying
network architecture. This capability, often
referred to as "context bridging" or "transport
bridging", facilitates transparent
communication between operating
environments using heterogeneous network
protocols. This capability is necessary if
application components are to be distributed
across disparate networks, for example,
TCP/IP, SNA, IPX/SPX, and X.25.

• Share data and function parameters without
regard for the underlying operating
environment, and networks. Typically,
solutions providing this capability must
provide "data translation" and "parameter
marshaling" services. Data translation
services insure that data is presented to
distributed application components in their native format. For example, data may need to be
translated from EBCDIC to ASCII, between different byte orders, or between data type
representations. Parameter marshaling involves preparing data structures for network
transmission and use by distributed application components. For example, when working
with pointers, parameter marshaling services are responsible for identifying the referenced
data, copying the data and preparing it for network transmission, unpacking the data after
transmission, and passing it by value to the distributed application component.

Most commercially available middleware solutions are based on the remote procedure call or
messaging/message queuing technologies. In terms of service, all of these models provide essentially the
same function: they facilitate the interprocess communication of data between distributed application
components. However, there are important functional differences, varying levels of standardization, and
degrees of complication associated with each of these technologies.

The remote procedure call (RPC) is the most mature of the general purpose middleware technologies and
uses the familiar concept of procedure calls to facilitate interprocess communication between distributed
application components. RPC middleware products typically provide "high level" communication services,
such as data translation and marshaling, and can be characterized as inherently synchronous and blocking.
Consequently, RPC-based middleware usually requires that the:

• Client and server be simultaneously available at the time of service request,
• Client wait until the server replies before proceeding to other tasks, and

Figure B-2. Generic Network Protocol

Version 1.0, 09/15/97 B-4

• Developer use complicated API suites -- including as many as 600 verbs.

RPC-based middleware is functionally rich. However, because RPC communication is generally
synchronous and blocking, it is not always an appropriate
interprocess communication solution. One alternative to
RPC technologies is messaging-based middleware.

Messaging/message queuing technologies use message
passing and queuing to enable application interprocess
communication. The message-passing model allows the
client to call an API and send a request in the form of a
message to the server. In many implementations, the
message-passing model is enhanced via queues that
facilitate extremely flexible solutions and truly
asynchronous communication. This asynchronous model,
coupled with comprehensive transport bridging services,
makes messaging ideal for use with wide area network
technologies -- where geographically distributed resources
may not be simultaneously available. However, like RPC,
messaging middleware is not "the" distributed
communication solution. In fact, messaging middleware
has several shortcomings – one of which is lack of
standardization. That is, messaging technologies are at
best, void of industry and defacto standardization; and at
worst flat out proprietary5. Additionally, messaging
technologies provide only "lower-level" communication
services. Consequently, the developer is burdened with
creating data translation and parameter marshaling
services.

No single middleware product does it all. Within large systems, it is likely that more than one middleware
technology will be required to support interprocess communication and affect required performance,
security, fault tolerance, and application flexibility. For example, the use of both vendor- specialized and
generalized middleware solutions is commonplace within distributed system architectures. Likewise, the
use of both RPC and message queuing middleware technologies is often required to adequately support
business solutions.

COMMERCIAL OFFERINGS:

Vendor Product
IBM MQ Series, Component Broker Connector

(CBConnector), Component Broker Toolkit
(CBToolkit)

Momentum Software Corporation XIPC, MessageExpress, Visual Flow+
PeerLogic Named Pipes

5 The Message Oriented Middleware Association (MOMA) is currently working to develop

messaging middleware standards.

Tier 3

Tier 2

Tier 1

Vendor Specialized
(ex. SQL*Net)

Application Component
(ex. C program)

Server Dependent
Application Component
(ex. stored procedure)

Generalized
(ex. message queuing)

Presentation
Component
(ex. GUI)

Logical Separation (Tiers)

Figure B-3. Messaging-Based Middleware

Version 1.0, 09/15/97 B-5

TECHNOLOGY: X Window System

TECHNOLOGY DESCRIPTION:

For many years, ASCII dumb terminals were used exclusively to access host-based (UNIX, etc.)
applications and systems. However, these terminals were incapable of meeting the ever-increasing user
demand for graphical output and graphical user interfaces. In an effort to satisfy these demands the
Massachusetts Institute of Technology developed the X Window System (X11). The X Window System is
a network-based graphics engine that allows users to connect to, and execute applications on, remote
systems while handling/managing local I/O (mouse, keyboard, display etc.) interaction.

X11 allows the user to execute and display many applications simultaneously, each within one or more
windows. The display is controlled by software that is referred to as the X “server.” Applications, which
are referred to as X “clients,” do not interact with the user’s display directly. Rather, X clients transmit
requests to the X server, which manages the display on behalf of the X client. That is, unlike the traditional
client/server paradigm, with X11, the client process executes on the application “back-end,” handles all
application data processing except I/O interaction, and is a shared resource that typically runs on a server
class machine. Whereas, the X display server manages I/O and user-interface services, typically executes
on a client platform, comprises the application “front-end,” and controls the user’s display (including the
screen, keyboard, and mouse). These components are illustrated in Figure B-4 and are further described in
the following paragraphs.

The X server controls the display
hardware. It, or the underlying
operating system, contains device
drivers for the keyboard, mouse, and
screen. As such, the “server” contains
the only hardware dependencies
within the X11 system. The server
accepts requests, which are sent
across the network from applications
- the X client(s). These requests can
include – among other things –
instructions to create windows on the
screen, to change the size and
location of windows, or to draw text
or graphics within displayed
windows. In addition to servicing
client requests, the server sends
events to the client. These events
provide the client with keyboard or mouse input and provide window status information. As Figure B-5
illustrates, a server can manage multiple, simultaneous client connections.

When originally introduced, X servers and X terminals were synonymous. That is, X server services were
supplied exclusively via terminals manufactured to handle X11. However, today, X server services can be
delivered to users on a variety of platforms. Among the relative newcomers to the X11 market are PC-
based X server implementations. PC X Server software provides X server services to personal computer
users. Simply put, PC X servers provide concurrent access to multiple host-based applications (X clients)
from within Windows, Windows95, Windows NT, and other PC environments; while simultaneously
allowing the user to access PC-based applications, such as office automation and productivity software.

Unlike the X server, the X client does not directly manage the users’ display. The client program contains
the software required to perform the function the user requires – process an application, send electronic
mail, maintain a database, etc. Additionally, the client includes the software required to support X11 and to

Figure B-4. Components of X Window System

HostHost Terminal

Host Terminal

Host Terminal

Personal Computer

X Window Client
Application Displayed
by PC X Server
Software

X Window Client
Applications
Executing in Host
Memory

Version 1.0, 09/15/97 B-6

provide the graphical user interface. In the parlance of this document, the X client provides application and
data management logic, as well as some portion of the application’s presentation logic. A client can operate
with any display (without recompiling or relinking the application), as long as there is a suitable
communications link and an X11 complaint server available to manage the user’s display.

As illustrated in Figure B-5, the communications link is the third major component of the X Window
System. This communication link can be a local or wide area network – X will run across almost any type
of network: TCP/IP, DECnet, IPX/SPX, Ethernet, Token Ring, X.25, serial lines, etc. In addition to
executing remotely, X clients can also be execute locally – on the same machine as the X server. In cases
where the X client and server are executing on the same machine, the communication link can be any
available form of inter-process communication, including shared memory, named pipes, UNIX sockets, etc.

The ability to access both locally and remotely executing X applications is referred to as network
transparency – that is, regardless of where the X client is executing, X11 creates the illusion that the
application is running at the user’s machine. This is particularly useful in situations where an application
must run on a particular machine, but it isn’t feasible to give all users a machine of this type. For example,
an organization’s management information systems may require an enterprise class server or mainframe.
By using X11, all users can execute the application on the server, but interact with it and display output on
substantially less powerful and less expensive workstations. (Note: This physical system distribution
strategy is described as “remote presentation” within Section 2 of this document.)

Figure B-5. Communication link of X Windows System

Screen

Application A
(X Client)

Application B
(X Client)

Mouse

Keyboard

A

B

X Server

Device
Drivers

Communications
Link

Version 1.0, 09/15/97 B-7

Originally, X11 was implemented for the UNIX environment; however, X11 is now available on a variety
of platforms, ranging from mainframes to personal computers. For example, the following is a partial list of
operating environments that currently support the X Window System and X-enabled applications:

• AT&T UNIX System V • NeXT
• Apple Macintosh MacOS and A/UX • VAX VMS
• Cray UNICOS • SunOS, Solaris on Ultras, SPARCs
• Hewlett Packard HP-UX on HP9000/s300 • X terminals from various vendors
• IBM AIX on PS/2 and RS/6000 • SCO UNIX
• IBM Mainframes, MVS • NeXT
• Microsoft Windows, Windows95, and

Windows NT
• Data General DG/UX

Figure B-6. Operating Systems Which Support X-Enabled Applications

X11’s network transparency and openness allows users to access applications running on heterogeneous
operating environments. This provides users with a rich and flexible work environment, as all applications
can be delivered to users regardless of the X client or X server operating environment heterogeneity. This is
illustrated in the following figure.

Figure B-7. X Clients and X Servers operating environment

Another advantage the X Window System offers is improved manageability. The X Window System allows
the Remote Presentation system distribution strategy to be used. With this strategy, only the X server
software is located and executing on the client platform. This simplifies system modification, configuration
management, and software distribution, as application software does not reside on the users machine (the
client). This configuration also helps to minimize client platform operating resource requirements, as only a
minor portion of the application (the X server) executes on the client platform.

COMMERCIAL OFFERINGS:

Vendor Product
Hummingbird EXceed
WRQ ReflectionX/Reflection 2
SCO Xvision Eclipse
NCD PC-Xware

IBM MVS VAX VMS
HP-UX

(UNIX Variant)
Solaris

(UNIX Variant)
IBM AIX

(UNIX Variant)

VMS
Workstation

UNIX
Workstation

Windows NT
Workstation

X-Terminal Windows95
Workstation

NeXT
Workstation

Macintosh
X SERVERS

X CLIENTS
(Applications)

Version 1.0, 09/15/97 B-8

TECHNOLOGY: TCP/IP

TECHNOLOGY DESCRIPTION:

The TCP/IP protocol suite was developed more than 25 years ago, when it formed the underpinning of the
government network that has evolved into the Internet. TCP/IP combines a variety of protocols, each of
which are responsible for different layers within the 7-layer Open System Interconnection (OSI) model.
That is, TCP/IP provides or relies on services that are consistent with 4 layers within the OSI framework.
For this reason, it is convenient to describe TCP/IP in terms of the OSI model.

The OSI model is a framework for defining standards that can be used to “link” heterogeneous systems.
Within the context of the OSI, “open” denotes the ability of any two or more OSI compliant systems to
communicate. OSI is intended to facilitate communication and information exchange through any
standardized communication facility executing standardized OSI protocols.

The OSI model is composed of communication functions, which are partitioned into a hierarchical set of
layers. Each of these layers performs a subset of the functions required for system communication. Within
this hierarchical construct each layer relies on the next layer to perform more primitive functions and to
conceal the complexity of those functions. The OSI model is illustrated in Figure B-8 and is defined in the
following paragraphs.

• Application Layer. Provides services to the
users of the OSI environment; TCP/IP
examples include file transfer protocol (FTP),
remote login (telnet), Simple Mail Transfer
Protocol (SMTP), and Simple Network
Management Protocol (SNMP).

• Presentation Layer. Performs data
transformations required to provide a
standardized application interface and provide
common communication services; Examples
include encryption, External Data
Representation (XDR), and the X Windows
protocol; TCP/IP does not provide Presentation
services.

• Session Layer. Provides the control structure
for communication between applications;
establishes, manages, and terminates
connections (sessions) between cooperating
applications; Hyper-Text Transport Protocol
(HTTP) provides Session layer services;
TCP/IP does not provide Session services.

• Transport Layer. Provides reliable,
transparent transfer of data between end-points;
Provides end-to-end error recovery and flow
control; Ensures that data is delivered error-
free, in sequence, with no losses or
duplications. The Transport Control Protocol
(TCP) provides transport layer services. That is,
TCP is responsible for verifying the correct delivery of data from client to server. Additionally,
because data can be lost or corrupted during transmission, TCP provides error detection and
retransmission features. That is, TCP acknowledges the reception of packet, sequences packets for

Figure B-8. 7 layer OSI model

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

System A SystemB

Version 1.0, 09/15/97 B-9

further processing, and request retransmission of missing or damaged packets. These features ensure
that transmitted data packets are completely and correctly received, and that only missing or damaged
packet are retransmitted. These features allow TCP to provide reliable and efficient transport services,
even through the service it uses (IP) is unreliable.

• Network Layer. Provides upper layers with independence from the data transmission and switching
technologies used to connect systems. The Network layer is responsible for establishing, maintaining,
and terminating connections. Additionally, the network protocol facilitates the switching and routing
functions necessary to allow distributed system communication. The Internet Protocol (IP) provides
Network layer services and is responsible for preparing data for network transmission and moving
packets of data between network nodes. However, IP does not specifically determine the network route
to be traversed by data packets, nor does IP ensure packet delivery. Rather, IP relies on other
communication services – namely TCP – to ensure that data is delivered and that delivered data is
complete and error free.

• Data Link Layer. Provides for the reliable transfer of data across the physical network link; sends
blocks of data (frames) with the necessary synchronization, error and flow control. Examples include
Ethernet, and Token Ring. Specifically, these protocols organize data into a set of frames and
supplement each frame with control bits that allow for reliable data transmission. TCP/IP does not
provide Data Link services, but does rely on these services.

• Physical Layer. Supports the transmission of unstructured bit streams over physical network links;
deals with the mechanical, electrical, and procedural characteristics used to establish, maintain, and
deactivate the physical network connection. Examples include unshielded twisted pair, broadband
coaxial cable, and baseband coaxial cable. TCP/IP does not provide physical level services, but does
rely on these services.

As previously mentioned, the Internet Protocol (IP) was developed to create a “Network of Networks” – the
Internet. To facilitate this interconnection, TCP/IP was designed to leverage the many disparate network
technologies used to interconnect systems. For example, TCP/IP can be used on large internal networks
based on IBM’s System Network Architecture, or with relatively new technologies, such as Integrated
Service Digital Networks (ISDN), frame relay, Fiber Distributed Data Interchange (FDDI), and
Asynchronous Transfer Mode (ATM).

Each Network layer protocol has its own convention for transmitting messages between two machines
within a network. In an SNA network, every machine has Logical Units with their own network address.
Similarly, DECnet, Appletalk, and Novell IPX all have facilities for assigning numbers to each local
network and to each workstation on the network. TCP/IP assigns a unique number (IP address) to every
workstation attached to the network. This “IP address” is used to route packets to the correct network and
machine. IP addresses are 4 byte values (32 bits), which are typically expresses via dotted-decimal
notation. This notation is determined by converting each byte (within the IP address) into a decimal number
(0 to 255) and separating the bytes with a period (for example, 201.81.155.170).

It is important to note that every TCP/IP network node must have a unique Internet address (IP address).
For those networks exposed to the Internet, IP addresses are controlled and allocated by a centralized
authority -- the Internet Network Information Center (InterNIC).

It’s difficult to accurately gauge what proportion of businesses use a particular protocol. However,
according to Information Week, when considering the “Big three” networking protocols – TCP/IP, Novell’s
Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX), and IBM’s System Network
Architecture (SNA) – TCP/IP is becoming more dominant in an increasing number of industries, including
the government sector. As illustrated in Figure B-9, TCP/IP acceptance among business users is largely
result of TCP/IP’s open architecture and ability to support local area and wide area networks.

Version 1.0, 09/15/97 B-10

For example, TCP/IP is preferred to
IBM’s proprietary SNA by many
organizations, despite SNA’s superior
security and administration features. This
is largely because SNA depends on a
mainframe-centric computing
environment and requires specialized and
often expensive equipment. Whereas,
TCP/IP is supported by almost every
software and hardware vendor -- for
instance, the TCP/IP networking base is
the same on all variants of UNIX (AIX,
HP-UX, SCO, Solaris, etc.). What is
more, TCP/IP administration is becoming
easier, thanks to ongoing development of
the protocol. For example, technologies
like Dynamic Host Configuration
Protocol (DHP), which is supported by
vendors such as Sun Microsystems and
Microsoft, lets users automatically
configure and administer client machines from a central server. This reduces administration and
maintenance efforts associated with assigning individual TCP/IP addresses to every PC. For these reasons,
and others -- including the proliferation of the Internet – TCP/IP will continue to gain prominence within
network-based information systems.

COMMERCIAL OFFERINGS:

Vendor Product
Microsoft TCP/IP is a native operating service within

Windows for Workgroups 3.11, Windows95 and
Windows NT

UNIX Vendors (Sun, HP, IBM,
SCO, etc.)

TCP/IP is a native operating system service under
Solaris, HP-UX, AIX, and all other UNIX variants

NetManage Inc. Chameleon TCP/IP
Wollongong Group WIN/TCP for DOS
Novell, Inc LAN Workplace for DOS
Ungermann-Bass Inc. Net/ONE TCP BNS/PC
FTP Software PC/TCP

Figure B-9. Estimated TCP/IP usage

0%

10%

20%

30%

40%

50%

60%

1994 1996 1998

Estimates TCP/IP Usage

Data: Information Week – June 26, 1995

Version 1.0, 09/15/97 B-11

TECHNOLOGY: Executive Information Systems/Decision Support Systems

TECHNOLOGY DESCRIPTION:

Organizations generate and use tremendous amounts of data and manage this data from a wide range of
locations with disparate technologies. Faced with the challenge of effectively and efficiently using this
resource, organizations are turning to technologies that facilitate practical consolidation and analysis of this
data. These technologies are clearly becoming a significant and important organizational resource and are
being used to develop executive information systems/decision support systems (EIS/DSS).

EIS and DSS technologies are typically used by executives and decision-makers to improve decision-
making, planning, communications, personal efficiency, and organizational control. These technologies can
be characterized as systems that:

1. Are used directly by decision makers and leaders without the assistance of intermediaries.
2. Provide easy on-line access to current information about the plans of the organization.
3. Are designed with management's critical success factors (CSF) in mind.
4. Use state-of-the art-graphics, communications, and data storage and retrieval methods.

Specifically, EIS and DSS technologies provide:

• Easy to use and maintainable graphical user interface requiring minimal or no training to use.
• Integrated capabilities for electronic communications and data access, security and control.
• On request “drill down” capability to lower levels of detail and data analysis.
• Depiction of organizational health indicators using graphical, tabular, and/or textual information.
• Functionality for decision support, ad hoc queries and “what-if” analysis.
• Data analysis, on-line status, trend analysis, statistical analysis, exception reporting.
• Extraction, filter, aggregation, and tracking of critical data.
• Access and integration of a broad range of internal and external data sources, including data

warehouses, data marts, and databases.

Obviously these are useful systems with the potential to drastically improve the effectiveness of
organizational leadership. However, delivery of these systems can be challenging for system integrators.
These challenges can be attributed to difficulties associated with:

• Identifying and accessing information considered most useful to organizational leaders.
• Modeling system requirements, which are derived from executive tasks that are often judgement

based, highly unstructured and difficult to describe.
• Understanding the user environment, organizational goals, and CSFs.
• Exploring ways to measure CSFs and devising ways to deliver key information to support these

factors.

Simply put, delivery of useful executive information systems requires more than just systems engineering
skills. Delivery of these systems also often requires an understanding of statistical and quantitative
sciences, management science, and business process reengineering.

EIS/DSS tools can be classified as Query/Analysis, Online Analytical Processing (OLAP), and Data
Mining technologies.

Version 1.0, 09/15/97 B-12

Query/Analysis tools allow decision-makers to formulate queries without writing a program or using a
structured query language. That is, the tools provide the capability to generate queries through a “point-
and-click interface. Additionally, these tools typically provide graphical output -- including bar charts, pie
charts, histograms, and line graphs.

Online Analytical Processing (OLAP) tools create, organize, and format multi-dimensional data views.
Typically these views are based on data that is maintained within SQL-based relational database
management systems (RDBMS), specialized OLAP SQL databases, or, more recently, multi-dimensional
DBMSs. For example, using OLAP technologies, the Education Department could review data via
multiple dimensions such as time, student, school, and disbursement. This would allow ED to ask the
following question: What are the disbursements – by year, by student, by school? This is illustrated in
Figure B-10.

Data Mining tools are the least mature of the EIS/DSS
technologies. These tools allow users to search for data patterns
and groups within expansive data sets. Unlike the
Query/Analysis and OLAP technologies, Data Mining tools do
not respond to low-level queries formulated by the decision-
maker. Rather, Data Mining tools use search methods, such as
data associations and sequence patterns, to discover and present
information. Typically, Data Mining output is presented in the
form of if-then rules, as illustrated in Figure B-11. Figure B-11. Output of a Data

Mining if-then Rule

If
Age = 22; and
School = School A; and
Year = 1996

Then
Default Rate = 10%

Figure B-10. Multi-dimensional data view

1995 1996 1997

Student A

Student B

Student C

School 1

School 2

School 3

Version 1.0, 09/15/97 B-13

 COMMERCIAL OFFERINGS:

Vendor PRODUCT PRODUCT TYPE
Gupta, Inc Quest Query/Analysis
SAS Institute SAS System, SAS OLAP ++ Query/Analysis
IBM Corp. Visualizer, DataDiscovery Query/Analysis, Data Mining
Cognos Inc. Impromptu, PowerPlay Query/Analysis, OLAP
Oracle/IRI Express OLAP
Software AG Inc. NetMap Data Mining
Red Brick Inc. Red Brick Warehouse OLAP

Version 1.0, 09/15/97 B-14

TECHNOLOGY: Relational Database Management Systems

TECHNOLOGY DESCRIPTION:

A database management system (DBMS) consists of a collection of interrelated data and the programs
required to access and manage this data. The primary goal of a DBMS is to provide an environment that
facilitates convenient and efficient information usage. That is, database systems provide users with an
abstract view of the data, which hides complexities associated with the data storage, retrieval, modification,
and other mechanisms.

Relational DBMSs (RDBMS) make use of data structures that are based on the relational model. The
relational model describes data and data relationships in terms of collection of tables (entity types), each of
which is defined in terms of columns (attributes) and rows (entities). Within this framework, a relationship
is defined through the association of multiple entities. These relationships are specified via keys, which are
the principal means for identifying entities within an entity type. This is illustrated in Figure B-12.

 Primary Key
Student Table

Student ID# Student Name School ID# Loan Type Student Address
1001 Student A 123 PERKINS 458 A street…

•
•

•
•

•
•

•
•

•
•

Foreign Key

School Table
School ID# School Name School Address Branch ID# …
123 School 1 ABC St. 1001 •

•
•

•
•

•
•

•
•

•

Figure B-12. Key relationships in a database

Today, all commercially available RDBMS products (or at least those with measurable market share)
utilize some variant of the Structured Query Language (SQL) – a powerful, highly flexible, set-oriented
language – for manipulating, defining, and controlling data. That is, SQL has become the predominant
database management language for mainframe, minicomputer, enterprise & workgroup server, and even PC
based RDBMS applications.

In addition to managing the control and execution of SQL commands, RDBMSs also manage data
recovery, concurrency, security, and consistency – allowing multiple applications and users to share the
database. Additionally, RDBMSs provide a variety of administrative and programmatic utilities and
procedural extensions. Two such procedural extensions are stored procedures and triggers.

Stored Procedures are remote, compiled, and named procedures (functions) that are stored, accessed, and
managed via the RDBMS. Stored procedures are typically used to enforce business rules and data
integrity; however, the primary use of stored procedures is to implement “server-side” application logic
within distributed system architectures. This is particularly the case in those architectures that are based on
the two-tier logical software distribution strategy and use the Remote Presentation and Distributed
Presentation physical distribution strategies, as described in Section 2. To use a stored procedure, the user
(via the client application component) issues a remote function call, which invokes the stored procedure.
This results in reduced network traffic and better performance because:

• Stored procedures, and the SQL statements therein, are precompiled.

Primary Key

Version 1.0, 09/15/97 B-15

• Only the client’s function call and a fixed set of results traverse the network.

As illustrated in Figure B-13, these benefits are not available with “dynamic remote SQL” statements
which must be:

• Compiled at run-time each time they are executed.
• Sent across the network – in their entirety – to the RDBMS for execution.

Triggers are implemented via stored procedures. However, triggers are automatically executed by the
RDBMS in response to specific data-related events; whereas stored procedures are explicitly invoked by
users (via client application components). Typically, triggers are associated with specific data update
events – those executed via SQL DELETE, INSERT, and UPDATE instructions – and are used to
implement “event responses” or “event handlers.” A separate event handler – trigger – can be defined for
each type of SQL update event. Alternatively, triggers can be defined to handle any updates to a table.
RDBMS triggers are typically implemented via proprietary SQL procedural extensions, which do not
comply with the SQL-92 standard. As a result, specialized skill sets are required to develop RDBMS
triggers. Additionally, much like stored procedures, triggers are not portable across heterogeneous RDMBS
vendor products.

These extensions are useful; however, they are not standardized and, in many cases, can significantly
reduce system flexibility, as stored procedures and triggers are not portable across vendor platforms and
usually must be implemented via RDBMS proprietary software development environments and languages.

Figure B-13. Static and Dynamic Remote SQL Statement Execution

Network

Client Client

Server Server

Database
with

Stored
Procedures

Database

execute
procedure:

get_students

Results returned
by procedure:
get_students

Results returned
by dynamic,
remote SQL
statements

Remote, dynamic SQL
statement:
SELECT student_name,
loan_value
FROM student_table
WHERE student_num=
 (SELECT student_num
 from student_table
 minus
 SELECT student_num
 from prev_student_table);

Version 1.0, 09/15/97 B-16

Nonetheless, faced with competing industry pressures for standardization and marketing pressures for
product differentiation, these extensions have become useful tools that keep RDBMSs from becoming
commodities, even as vendors embrace standards.

In addition to stored procedures and triggers, there are other features that differentiate commercially
available RDBMS offerings. Some of these include:

• Concurrency Schemes provide mechanisms that allow multiple transactions from multiple
users to simultaneously access the data managed by the RDBMS. RDBMS offerings support
various ANSI SQL-92 isolation levels, including: read-uncommitted (“dirty read”), read-
committed, and repeatable-read. Read-uncommitted is lowest isolation level. When the
RDBMS fetches a row, it does not place a lock and it does not respect any other locks. In the
read-committed level, the RDBMS guarantees that all rows read have been committed. This
level prevents reading data that is not committed and subsequently rolled back. Finally, the
repeatable-read level asks the RDBMS to place a lock on every row that is fetched until the
transaction is complete.

• Locking Strategies provide a means of ensuring consistency in the data through the
prohibition of certain forms of concurrency. Commercially available RDBMS adhere to
disparate locking strategies – allowing data to be locked at the database, table, memory page,
or row level. Several types of locks can be used to implement concurrency schemes,
including binary locks and multiple-mode locks. Binary locks require data to be locked when
reading and/or updating data within the database. In many situations, binary locks prove to be
too restrictive. In these situations multiple-mode locks are often used. Multiple-mode locks
allow data to be read- and write-locked. Read-locks are often referred to as “shared locks,”
because they allow other transactions to read the locked item. Write-locks, on the other hand,
are often referred to as “exclusive locks,” because a singe transaction exclusively holds the
lock on the item. The multiple-mode strategy increases data availability. Similarly, lock
granularity – database, table, page, or row level – affect data accessibility, as illustrated in
Figure B-14.

Figure B-14. Database Row Locking

School
ID#

School
Name

School
Address

101 School 1 123 …
102 School 2 456 …
103 School 3 789 …
104 School 4 012 …
105 School 5 859 …

 = Transaction 1 Page Level Lock on Database Table

School
ID#

School
Name

School
Address

101 School 1 123 …
102 School 2 456 …
103 School 3 789 …
104 School 4 012 …
105 School 5 859 …

 = Transaction 1 Row Level Lock on Database Table

Transaction 1: UPDATE …
WHERE School_id =101…

Transaction 2: UPDATE …
WHERE School_id =104…

Transaction 1: UPDATE …
WHERE School_id =101…

Transaction 2: UPDATE …
WHERE School_id =104…

Version 1.0, 09/15/97 B-17

• Memory Management facilities control how the RDBMS accesses and uses system memory
and storage resources. RDBMS memory management strategies are only obviously different
in one area -- user/client connection management. For client connections there are three
widely followed memory management strategies. These strategies are:

§ Process-Per-User Strategy provides a separate process and address space for each client
connection to the database. This effectively isolates client operations and increases fault
tolerance. To implement this strategy, the RDBMS typically leverages the operating
system’s multitasking services. As a result, within symmetric multiprocessing
environments, the RDBMS can rely on the operating system to transparently “load
balance” client connections across the pool of available processors. The disadvantage of
this strategy is that it consumes more system resources than other strategies and can be
slower. As a result, although this strategy is very robust, it can also be performance
constrained. This strategy is illustrated in Figure B-15.

§ Multi-Thread Strategy does not rely on the operating system RDBMS related process
management facilities. Rather, with this strategy the database server, connections, and
other associated process “threads” are all executed within a single process address space.
This is possible because the RDBMS provides its own process management and
scheduling facilities. This strategy usually provides the best performance and requires the
least amount of system resources (CPU cycles, memory, etc.). However, because process
threads are sharing the same address space, a single erroneous thread can catastrophically
affect all database services. This strategy is illustrated in Figure B-16.

Figure B-15. Memory Management Strategies:
Process -Per-User

Client

Client

Client

Database

Process

Process

Process

SERVER

Version 1.0, 09/15/97 B-18

§ Queueing Strategy provides process management service very much like those found in
Online Transaction Processing (OLTP) monitors, such as AT&T’s Top End and
Transarc’s Encina. That is, the RDBMS queuing strategy requires three components: 1)
multi-thread client request “listeners,” which “map” client connections (messages) to a
queue manager; 2) the queue manager, which writes client messages to queues and
delivers queued responses to clients; and 3) the pool of shared RDBMS processes, which
read messages from the queue(s), process client requests, and write responses to the
queue. This strategy provides the advantages found in the Process-Per-User strategy,
without assigning a permanent process to each connection, which (much like the Multi-
Thread Strategy) reduce processing overhead and resource requirements. However, queue
latencies, which are associated with this strategy, can introduce performance constraints
in systems supporting large numbers of concurrent client connections. This strategy is
illustrated in Figure B-17.

Figure B-16. Memory Management Strategies:
Multi-Thread

Client

Client

Client

DatabaseProcess

SERVER

Figure B-17. Memory Management Strategies: Queuing

Queue Manager
ProcessQueue Manager
ProcessQueue Manager
Process

Data

Process
A

Process
A

Process
B

Process
B

Queue

SERVER

Client Listener (OS & RDBMS)

Client

Client

Version 1.0, 09/15/97 B-19

• Parallel Processing splits a task into smaller tasks that are executed on multiple processors
simultaneously. It is designed to take advantage of symmetric multiprocessing hardware.
Parallel processing can actively manage the use of hardware resources such as the CPUs and
memory, maximize throughput, and resolve contention between OLTP and decision support
applications. Parallel processing capabilities are widely used to improve database query
processing performance.

Query processing normally involves 1) decomposing the query into multiple tasks, and 2)
sequentially processing the multiple tasks – using the output of one task is a prerequisite input
to the next task. Parallelization further divides query tasks into subtasks and facilitates the
simultaneous processing of these subtasks. Parallelization comes in two forms: vertical and
horizontal. Vertical parallelization refers to the degree of task completion required before a
task can use the proceeding task’s results. For example, if a database scan task is to be
followed by a join task (both subtasks to a query task), vertical parallelism enables the join to
be started as soon as the data from the scan becomes available, not when the scan is complete.
Horizontal parallelization, on the other hand, refers to the RDBMS’s ability to simultaneously
process objects that are partitioned across multiple disks. For example, if a table that is
partitioned across four disks needs to be scanned, the sequential RDBMS would read data off
each disk in turn, while the parallel RDBMS would complete the task in a quarter of the time
by reading all four disks at once.

• Process Optimization automatically determines which indices and what sorting algorithms to
use when processing an SQL query. Some RDBMSs rely on rule-based optimization, which
means that index usage is dependent on the way the SQL command is written. Cost-based
optimizers, on the other hand, provide a more advanced optimization capabilities. A cost-
based optimizer uses statistical data to analyze what data is in the database and what data is
being requested. Additionally, cost-based optimizers use algorithms to determine the
weighted cost of data retrieval alternatives and select the one that uses the least amount of
resources.

Vendor Product
Oracle Corp. Oracle 8.0
IBM Corp. DB2, Common Server DB2
Informix Informix 7.1, Informix 8.0 XPS
Sybase Sybase System 11, Sybase MPP
Microsoft SQL Server

Version 1.0, 09/15/97 B-20

TECHNOLOGY: Data Warehousing

TECHNOLOGY DESCRIPTION:

When searching for information to support business decisions in today's dynamic global business
environment, many business users find that the traditional sources of data – transaction-based systems – are
inadequate in content, accessibility, form, performance, and availability. The problem often lies not with
the data or their source, but in the limitations of current technology to bring together information from
many disparate systems. Increasingly, the solution to these problems is data warehousing.

A data warehouse is an orderly and accessible repository of known facts and related data that can be used
as a basis for making better management decisions. The data warehouse provides a unified repository of
consistent data for decision-making that is subject-oriented, integrated, time-variant, non-volatile,
accessible, transformed, and management-oriented. Bill Inmon, an important figure in popularizing the data
warehouse concept, has defined these characteristics as follows:

• Subject-Oriented: Data is classified and organized around subjects that are meaningful to a
organization. As illustrated in Figure B-18, these subjects are often defined by the critical
success factors of the enterprise – its customers, its employees, its products, its suppliers –
and other important subjects of management interest.

• Integrated: The data in a data warehouse is pulled together from various operational systems
and external data sources, enabling a cross-functional view of the enterprise. Integrated also
refers to the fact that data definitions are standardized. For example, an order processing
system may consider each location as a customer, whereas a marketing system may be
looking at each enterprise as a customer. The process of integrating the data needs to resolve
these differences between the two databases as the data are loaded into the data warehouse.
This characteristic is illustrated in Figure B-19.

Figure B-18. Subject-Oriented Data Classification

Source: Inmon, 1994

Version 1.0, 09/15/97 B-21

• Time-Variant: A data warehouse contains both historical (5 years old to 10 years old) and
nearly current data. The data in the warehouse are also stored in such a way that they support
time-based analysis.

• Non-Volatile: The data warehouse is non-volatile because the data are sourced from one or
more operational systems through a well-defined and controlled extraction and transformation
process. Therefore, a data warehouse is comprised of snapshots of the data at specific
moments in time: once per day, once per week, once per month. Also, the data warehouse is
usually a separate, read-only database. This characteristic is illustrated in Figure B-20.

• Accessible: The data warehouse is primarily a distribution mechanism for the enterprise's
data, so accessibility is critical. The data warehouse should provide simplified and timely
access to data by making it easy to find what data are available, where they are, and how to
access them.

• Transformed: For the data to be more accessible, they need to be transformed from the
various operational system formats and external system formats into a single format. The data
must be translated and summarized to make it consistent and easier to access and analyze.

Figure B-19. Integrated Data Classification

Source: Inmon, 1994

Figure B-20. Non-Volatile Data Classification

Source: Inmon, 1994

Version 1.0, 09/15/97 B-22

• Management-Oriented: The primary purpose of a data warehouse is to aid in analysis and
decision-making. Therefore, the data is organized to support decision support needs rather
than operational needs. The data warehouse must be flexible and provide many ways to view
and analyze the data that is relevant to users in a decision support and analysis environment,
such as summary data and time-series data.

Today, data warehousing is considered the most effective way to transform "data'' into "information'' –
providing critical repositories of timely and accurate information for decision-making. This information is
increasingly important, as organizations need to adapt continually to changes resulting from competitive
pressures, shrinking business cycles, a global market, and a transforming business environment.

The value of data warehousing lies in its ability to help users efficiently make well-informed decisions
through analysis of the important organizational trends. As a result, users spend less time finding and
accumulating data, and more time analyzing relevant information and working to implement solutions. That
is, data warehousing provides management with access to the right information in the right format, at the
right time.

To realize the benefits of data warehousing, data is extracted from operational systems and external
information providers, then cleansed, aggregated, integrated, and transformed into a read-only database that
is optimized for decision-making. That is, a data warehouse is a special-purpose database system where
extracts of operational data are pre-processed (indexed, partitioned, and sometimes pre-aggregated) to
improve query performance significantly. Once the data is appropriately stored in a data warehouse, it can
be accessed and used through a wide range of access, analysis, and presentation software tools, including
decision support systems (DSS), executive information systems (EIS), and analysis tools, such as data
mining, statistical software, forecasting software, and simulation. (EIS, DSS, and data mining are described
within a separate abstract.)

The concept of the data warehouse had its genesis in a 1988 International Business Machines Corp.
research paper in the IBM Systems Journal entitled "An Architecture for a Business and Information
System.'' IBM formally announced its Information Warehouse framework in September 1991. The stated
objective was to provide a means for larger organizations to gain open access to data across their hardware
platforms and vendor products (particularly, mainframe-based data, which can be difficult for users to
access).

As illustrated in Figure B-21, data warehousing requires many technology components, which must work
well together. That is data warehouse generation tools extract data from operational systems and external
systems, transform data (cleanse and summarize), and load the data into the warehouse. Once in the
warehouse, data is managed and used via data warehouse management and access tools. These
warehousing tools are described as follows:

• Data Warehouse Generation Tools extract data from the operational databases, transform (or
cleanse) the data, move the data to the server on which the data warehouse is located, and load the data
into the data warehouse.

Preparing data to be loaded into a data warehouse involves extraction, transportation, and
transformation. Extraction programs are periodically run to extract the relevant data from the
operational systems. Customized programs are often used to do the data extracts, but utilities are now
becoming more readily available to assist in this process. These programs specify the source
operational system or external system and the extraction criteria. In order to prepare the data for the
data warehouse, it must be:

• Filtered to eliminate unnecessary details or fields.
• Cleansed to eliminate incorrect or duplicate data.
• Converted and translated into the warehouse database format.
• Consolidated and aggregated from multiple sources.

Version 1.0, 09/15/97 B-23

Cleaning the data is especially important and difficult. Valuable data, such as customer or mailing
data, must be accurate, but it is often difficult to recognize that multiple entries represent, in fact,
the same entity (such as Bill Jones -- 123 Willow Street, William Jones -- 123 Willow St., and W.
Jones -- 123 Willow Street). Additionally, data that is stale, redundant, or of poor quality must be
identified and fixed before being introduced to the data warehouse.

Sophisticated data “cleansing” tools have emerged to help improve the quality of data before it is
loaded into a data warehouse. These tools typically use pattern analysis, fuzzy logic, lexical
analysis, and statistical matching to identify and consolidate logically redundant data such as
names and addresses. In addition to cleansing data, many of these tools also facilitate access to
data stored within heterogeneous legacy file formats and data structures.

After the data have been transformed into the appropriate format, it is loaded into the data
warehouse. During the loading process the data is properly organized for easy access. This
process may include summarizing the data, calculating derived values, denormalizing the data,
time stamping the data, and building appropriate indices.

Data for warehouse-based applications is organized quite differently than data for online
transaction processing (OLTP) applications. Typically, warehouse data is heavily indexed to
improve data access performance (since there are few, if any, on-line updates of the data). OLTP
data, on the other hand, has fewer indices because of the extra overhead associated with updating
all the indices when data is modified. Additionally, warehouse data is often highly summarized
and pre-calculated to provide faster performance for queries (in fact, it is one of the most effective
ways of improving performance), whereas OLTP data are rarely summarized because of potential
data integrity problems when updating the data.

Warehouse data is also denormalized (typically, fewer but larger tables) to reduce the number of
joins necessary when querying the data to improve performance, whereas OLTP data is
normalized to improve data integrity for updates. Another major difference in data organization is
the use of data partitioning: OLAP applications use data partitioning (breaking up a big table into

Figure B-21. A Data Warehouse Framework

DataWarehouseGeneration

Data

Metadata
repository

Administration and Management

Data Warehouse
Management

Operational Data

Multidimensional
data views

Data Warehouse
Access Tools:

EIS/DSS

Version 1.0, 09/15/97 B-24

several smaller tables, such as January, February, and so on, instead of an annual one) to speed
data loading and improve data access, whereas OLTP applications rarely use this form of
partitioning because of data integrity concerns associated with updating the data.

Data Warehouse Management Tools are typically based on parallel database management
system and multidimensional database technologies and are used to help manage operations of the
data warehouse throughout its operational life cycle. (Parallel processing DBMS capabilities are
described within the RDBMS abstract and multidimensional data is described within the EIS/DSS
abstract.) These operations include data quality assurance, systems management, performance
management, and security (security is of particular importance, as data warehouses, by design,
make data easier to understand and access). However, the most important service provided by data
warehouse management tools is database management.

The data warehouse database stores, manages, and stages data for end-user access. It is the core
component of a data warehouse and is often referred to as an online analytical processing (OLAP)
database.

As Figure B-22 illustrates, an OLAP database can be visualized as a multidimensional cube,
where the dimensions represent business data organization. For example, using an OLAP
database, the Education Department could review data via multiple dimensions such as time,
student, school, and disbursement.

Like a spreadsheet, an OLAP database stores related data in blocks or cells. These blocks inside
the cube are where the measures of the business are archived. For example, a block in the 3-D
cube could be defined as the disbursement of a specific loan, to a student at a specific school, on a
certain date (time). As a result of this organization, OLAP databases allow users to "slice-and-
dice'' along each of the dimensions of the data and “drill down” or “roll-up” several layers of
consolidated data.

OLAP databases are typically implemented via multidimensional database technologies (also
known as MOLAP, for Multidimensional OLAP) or via analytical engines, which provide virtual

Figure B-22. Multidimensional Data Cube

1995 1996 1997

Student A

Student B

Student C

School 1

School 2

School 3

Version 1.0, 09/15/97 B-25

multidimensional views from data stored with relational database technologies (commonly
referred to as ROLAP, for Relational OLAP). However, despite these implementation differences,
the generalization can be made that database products must include multidimensional functionality
in order to support OLAP.

The key attraction of an OLAP database is its design, which facilitates intuitive data navigation,
analysis, and presentation. In addition, OLAP databases also provide the ability to:

§ Define aggregation hierarchies and interrogate all aggregation levels at any dimensional
intersection.

§ Built-in analytical and computational features such as roll-up and drill-down capabilities.
§ Deliver improved/optimized complex ad hoc query performance.

• Data Warehouse Access Tools provide non-technical users with access the data stored in the data
warehouse. The ease-of-use and capabilities of these tools are key determinants of the user's
perception of the value and success of the data warehouse. These access tools can support
predefined and ad hoc data access, data analysis, and data presentation, and increasingly, data
mining. Data access tools EIS and DSS solutions. These technologies are described within the
Executive Information System/Decision Support System abstract.

COMMERCIAL OFFERINGS:

Vendor Product Product Type
Vality Technology Inc. Integrity Data Reengineering

Tool
Data Warehouse Generation

IBM Inc. Visual Warehouse, Data
Guide, Visual Query

Data Warehouse Generation,
Management, and Access

Prism Solutions Inc. Prism Warehouse Manager Data Warehouse Generation
Oracle Corp. Oracle Express Server Data Warehouse Management
MicroStrategy Inc. DSS Server Data Warehouse Management
Informix Software Inc. Informix-Online XPS Data Warehouse Management and

Access
Red Brick System Inc. Red Brick Warehouse VPT Data Warehouse Generation and

Management
Apertus Technologies Inc. Enterprise/Integrator Data Warehouse Generation
Information Builders Inc. Enterprise Copy Manager Data Warehouse Generation, and

Management
Platinum Technology Inc. InfoRefiner, InfoBeacon Data Warehouse Generation and

Management

Version 1.0, 09/15/97 B-26

TECHNOLOGY: Operating Systems

TECHNOLOGY DESCRIPTION:

All programmable computing devices, from workstations to mainframes, use an operating system.
However, all operating systems are not created equal. As a result, the scalability and robustness of
supported services tend to increase when moving from the desktop to a server, and again when moving to a
server/host. In effect, a desktop operating system offers a subset of the functionality provided by a server
operating system, and an even smaller subset of the features found in a server/host operating system. This
is largely the case because server/host operating systems are generally based on mature technologies and
were originally designed to simultaneously support thousands of users and transactions. By contrast,
traditional desktop and server operating systems typically support much smaller work groups and are
generally less mature and therefore less stable than server/host operating system products.

The following paragraphs describe the following server and server/host operating systems:

ll UNIX.
ll Microsoft’s Windows NT Server.
ll IBM’s MVS/OS390.
ll IBM’s VM/ESA.
ll IBM’s OS/400.

UNIX is a multi-user operating system that was written in the late 1960s at AT&T Bell Laboratories.
UNIX was written in C, a portable, processor-independent language. There are versions of UNIX available
for Digital Alpha, HP-PA RISC, Intel, Mips, PowerPC, and Sun SPARC microprocessors, among others.

In early 1993, Novell acquired the rights to UNIX's source code from AT&T in an attempt to unify the
UNIX market and offer a single version of UNIX. This acquisition was widely considered a preemptive
strike by Novell against Microsoft's Windows NT, which was to ship in the summer of 1993. However,
Novell failed to unify the UNIX market because UNIX vendors declined to license and sell Novell's UNIX
product, called UnixWare.

Novell finally gave up its unification efforts in 1995 by transitioning the UNIX trademark to the X/Open
Co. Ltd. (now The Open Group) and selling UnixWare to SCO. Therefore, any operating system that
meets the requirements of The Open Group can now be branded a UNIX operating system.

Many companies have licensed the rights to UNIX and added proprietary extensions to it. As a result, the
UNIX market is fragmented so that one vendor's version of UNIX might not be compatible with another
vendor's version of UNIX.

All versions of UNIX support built-in TCP/IP networking, network management, directory services, multi-
user/multitasking services, and interprocess communication.

UNIX is a popular operating system for running enterprise databases and for Internet applications. The
sample versions or "flavors'' listed below are derived from the AT&T source code and are widely installed
within corporations:

ll Digital UNIX -- Formerly OSF/1, Digital UNIX runs on Digital's RISC-based Alpha
workstations and servers. Digital UNIX supports 64-bit computing and is among the first
UNIX versions to support a specification that aims to let UNIX applications run on any
version of UNIX. Digital UNIX is based on UNIX System V Version 4.0.

ll HP-UX -- HP-UX runs on HP's PA-RISC processor, used in HP 9000 workstations and
servers. HP-UX is based on UNIX System V Version 3.2. HP is working with SCO to

Version 1.0, 09/15/97 B-27

enhance HP-UX to run on a next-generation, 64-bit processor under joint development by
HP and Intel.

ll IBM AIX (Advanced Interactive eXecutive) -- AIX runs on IBM's PowerPC-based
RS/6000 workstations and servers, ES/9000 mainframes, and PCs. It is based on UNIX
System V Version 3.2.

ll SCO OpenServer/SCO UnixWare -- Formerly called SCO UNIX, OpenServer is the
leading version of UNIX for Intel hardware. OpenServer is based on UNIX System V
Version 3.2. Acquired from Novell in late 1995, UnixWare is based on UNIX System V
Version 4.2. SCO is working to merge OpenServer and UnixWare into a single offering,
although it is unclear when that work will be completed.

ll Silicon Graphics' IRIX -- Based on UNIX System V Version 4.0, IRIX is particularly
popular for imaging and intensive graphics uses, including special effects in commercial
movies, and supports Indigo Magic, the company's desktop product for visual computing.

ll Sun's Solaris -- Solaris is available for Sun's SPARC and 80x86 computers. A version
of Solaris is also under development for the PowerPC. Solaris is based on a merger of
UNIX System V Version 4.0 and SunOS.

Although thousands of applications are available for UNIX, it remains difficult for developers to write a
single application that can run on multiple versions of UNIX – largely because no two UNIX versions are
exactly alike. The Single UNIX Specification (formerly known as Spec 1170) was supposed to give
software developers a single set of APIs that were supported by every major version of UNIX, thereby
unifying UNIX offerings. However, UNIX vendors have been slow to offer support for the Single UNIX
Specification. In effect, the goal of creating a market for shrink-wrapped UNIX applications remains
largely unfulfilled.

Microsoft's Windows NT Server (formerly known as Windows NT Advanced Server) was
originally released in 1993 and offers many of the features offered by UNIX operating system. Like UNIX,
Windows NT was developed in portable C code. As a result, Windows NT Server is available for Digital
Alpha, Intel, and PowerPC microprocessors. (Test versions of Windows NT Server for HP/PA RISC and
Sun SPARC microprocessors have also been developed, although to date, they have not been released.)
Windows NT Server is a 32-bit operating system that supports symmetric multiprocessing and enforces
security access controls on the file system and other objects.

Windows NT Server did not generate significant sales until 1994, with the release of the second major
version, Windows NT Server 3.5. Windows NT Server 3.5 included a new TCP/IP stack, and gained a
groundswell of server application support from Microsoft, Lotus Development Corp. (now an IBM
subsidiary), Computer Associates (CA) International Inc., and other server software developers. In late
1996, Microsoft delivered Windows NT Server 4.0. It included support for the Windows 95 interface,
cryptography APIs, improved scalability on multiprocessor servers, and the Internet Information Server
(IIS) – integrated Web server software.

Windows NT Server 4.0 is still not a full-function server operating system. Nonetheless, many IT
organizations are deploying Windows NT Server to run departmental databases, Internet/intranet servers,
and support file and print services – largely because cost of ownership is less than with alternative server
operating system solutions. Many UNIX application developers, including IBM, Oracle, Sybase, and
Informix, are now offering applications for Windows NT Server. Microsoft itself offers BackOffice, a
suite of software for Windows NT Server that includes the SQL Server database, Systems Management
Server for PC administration, SNA Server for mainframe connectivity, and Exchange Server for messaging
services. Web servers for NT are also widely available.

Like Windows NT Workstation, Windows NT Server is available for Intel, Digital Alpha, and PowerPC
microprocessors. However, software developers must recompile their applications from the original

Version 1.0, 09/15/97 B-28

platform for use on additional platforms. Because most companies run Windows NT Server on Intel
servers (and sometimes, Digital Alpha servers), few vendors have ported their Windows NT Server
applications to other platforms.

Many enterprise hardware and software providers, such as Tandem, are seeking to diversify their revenue
streams by adding value to Windows NT Server. In May 1996, Tandem announced that it will extend its
ServerNet clustering technology, NonStop transaction processing technology, and NonStop SQL database
technologies to Windows NT Server. Announcements such as Tandem's and those made during 1996 by
CA, Digital, SAP AG, and other enterprise players, ensure that Windows NT Server will be an increasingly
attractive platform for higher-end, mission-critical applications.

On May 20, 1997, Microsoft announced an enterprise edition of the Windows NT Server 4.0 operating
system, which will support up to eight processors. Additionally, the enterprise edition of NT will ship with
Microsoft’s new Transaction Server and Message Queue Server. In an effort to demonstrate NT’s ability to
support “higher-end, mission-critical” applications, Microsoft also demonstrated these technologies.
Specifically, using a mock application of a global bank's automated teller machine (ATM) network, 20
Compaq servers, each running Microsoft SQL Server, were able to handle nearly 14,000 transactions per
second, or more than 1.2 billion transactions per day if sustained over 24 hours. The setup included five
servers running Microsoft Transaction Server, which distributed the ATM transactions among machines.
Additionally, in a second demo, Microsoft unveiled a terabyte-size database, loaded with satellite images of
the earth, running on a four-processor Digital Equipment AlphaServer 4100 running Microsoft’s NT and
SQL Server 6.5, Enterprise Edition.

Multiple Virtual Storage (MVS) and Virtual Machine (VM) from IBM dominate the mainframe
operating system world. MVS was introduced in 1974, and has since been continuously enhanced to
support on-line applications such as CICS (Customer Information Control System). Additionally, MVS
will run on mainframes built by Amdahl Corp., Fujitsu Ltd., and Hitachi Data Systems Corp.

MVS is designed to manage very large systems with multiple terabytes of data. MVS/SP4 (System Product
4) provides support for the Open Software Foundation's Distributed Computing Environment (DCE)
services, which offer distributed system infrastructure features, such as directory and security services.

IBM's MVS/ESA (Enterprise Systems Architecture) current offering – OpenEdition MVS – received UNIX
certification from The Open Group in 1996. It adds UNIX APIs that help transform the MVS control
program into a super-UNIX-like environment. Integrating the APIs into the MVS base allows IBM to
address several of the shortcomings of native UNIX: robustness, integrity, and diverse workload handling.

IBM's flagship version of MVS is now OS/390 Release 2. OS/390 bundles the core MVS/ESA operating
system with applications, enabling components and communication functions from more than 50 products
that formerly were sold separately. Through OS/390, IBM has reduced user-testing requirements because
the software suite is pre-bundled and tested prior to shipment. In addition, competitive pricing makes
OS/390 an attractive choice. The Gartner Group estimates that perhaps 50 percent of the MVS installed
base will be using OS/390 by the end of 1998.

OS/390 also currently includes a communications server and is available with an optional security server.
The optional OS/390 Security Server is a full-function security service that supports RACF (Resource
Access Control Facility, an access and control system that authorizes access to resources and logs
unauthorized access attempts and accesses to protected data sets).

For additional reliability and scalability, OS/390 supports Parallel Sysplex, a technology that couples
multiple S/390 servers into a single, logical server. Using Parallel Sysplex, workloads can be distributed
dynamically to any available processor.

Version 1.0, 09/15/97 B-29

IBM has announced that it intends to deliver a new release of OS/390 approximately every 6 months to
improve customer planning productivity and efficiency. Specifically, IBM is transforming OS/390 into an
open operating system that supports the following:

ll Internet services – In April 1996, IBM announced the OS/390 Internet Bonus-Pak, a free
software package that lets customers use their mainframes as Web server platforms. Several
airlines, major educational institutions, and global hotel chains have already deployed IBM's
new Web server software on their IBM mainframes because it can support more than 14,000
concurrent user requests.

ll UNIX standards – In September 1996, IBM followed its Web announcement by revealing
that OS/390 had achieved XPG4 UNIX 95 Profile Brand (UNIX 95) certification. According
to IBM, OS/390 now provides customers with full UNIX capabilities built directly into the
operating system, and is the first server/host operating system to offer such support for UNIX.

ll Windows NT applications – OS/390 will run Wind/U, a third-party product from Bristol
Technology Inc. that allows developers to compile and execute Microsoft Windows
applications on OSF/Motif.

IBM's VM/ESA (Virtual Machine/Enterprise Systems Architecture) manages a computer system so
that all of its resources – processors, storage, and I/O devices – are available to many users simultaneously.
VM is a multiple-access system that contains three major elements:

ll Control Program (CP) – A program that controls the resources of the real computer to
provide multiple virtual machines. Each virtual machine can run a different operating system
and can provide virtual storage support for operating systems that do not offer such support.

ll Conversational Monitor System (CMS) – A component that gives users a wide range of
conversational facilities, including creation and management of files and compilation, testing,
and execution of programs. CMS supports office productivity tools, software development,
database management, decision-support tools, and a large library of third-party software.

ll Remote Spooling Communications Subsystem (RSCS) – A component that enables users
to transmit files to and receive files from remote stations in the Remote Spooling Control
System (RSCS) teleprocessing network.

The latest VM/ESA release, known as VM/ESA Version 2 Release 2.0, is POSIX-compliant and provides
the following:

ll A smooth transition into the next century. VM/ESA Version 2 Release 2.0 is the only
VM/ESA release with support for Year 2000 issues. That is, it resolves dates with two-digit
years with correct century information, and enables testing of MVS, OS/390, VM, and VSE
systems with Year 2000 dates.

ll Enterprise-class performance, due to its ability to run on IBM's S/390 Multiprise 2000 and
S/390 G3 Enterprise Server platforms.

ll Enhanced network communications via IBM's TCP/IP and Web third-party server products.

OS/400 is IBM's operating system for the AS/400 line of computers. The AS/400 has sold 400,000 units
since its introduction in 1988, and nearly 28,000 OS/400 applications are available worldwide, according to
IBM, including 3,000 client/server applications such as SAP R/3 and PeopleSoft.

Version 1.0, 09/15/97 B-30

OS/400 Version 3 Release 1 includes OSF's DCE services including authentication, directory services, and
remote procedure calls. OS/400 supports an Integrated Language Environment (ILE) C/400 programming
language, which enables applications to perform two times to three times faster compared with previous C
applications written for the OS/400. It also includes native ODBC support, allowing distributed client
applications to access data from OS/400 data storage.

In June 1996, IBM unveiled its latest upgrade to OS/400, known as OS/400 Version 3 Release 2. This new
OS/400 release supports Internet access for AS/400-connected users, enhanced security features for Internet
access, and integrated Lotus Notes support.

IBM for the first time is positioning AS/400 and OS/400 to compete against PCs on price. For instance,
IBM offered a special $7,995 AS/400 starter kit that runs PC software as well as AS/400 applications. IBM
also demonstrated a thin-client solution called Network Station, a network computer with a graphical
interface designed for network-centric computing that will cost around $700 and work with the AS/400.
By contrast, Pentium Pro servers running Windows NT and PC applications typically sell for $10,000 to
$15,000 or more, and the PCs linked to them have an annual cost of ownership of $5,000 or more. With an
$8,000 AS/400 and a $1,000 thin client, IBM hopes to convince customers that the AS/400 and its OS/400
operating system offers a lower-cost alternative to networks comprising Pentium Pro servers and Pentium
desktops.

COMMERCIAL OFFERINGS:

Vendor Product
Sun Microsystems Solaris
Hewlett Packard HP-UX
Digital Digital UNIX
Silicon Graphics IRIX
SCO OpenServer, SCO UnixWare
Microsoft Windows NT Server
IBM Corp. AIX, MVS/OS/390, VM/ESA,

OS/400

Version 1.0, 09/15/97 B-31

TECHNOLOGY: Electronic Data Interchange

TECHNOLOGY DESCRIPTION:

Electronic data interchange (EDI), defined as "the transmission of business transaction information in
computer-readable form between organizations in a standard format," is an electronic means to improve the
quality and availability of business information. That is, EDI's provides direct electronic transmission
capabilities that facilitate business transaction efficiencies and data integrity improvements – this allows
employees to focus on business issues instead of data processing and error correction.

EDI is facilitated by a technology infrastructure that permits routine information exchanges between
computer-based processes. Processes which exchange information through EDI are typically tightly
coupled business applications owned by two or more trading partners. Examples of tightly coupled
processes include:

• A school’s financial aid system, which generates disbursement requests (invoices) for
transmission to the EASI/ED target system.

• A vendor's billing system, which prepares invoices for transmission to a customer's accounts
payable system.

•
• A customer's purchasing system, which generates orders for direct transmission to a vendor's

sales order entry system.

Figure B-23. What is EDI?

Invoicing Accounts Payable

X12 Translate X12 Translate

Data Communication Data Communication

810 Invoice
Standard

Exchange of Business Data

Application to Application

Using Commonly Defined Standard Formats

In Machine Readable Form

EDI is the

Version 1.0, 09/15/97 B-32

Trading partners who exchange large volumes of transactions have discovered that paper-based exchanges
are inherently inefficient and human interfaces are expensive and sometimes unreliable. With these
deficiencies in mind, in 1979 several industry groups and individual companies, led by the Credit Research
Foundation (CRF), petitioned the American National Standards Institute (ANSI) to accredit a standards
committee to address this need. As a result, the Accredited Standards Committee X12 (ASC X12) was
authorized by ANSI later that year.

ASC X12 was established with an open membership. Leveraging the accomplishments of other Electronic
Business Data Interchange initiatives, the committee enlisted the participation of a wide cross-section of
American businesses in the development of a broad dictionary of data elements, transaction types, and
syntax/design rules. Today more than one hundred different types of transactions can be exchanged via the
technique that has come to be known as EDI. ASC X12 estimates that 14,000 organizations use the EDI
standard and, as a result, enjoy benefits such as:

• Reduction of paperwork and associated savings
− One-time data entry
− Reduced errors, improved error detection
− Higher productivity without increasing staff
− Reduced clerical workload
− On-line data storage
− Reduced postage and handling costs
− Reduced printing costs of forms

• More timely communications
− Rapid exchange of data
− Reduced mail/delivery time
− Increased customer service quality

• Uniform communications with trading partners

One primary function of EDI software is to transform data to and from a defined EDI standard format (e.g.,
ANSI ASC X12 standard). This computer-based process is appropriately referred to as the "translation"
function.

EDI begins and ends with business applications, which
share data, but have different methods of viewing and
processing this data. For example, a school’s financial aid
system may use data, such as social security number,
loan/grant amount, and school name, to request or
invoice the disbursement of funds on behalf of a student.
These data elements will be received by the EASI/ED
target system, where they may be used to authorize
funding and request payment.

While exactly the same data values are used by both the
school and ED, the semantics, syntax, and technologies
used by the communicating systems may be quite
different – largely because dissimilar processes mandate
disparate technologies. To solve complications associated
with the heterogeneity of trading partner systems, EDI

uses a set of commonly defined transaction formats – transaction sets – to exchange data. A partial listing
of these X12 transaction sets is provided in Figure B-25.

When using EDI, the sender's originating application – for example, the school financial aid system
described above – produces the same data regardless of the delivery mechanism. That is, the business

Figure B-24. EDI Translation Process

Communications
Process

Application
View

X12 View

Data Map

Application Process

O
ut

bo
un

d
D

at
a

In
bo

un
d

D
at

a

Version 1.0, 09/15/97 B-33

functions supported by the application do not change based on whether EDI is being used or not. Simply
put, with EDI, the disbursement request data is sent to the translation process software instead of the form
printer, but the services delivered by the application do not change – although they will probably be
delivered more efficiently.

The translator software accepts the student financial aid system's view of the data, applies a user-defined
map and formats the disbursement request into a standardized EDI transaction (for example, transaction Set
810). The transaction is delivered through a communications process to ED, the receiving organization,
where the EDI process is reversed. For example, an ASC X12 standard invoice may be filtered through a
map defined by ED and converted into a view of the data required by the EASI/ED target system. Once the
EDI transaction is received, the information therein is processed the information just as though it had
originated from a paper disbursement request or invoice.

Translation software packages with varying degrees of sophistication exist for virtually every computer
platform. Many large organizations use translators running on mainframes or enterprise servers that
centrally support all of the organization’s business application systems. As applications are selected for
EDI support, new maps and application data definitions are added to the central translator's libraries. These
maps are used to prepared outgoing application data for X12 formatting and incoming X12 transactions for
application use. Creating maps and profiles replaces the more time-consuming activity of programming
individual interfaces for each trading partner's view of each target application. Additionally, many
translation products maintain partner and communication profile tables, which direct the output of the
translator to the correct delivery mechanism.

In addition to the translator software, communication alternatives must be considered when implementing
EDI solutions. Many EDI operations are conducted using what is called “point-to-point” connectivity.
Point-to-point connectivity means that the connection between sender and receiver is fixed and used solely
for the purpose of EDI.

How long the points are connected depends on whether the EDI user selects dial-up or dedicated mode. In
dial-up mode, the connection is established by placing a call through the public switched telephone
network. As long as the computers at opposite ends of the telephone circuit are exchanging data the
connection will remain open. The connection ends when one of the computers terminates the call by
hanging up. In dedicated mode, a telephone circuit is connected constantly. The computers connected to
either end of the circuit may exchange data at any time by entering into a predefined dialogue. No dialing is
required since the telephone circuit is always available.

Figure B-25. EDI X12 Transaction Set

TRANSACTION
SET ID

STANDARD TITLE X12 REFERENCE
NUMBER

130 Student Educational Record (Transcript) X12.89
131 Student Educational Record (Transcript) Acknowledgment X12.90
135 Student Loan Application X12.198
139 Student Loan Guarantee Result X12.265
144 Student Loan Transfer and Status Verification X12.94
146 Request for Student Educational Record (Transcript) X12.121
188 Educational Course Inventory X12.322
189 Application for Admission to Educational Institutions X12.321
190 Student Enrollment Verification X12.264
191 Student Loan Pre-Claims and Claims X12.276
194 Grant or Assistance Application X12.372
198 Loan Verification Information X12.359
810 Invoice X12.2
820 Payment Order/Remittance Advice X12.4

Version 1.0, 09/15/97 B-34

The dedicated mode level of service is generally not required as EDI exchanges tend to occur in bursts of
file transfer activity at the beginning and end of a company's batch production cycles. A dedicated circuit is
needed when transactions are volume or time-sensitive, as is the case with just-in-time programs. In
addition to dedicated or dial-up mode connectivity, an EDI user must decide whether to support direct
communications with each trading partner or engage a Value Added Network (VAN) provider. For a fee,
the VAN will collect and disseminate a firm's EDI transactions.

A VAN customer supports a single connection between itself and the VAN's nearest point-of-presence
(usually a local telephone call) in dial-up mode. The VAN services senders by delivering standard EDI
transactions (such as ANSI ASC X12 transaction messages) to the designated receivers. The sender may
communicate with the VAN at its convenience and the VAN will deliver the sender's transactions to what
are called Electronic Mailboxes. Each mailbox belongs to a specific recipient of transaction data and
transactions from multiple senders may be collected in the same mailbox.

At its convenience, the receiver of EDI data from a VAN establishes a communications session and
requests delivery of all transactions stored in its mailbox. Since the sender's and receiver's communications
sessions are independent of one another, the VAN can facilitate asynchronous processing – removing the
requirement that trading partner systems be simultaneously available. The fact that sender and receiver are
never directly connected also means that a VAN user is not required to support various data
communications protocols and speeds based on the abilities of individual trading partners.

COMMERCIAL OFFERINGS:

Vendor Product
Amsys North America Inc. HostBridge for DEC/EDI
CMI-Competitive Solutions, Inc. TRANS4M EDI
Data Management Strategies, Ltd. Pro_EDI
Datacom Global Corp. EDI-Answer
GE Information Services A-EDI Application Integrator
Frontec AMT, Inc. AMTrix
IBM Corp. DataInterchange
Momentum Systems Limited Intelligent Network Gateway
Digital Equipment Corp. DEC/EDI Software
Sterling Software GENTRAN
EDI Support, Inc. A-Translation
ExtoL, Inc. ExtoL EDI

Version 1.0, 09/15/97 B-35

TECHNOLOGY: Networking Infrastructure Technologies

TECHNOLOGY DESCRIPTION:

Network technology has evolved to support communications not only among coworkers, but also with
suppliers, clients, and trading partners. As a result, networks are increasingly distributed, complex,
pervasive, and heterogeneous. With these complications in mind, the Open Systems Interconnection (OSI)
model was developed.

As illustrated in Figure B-26, the OSI model provides a
framework for defining standards that can be used to “link”
heterogeneous systems. That is, OSI is intended to facilitate
communication and information exchange through any
standardized communication facility executing standardized
OSI protocols.

The OSI model is composed of communication functions,
which are partitioned into a hierarchical set of layers. Each of
these layers perform a subset of the functions required for
system communication. Within this hierarchical construct each
layer relies on the next layer to perform more primitive
functions and to conceal the complexity of those functions.

This abstract defines technologies that provide services
consistent with the Data Link layer of the OSI model. That is,
this abstract describes technologies that organize data into a set
of frames and supplement each data frame with control data,
which is used to facilitate reliable transmission across the
physical network link.

Data Link technologies are specifically considered within this
abstract because data transfer rates6, network costs, topology,
and media options are significantly influenced by Data Link
protocol decisions. Specific technologies described within this abstract include:

• Ethernet and Fast Ethernet.
• Token Ring.
• Fiber Distributed Data Interface (FDDI).
• Asynchronous Transfer Mode (ATM).
• Frame Relay.

It should be noted that some of the technologies described within this abstract are not strictly classified as
Data Link Protocols (for example: frame relay). These technologies have been included because they
provide Data Link services.

Ethernet is the most popular data link protocol in use today and has become the most common way to
implement LANs. Commonly referred to as “Shared Ethernet,” this protocol typically provides 10Mbps
data rates and utilizes Carrier Sense Multiple Access with Collision Detection (CSMA\CD) technology.
With CSMA\CD any station is allowed to transmit data at any time, as long as the network is not occupied
by transmissions from other stations. When two or more stations transmit data simultaneously, a collision

6 Data rate is the measure of the speed at which data that can be transferred over a medium. Data rates are
typically articulated in terms of megabits per second (Mbps) or kilobits per second (Kbps).

Application

Transport

Physical

Data Link

Network

Session

Presentation

OSI Architecture

Figure B-26. 7 layer OSI Model

Version 1.0, 09/15/97 B-36

occurs. When a collision occurs, the stations involved wait a random period of time before attempting to
transmit again, after first listening to make sure the network is available.

Ethernet is attractive to many organizations because it is designed to provide inexpensive, flexible, high
speed, and maintainable Data Link services. However, because all stations on a Ethernet network share the
available bandwidth7, as the network traffic increases, so do the number of network collisions – often
resulting in lower overall throughput8.

The following strategies can be used to implement Ethernet networks.

• Full-Duplex Ethernet. For customers who require increased network bandwidth, but must leverage
existing equipment, full-duplex Ethernet is a possible solution. Unlike Shared Ethernet, which uses
hub9 technology, Full-Duplex Ethernet works with Ethernet switches, which allow stations to
simultaneously transmit and receive data at 10Mbps – effectively doubling the bandwidth available
with Shared Ethernet.

• Switched Ethernet. Using switch technology, Switched Ethernet provides the network entire
bandwidth to each station for small, alternating intervals of time. Using this technique, station on the
network does not share the bandwidth, as they do with Shared Ethernet. The Switch Ethernet technique
can be implemented in conjunction with Full-Duplex Ethernet.

Although Ethernet hubs must be replaced with switching technology, organizations can typically
continue to use existing Ethernet adapter cards and conduit infrastructures as they migrate from Shared
or Full-Duplex Ethernet to Switched Ethernet. For this reason, Switched Ethernet is becoming a
popular way to increase available network bandwidth, without significantly increasing costs. This
growing popularity is one reason why Ethernet should remain the dominant desktop networking
technology for years to come. This is illustrated in Figure B-27.

LAN Technologies Speed Market share
Ethernet 10Mbps - 100Mbps 75%
Token Ring 4Mbps or 16Mbps 15%
Fast Ethernet 100Mbps 2%
FDDI 100Mbps <1%
ATM 25Mbps - 2.4Gbps <1%

 Figure B-27. LAN Technology: Speed and Market Share

 Source: Alex Berson - Client/Server Architecture

• Fast Ethernet. With the arrival of economical, powerful desktop PCs and the subsequent distribution
of complex applications, organizations have realized a need for increased network bandwidth.
Providing data rates of up to 100Mbps, Fast Ethernet is being used to satisfy these needs. That is,
leveraging the same data transmission formats (frames) and CSMA\CD techniques as the Ethernet
variants that have already been described, Fast Ethernet provides 100Mbps data transmission rates.
What is more, Fast Ethernet provides backward compatibility with slower Ethernet implementations
(for example, 10Mbps Shared Ethernet).

Unlike migrating from Shared Ethernet to Switched Ethernet, upgrading from Ethernet to Fast Ethernet
usually requires that network interface cards, hub/switch technology, and, in many cases, the conduit

7 Bandwidth describes the amount of data that can be transmitted on a physical medium at one time.
8 Throughput is the measure of data that is transmitted between to points. Throughput is a function of
Bandwidth and data transmission rate.
9 Hubs are network devices that provide connectivity between stations by serving as a wiring nexus for the
network.

Version 1.0, 09/15/97 B-37

infrastructure, be replaced. Nonetheless, Fast Ethernet is being installed in conjunction with Switched
Ethernet, and is now commonly used for server-to-server connections, specialized applications with
large data communication requirements, such as imaging, and even for desktop connectivity.

Token Ring is a Data Link protocol made popular by IBM that operates at data rates of either 4 Mbps or
16 Mbps and is often used in LANs. In Token Ring networks, stations are logically organized in a ring
configuration and messages are passed from device to device in sequence via a data token, which confers
the right to transmit data. That is, stations on a Token Ring network are allowed access to the network
medium only when they are in possession on a token. Unlike Ethernet, which is based on CSMA\CD
technology, network collisions are not an expected occurrence and, barring hardware errors, data
transmissions are orderly and practically guaranteed to be successful on a Token Ring network. For these
reasons, Token Ring networks are often referred to as “deterministic.”

As illustrated in Figure B-28, the “logical ring” configuration used by Token Ring is physically wired in a
“star.” That is, each station is connected to the station directly preceding and following it on the network.
This connection is facilitated via a multistation access unit (MAU), which is in turn connected to other
MAUs via a ring. In this configuration, all stations are included within a logical ring and each station
receives transmission only from the station preceding it and transmits messages only to the station
following it. As a result of this configuration, stations must be capable of discovering their upstream and
downstream neighbors. This requires Token Ring network interface cards to have a lot of error correction
and connection circuitry that is not needed in Ethernet network. As a result, Token Ring equipment and
networks are typically more expensive than Ethernet.

Like Ethernet, Full-Duplex and switched Token Ring has emerged. Full-Duplex Token Ring technology
doubles the total bandwidth available to a station as explained in the Full-Duplex Ethernet section above.
Using the switched technique, as explained earlier, stations do not simultaneously share the 16-Mbps
network. Rather, the switch provides the entire network to each station for small, alternating intervals of
time.

Fiber Distributed Data Interface (FDDI), originated in 1982 by the American National Standards
Institute (ANSI), is a standardized protocol for sending data over fiber optic cable at data rates up to
100Mbps. The FDDI protocol is based on token-passing and is implemented with a primary ring and a
secondary ring. FDDI's redundant ring architecture, as illustrated in Figure B-29, provides fault tolerance

Figure B-28. Logical Token Ring configuration

Multistation Access Unit(MAU)Multistation Access Unit(MAU)

Station Station Station Station Station Station

Version 1.0, 09/15/97 B-38

for the network. Under normal
conditions only the primary ring is
used. However, when a failure
occurs on the primary ring, FDDI
allows traffic to be routed via the
secondary ring. In addition to
increased fault tolerance and data
rates, FDDI supports for up to
1,000 stations on a single ring10,
is not affected by electromagnetic
interference, like wire-based
technologies, and offers a high
degree of security11.

As illustrated in Figure B-29,
FDDI is primarily used as
network backbone technology.
That is, many organizations use
FDDI to provide capacity
enhancements on congested LAN
backbones, which interconnect
enterprise-computing systems and
large data-storage devices that conduct high-volume data transfer operations. However, with the emergence
of low cost, high-speed networking alternatives, such as Fast Ethernet, FDDI use may decline in future
years.

Asynchronous Transfer Mode (ATM) is a packet-switching12 technology that uses small, fixed-
length packets called cells that allow switching to be done entirely by hardware (which is much faster than
software switching). ATM is designed to transfer data, with minimum delays, at very high speeds reaching
up to 2Gbps. These characteristics make ATM ideal for a wide range of applications, including imaging,
video, and multimedia. What is more, 25Mbps ATM can run over twisted-pair wiring, which is less
expensive than the fiber-optic alternatives. However, ATM technology has several drawbacks, not least of
which are equipment costs. ATM equipment is very expensive. For example, adapter cards can cost more
than $500.

It is widely assumed that ATM will be a significant networking technology in years to come. However, the
absence of ratified standards has made integration complex and interoperability between heterogeneous
vendor product offering difficult to attain. This has slowed ATM adoption, as has the requirement to
replace almost every network-related system component (adapter cards, hubs, etc.) when transitioning to
ATM. Nonetheless, because many technology alternatives are also expensive, ATM is being used
increasingly in place of, for example, FDDI as a backbone networking technology.

10 Connecting stations to both the primary and secondary rings is optional and decreased the number of
stations that may be connected to a single ring. 1,000 stations may be connected to a ring only when the
primary ring is used.
11 It is difficult to “tap” into the FDDI network without disrupting the network, and requires specialized
equipment and skills to do so.
12 Unlike circuit-switching networks, which define a static path for data to travel from one point to another,
in packet-switching networks there is not direct connection between the sender and the receiver. Rather
packet-switching networks use addressing information, which is transmitted with the data, to route
transmission to their destination.

FDDI Ring

Mainframe

Ethernet

Token-
ring

Dual

Client

Single

Dual

Client Client

Client

Client

ClientClient

Ethernet

Client

Dual

Client Client

Client

Application Server

Disk Storage

Tape Storage

Figure B-29. FDDI's Redundant Ring Architecture

Version 1.0, 09/15/97 B-39

Frame Relay is a wide area connection protocol that uses switching technology to package data into
frames (or packets) so they can be relayed from station to station. Designed to run over digital lines, frame
relay is much simpler than other protocols, which operate on slower, noisy, error-prone analog lines. As a
result, error-checking services are optional with Frame Relay.

Frame Relay operates on the principal that not every site with access to the network will need the network’s
bandwidth at the same time. That is, Frame Relay assumes that most of the time that a station is on the
network it is not transmitting data. With this in mind Frame Relay interleaves data from a number of
different sources, thus increasing the efficiency with which available bandwidth is used. Specifically, many
technologies divide the available network into “virtual channels” and stations are assigned a channel,
whether they were transmitting data or not. As a result, most of the time available bandwidth is not being
fully used. As illustrated in Figure B-30, Frame Relay, uses a technique known as statistical multiplexing
to allocate bandwidth only as needed. This result is more efficient bandwidth utilization.

Operating at 56Kbps to 2Mbps,
Frame Relay is a good choice
for applications such as LAN
interconnections, where traffic
volume may vary significantly,
or where short bursts of very
high bandwidth are required.
(Some vendors are beginning to
offer 45Mbps Frame Relay.)

Frame Relay is considered
relatively inexpensive. Pricing
varies from carrier to carrier and
depends on specific parameters,
such traffic volume, and
committed (guaranteed) data
rate, etc. However, aggressive
pricing are contributing to the
service's increasing popularity.

Figure B-30. Bandwidth Allocation: By Channels, and by Need

Allocating Bandwidth by Channels

Allocating Bandwidth by Need

= network traffic from
various stations

Version 1.0, 09/15/97 B-40

TECHNOLOGY: Online Transaction Processing Monitors

TECHNOLOGY DESCRIPTION:

Computer science described transactions in terms of four properties – know as the ACID properties. These
properties are:

• Atomicity implies that a transaction is handled as a single, indivisible unit of operation; either all
of the transaction’s actions complete or none of the actions are committed (saved).

• Consistency ensures that relevant business rules are always enforced and that databases
maintained by the system are always left in a consistent state. If the transaction cannot achieve a
stable end-state, then the transaction must return (rollback) the system to its initial state.
Consistency also implies that reality is reflected within the database. For example, if 100 students
apply for financial aid, then the database should include application data for 100 students.

• Isolation indicates that a transaction cannot reveal its results to other concurrent transactions
before commitment. That is, a transaction's behavior is not affected by other transactions that
execute concurrently. Isolation assures that a transaction does not access or update data that is
being updated by another transaction. This is particularly important in a high-volume system
where hundreds of transactions execute more or less concurrently.

• Durability ensures that once a transaction is committed, the results are permanent and cannot be
removed from the databases – except by another transaction. That is, system instabilities and
failures in no way threaten the integrity of data. To ensure data durability, a transactional system
provides mechanisms for backing up data and for logging (recording) transactional activities.

Simply put, a transaction can be defined as a sequence of database operations that transform the system
from one consistent system state to a new consistent state. Transactions are characterized by those database
operations involving the retrieval, insertion, update, and deletion of data.

Figure B-31. TP Monitor Framework

Application Server
TP Monitor Services
(Service Provider)

Application Server
TP Monitor Services
(Service Provider)

Client
(Service Requestor)

Client
(Service Requestor)

Client
(Service Requestor)

Client
(Service Requestor)

Database Server

Database Server

Database Server

Data

Data

Data

Version 1.0, 09/15/97 B-41

Systems that specialize in managing the operations of many users as they retrieve, insert, update, and delete
database records are commonly referred to as on-line transaction processing (OLTP) systems. OLTP
systems have been in use for more than thirty years – within large mainframe and proprietary mid-range
information systems. For example, IBM’s mainframe-based Customer Information Control System (CICS)
is a very popular OLTP technology. More recently TP monitors – the software components that facilitate
OLTP – have become available for the UNIX-based, open system environments commonly used within
client-server and distributed systems.

Like mainframe-based TP monitors, today’s TP monitors are designed to provide centralized transaction
management and control. However, unlike many of the more mature OLTP technologies, TP monitors are
now being designed to work within the framework of modern distributed process and data strategies, as
illustrated in Figure B-31. That is, TP monitors are now being used to 1) Facilitate interprocess
communication between distributed application components; 2) Provide load balancing, priority
scheduling, and process management services; and 3) Manage transactions that involve data stored within
multiple, heterogeneous database management systems.

Having considered these OLTP-enabling services, many organizations are choosing to architect systems
around TP monitors. That is, TP monitors are finding widespread acceptance with organizations that are not
willing to exclusively rely on the OLTP services inherently provided by RDBMS technology or associated
stored procedures (which can be used to extend the transactional capabilities of RDBMS technology). In
particular, system architectures are relying on TP monitors to provide two mission-critical services:

• Process Management.
• Transaction Management.

The process management services provided by today’s distributed system TP monitors (monitors) allow
monitors to do much more than just provide secure and reliable processing of online transactions.
Monitors can be used to provide an extension to the operating system that adds substantial program-to-
program communication, message-routing, and system configuration capabilities. Currently, most monitors
support synchronous, as well as asynchronous communication. These communication models are illustrated
in Figure B-32.

Figure B-32. Synchronous and Asynchronous Communication Model

Client
(Service Requestor)

Audit Server
Audit Collection Services

(Service Provider)

Asynchronous/ No Reply

Database Server

Request 1
WAIT(Blocked)
Response 1
Request 2
WAIT(Blocked)

Application/Database Server
TP Monitor Services

(Service Provider/Requestor)

Data

Application/D Server
TP Monitor Services

(Service Provider/Requestor)
Client

(Service Requestor)

Request 1
Request 2
Response 1
Response 2

Asynchronous

Synchronous

Data

Version 1.0, 09/15/97 B-42

Synchronous communication requires simultaneous availability of the client (service requesting) portion of
the system and the server (service providing) portion of the system. Typically synchronous communication
is “blocking.” That is the service requestor must wait for the service response before processing can be
continued. For example, synchronous communication might be used to request and provide student
information that is needed for subsequent student aid administration processing.

Unlike synchronous communication, asynchronous communication does not require the service provider to
be available when a service request is issued. That is, application clients and servers do not have to be
simultaneously available. Rather, the services may be requested and then serviced at a later date or time.
Asynchronous communication is typically not blocking. That is, the service requestor is free to conduct
further processing while previously issued service requests are being satisfied (responded to). For example,
the EASI/ED target system might use asynchronous communication to request IRS validation of student
income information. In this situation, the IRS batch cycles or other system workloads may not allow
immediate request processing and response; however, because asynchronous and non-blocking
communication is being used the EASI/ED target system is free to continue other operations while the IRS
satisfies the request. Asynchronous and non-blocking communication might also be used in situations
where the service provider is not required to respond to the client at all. For example, a client may request a
service provider to capture performance or audit information. In this situation, asynchronous
communication would be appropriate, as 1) a response from the service provider is not required and 2) the
service provider’s ability to immediately satisfy requests should not affect client performance.

Figure B-33. Asynchronous Communication Model

Client
Database Server

Request 1
WAIT(Blocked)
Response 1

Application Server
TP Monitor Services

Data

Synchronous

Transaction Queue

X

Client
Database Server

Client is Offline

Application Server
TP Monitor Services

Data

Transaction Queue

Service Request Buffered to Persisitent Queue for Later Processing When Database Server is Available

X
Application Server Fails -- Queued Service Request Is Buffered "Reliably" and is Safe

Client
Database Server

Client is Offline

Application Server
TP Monitor Services

Data

Transaction Queue

Application and Database Server Are Available -- Queued Service Request Is Processed

Version 1.0, 09/15/97 B-43

Typically, TP monitors provide asynchronous communication services via message queues (as explained in
the Middleware abstract) and many monitors even offer persistent or reliable queuing services. Persistent
queuing services buffer transactions to disk to increase reliability should a connection fail. Persistent
queuing introduces a great deal of application flexibility and can greatly increase “apparent” system
availability. For example, using persistent queuing the EASI/ED system could accept student aid
applications and buffer these applications to disk where they could processed when the service provider
was available. Using this configuration, students can submit application, even when portions of the
EASI/ED system are unavailable. What is more, queued transactions can be recovered and completed, even
if a failure were to occur on the system on which the queue resides. This is illustrated in Figure B-33.

In addition to facilitating interprocess communication – a la middleware, TP monitors can also be used to
manage distributed system communication processes. Consider the process-per-user memory management
strategy described within the RDBMS abstract. This memory management strategy provides a separate
process and address space for each client connection to the database, whether the connection is actively
used or not13. As illustrated in Figure B-34, in system architectures where the RDBMS is directly accessed
by clients (service requestors), if there are 10,000 clients then 10,000 client processes would have to be
instantiated and each of these 10,000 processes would consume system resources. This configuration
requires substantial system resources, as the database server must not only support database I/O operations,
but the operating system must also manage the considerable workload generated by 10,000 client
connections.

To resolve these architectural deficiencies, TP monitors can be used to dynamically assign memory –
thereby:

• Increasing the number of active users that can address a system.
• Reducing the system’s hardware requirements.
• Boosting system response time.

Specifically, the TP Monitor removes the process-per-client requirement by “funneling” incoming client
requests to shared server processes. TP monitor “funneling” is based on the premise that process-per-client
connections are under utilized and that resources associated with these connections can be shared by many
clients. However, it is important to note that clients do not concurrently share process address space. Rather
they use and then “release” these resources for use by other clients. As a result:

• Clients receive the enhanced fault tolerance of the process-per-client strategy.

13 The process-per-user configuration effectively isolates client operation and increases fault tolerance.
However, this strategy also consumes a considerable amount of system resources and yields comparatively
weak performance.

Figure B-34. Architecture without a TP Monitor

Database Server

10,000
CONNECTIONS

Client Workstation

10,000 Connections
10,000 Processess
10,000 Open Files
1GB Memory

Data

Version 1.0, 09/15/97 B-44

• Concurrent database server connections are reduced – thus reducing database server resource
requirements.

What is more, many TP monitor technologies enhance these process management techniques with load
balancing services, which dynamically start new processes when the number of incoming client requests
exceed the number of available shared server processes. TP monitor process “funneling” is illustrated in
Figure B-35.

Although TP monitors provide valuable process management services, as described in the previous
paragraphs, their forte is distributed transaction management. That is, using the two-phase commit protocol,
TP monitors provide the capability to manage distributed flat transactions involving multiple,
heterogeneous database management systems. Figure B-36 illustrates distributed transaction management.

Figure B-35. Architecture with a TP Monitor

100
 CONNECTIONS

Database ServerClient
(Service Requestor)

100 Connections
100 Processess
300 Open Files
150 MB Memory

TP Monitor

Data

Application Server
(Service Provider)

10,000
CONNECTIONS

Figure B-36. Distributed Transaction Management

Commit
Transaction

Database Server

DB2
Database Server

Oracle

Database Server

Informix

Network

Application Server
(TP Monitor)

Client

Begin
Transaction

SELECT ... from
student_table

DELETE...from
school_table

UPDATE... from
program_table

Version 1.0, 09/15/97 B-45

The term “flat” transaction indicates that all operations defined within the bounds of the transaction must
be successfully executed in order for any part of the transaction to be committed (saved). Simply put, flat
transactions are an all-or-nothing proposition – operations are atomic and cannot be partially saved or
rolled back. Distributed flat transactions that involve multiple database systems require a high degree of
system parallelism. That is, the various systems, which host the databases involved in the transaction, must
be simultaneously available.

In a distributed environment, where a transaction seeks to modify multiple databases residing on two or
more geographically dispersed systems, maintaining transaction integrity can become complicated. For this
reason, TP monitors commonly use the two-phase commit protocol to guarantee the ACID properties of all
executed flat transactions.

The two-phase commit guarantees the integrity of distributed data by ensuring that transaction operations
are either finalized in all of the separate databases, or are fully backed out of each of the databases. That is,
when a transaction signals that it has finished processing, the transaction coordinator (the TP monitor)
notifies each transaction participant (database management systems) to “prepare” for transaction
completion. Once all participants have responded to the “prepare” phase, the coordinator determines
whether to commit or rollback all database operations defined within the transaction. That is, if all
transaction participants respond affirmatively to the “prepare” phase, then all transactions are committed to
complete the second phase of the transaction. However, if any participant refuses to prepare for transaction
commitment or does not respond to the “prepare” broadcast, then the coordinator informs all participants to
rollback the transaction.

COMMERCIAL OFFERINGS:

Vendor Product
BEA Inc. /Novell Inc. Tuxedo
Transarc Inc. /IBM Corp. Encina
IBM Corp. CICS
Microsoft Corp. Transaction Server
AT&T Top End

Version 1.0, 09/15/97 B-46

TECHNOLOGY: Web-based Distributed Systems

TECHNOLOGY DESCRIPTION:

As illustrated in Figure B-37, in recent years distributed systems have evolved from “fat client” Remote
Data Access architectures, where only the DBMS services were distributed, to Remote Presentation
architectures, where application and data management logic are distributed to specialized hardware
environments. Today these architectures continue to evolve – largely because of the proliferation of the
Internet, the World Wide Web, and related technologies.

Web-based distributed system architectures are finding widespread acceptance with organizations for a
variety of reasons, not least of which is the promise of reduced communication costs that may result as
organizations leverage public networks – the Internet – to create instantaneous global communication
channels with users, customers, suppliers, etc. Other reasons that these architectures are being adopted
include:

Figure B-37. Evolution of Distributed Systems

E
V

O
LU

T
IO

N

Client
Web/Application Server Database Server

Internet

Client
Application server Database Server

Client
Application/Database Server

Data

Data

Data

Presentation Logic

Application Logic

Data Management
Logic

Data Management
Logic

Presentation Logic
Application Logic Data Management

Logic

Presentation Logic

Presentation Logic

Application Logic

Data Management
Logic

Version 1.0, 09/15/97 B-47

• Application Platform Independence. Within Web-based distributed system architectures, Web
browsers are used, almost exclusively, to provide client application presentation services. Today, Web
browsers are available for nearly any platform, including Windows, Macintosh, Windows NT, and
UNIX. What is more, Web browsers are inexpensive, if not freely distributed, and are readily
available. For example, many PC operating systems bundle a Web browser with the operating system –
a la Windows95 or NT.

To a varying degree, commercially and freely distributed Web browses provide support for the
HyperText Mark-up Language (HTML), which includes a standardized set of conventions for
organizing and displaying data. That is, Web browsers do not leverage presentation logic embedded
within proprietary operating system environments. As a result, Internet-based distributed systems
provide consistent presentation services that many users are already familiar with, regardless of the
user’s operating environment.

• Simplified Configuration Management and Control. The client platforms within many Web-based
architectures are very “thin” – hosting only a Web browser and no custom code. As a result, system
modifications and configuration changes are only made to system components residing on Web,
application, and data management servers. Likewise, most new system “features” need only be
deployed to a very small number of machines – the servers – where they can be immediately accessed
by system users. As a result, all clients access applications via the system’s Web server and there is no
need to worry about which clients are using which version of the application.

Despite these advantages, Web-based distributed system architectures can be complex and technically
challenging. Specifically, many Internet and World Wide Web technologies are immature, untested, and
unfamiliar to many system integrators and architects. As a result, the project performance and level-of-
effort estimates provided by many developers may be inaccurate or at the very least suspect. Other
complications associated with Internet-based system architectures include:

• Limited System Control. Within more traditional distributed system architectures the network
infrastructure that interconnects system components, such as clients and servers, is controlled and
administered by the organization. This is not the case when public network resources are used as the
information delivery medium. That is, the organization does not have the authority to administer,
maintain, or modify public network resources. As a result, system performance, which may be
significantly affected by the network, is largely dependent upon an uncontrolled and in many ways
unpredictable resource – the Internet.

• Complex Security. Organizations typically “expose” their systems to the Internet in order to leverage
the Internet’s ability to create instantaneous global communication channels for sharing information.
However, this exposure also introduces complexity and, in many cases, the requirement to implement
complex multilevel security solutions (MSS). These solutions allow systems to contain information

Figure B-38. Web-Based Client/Server Architecture

Application/Web Server

Client with Web
Browser

Internet System
Modification

System
Enhancements

....

Version 1.0, 09/15/97 B-48

with different sensitivities, while simultaneously preventing users from obtaining access to information
for which they lack authorization. In short, exposed systems must be capable of convenient:

• Identification and Authentication – the ability to verify a user’s identity and a message’s
authenticity.

• Access Control and Authorization – the protection of information from unauthorized
access.

• Confidentiality – the protection of information from unauthorized disclosure.

• Integrity – the protection of information from unauthorized modification or accidental loss.

• Nonrepudiation – the ability to prevent users from denying they have sent or received
information.

Additionally, exposed systems must provide mechanisms for securing information communicated via
uncontrolled and widely accessible public networks. These security mechanisms must be implemented
via “open” technologies, which are supported by the wide variety of operating environments and
commercially/publicly available Web browsers in use today.

Despite the challenges associated with Web-based distributed systems, the promise and benefits of the
Internet paradigm continue to attract organizations. With this in mind, Figure B-39 illustrates the
technologies that provide the underpinnings of the Web. These technologies include the Web browser,
HyperText Markup Language (HTML), HyperText Transfer Protocol (HTTP), TCP protocol, and the Web
server.

Web documents – which compose the user’s graphical user interface – are ASCII text files that include
HTML commands and user information (“content”). HTML commands (“tags”) describe how the file’s
content should be organized and displayed by the Web browser (browser) and provide references
(“HyperLinks”) to other documents.

Web documents are stored on and retrieved from Web servers. That is, browsers are used to locate, specify,
request, interpret, and display Web documents maintained on Web servers located throughout the Internet.
Specifically, via a browser, users request information by specifying the Universal Resource Locator (URL)
of required Web documents.

A URL is a general-purpose naming scheme that is used to locate and request Internet resources, such as
Web documents. As illustrated in Figure B-40, a URL typically has four parts: protocol, server, port, and
target.

• Protocol – identifies which Internet protocol should be used to access resources. Examples
include file transfer protocol (FTP), News, Mailto, Gopher, and HTTP.

Figure B-39. World Wide Web Base Technologies

Application Client with
Web Browser Software

Application Server with
 Web Server Software

Displayed
HTML Document

Internet (TCP/IP)

HTML
Document

HTTP HTTP

Version 1.0, 09/15/97 B-49

• Server – identifies the Internet host domain name or Internet Protocol (IP) address of the
server on which the desired resource resides.

• Port – identifies the program running on the server that will respond to the user’s resource
request – the Web server software.

• Target – identifies the location of the resource on the server. For example, the target might be
the directory path and file name of an HTML document.

Once the Web document request has been specified via a URL, it is communicated to the Web server
identified within the URL. This communication is facilitated via HTTP. Much like the remote procedure
call (RPC) described in the Middleware abstract, the HTTP
protocol is synchronous14 and 1) establishes a client/server
connection, 2) transmits browser requests and server
responses, and 3) terminates the client/server connection.

Once contacted via the HTTP protocol, the Web server
processes the users request and returns the requested
HTML document. Upon receipt of the requested document,
the browser interprets the HTML commands contained
therein and displays the contents for the user.

HTML documents may include tags that simply specify
font types and colors, hypertext links, or embedded
graphics. However, as illustrated in Figure B-41, HTML
can also be used to develop forms, which include text
fields, radio boxes, tables, combo boxes, check boxes,
buttons, and other “widgets” that are commonly used
within event-driven graphical user interface (GUI)
applications. Working in conjunction with Common
Gateway Interface (CGI) or similar server-based
application components, HTML forms allow users to
extend the Web paradigm. That is, with the introduction of
forms and CGI, the Web became more than just a
document publication tool – it became an enabling
technology for globally distributed information
management systems.

14 Synchronous protocols require the simultaneous availability of the client and server.

Figure B-41. Example of an HTML Form

Figure B-40. Universal Resource Locator (URL)

Application Client with
Web Browser Software

www.ed.gov

/http_docs/easi.html

http://www.ed.gov:80:/http_docs/easi.html

protocol

server

port

target

Version 1.0, 09/15/97 B-50

CGI applications are typically UNIX “filters” and are often developed using operating system shell
facilities, familiar scripting utilities, such as Perl, Awk, and Sed, or compiled programs – typically written
using the C or C++ language.

Web servers invoke CGI applications, which in turn usually interact with a back-end application
component, such as a RDBMS or an online transaction processing monitor (TP monitor). That is, the Web
server parses the incoming data from the application client browser. If the data received from the browser
requests CGI services, the Web server instantiate environmental variables for communicating with the CGI
application and then invokes the requested CGI application. Once invoked, the CGI application reads the
environmental variables created by the Web server and receives the form contents, which the Web server
writes to standard output. Having received the form contents, the CGI application processes the contents as
designed, formats results in HTML, and sends the HTML results to the Web server via standard output. As
illustrated in Figure B-42, once the Web server receives the CGI application results, they are forwarded to
the browser via the HTTP protocol.

CGI makes it possible for globally distributed clients to access and use the services provided by a variety of
back-end services, such as RDBMSs, TP monitors, middleware, workflow, file systems, data warehouses,
etc. Having realized the potential of this technology, many software vendors now offer product integration
solutions (“gateways”) that accept CGI requests – many even provide packaged solutions that dynamically
transform, for example database query results, into the HTML format required by Web servers and
browsers. However, CGI-solutions can introduce performance constraints and security concerns. (Security
is described within the Distributed Security Abstract.)

Figure B-42. CGI Application Execution

Application Client with
Web Browser Software

Internet (TCP/IP)

HTTP

HTML Document

Web Server

Operating System

Environmental Variables S
ta

nd
ar

d
In

pu
t/

O
ut

pu
t

CGI Application
Database

HTTP

Invokes

HTML Results

Application Server

Version 1.0, 09/15/97 B-51

CGI performance constraints are largely introduced by the stateless nature of HTTP and CGI. As described
earlier, HTTP is a synchronous protocol that 1) establishes a client/server connection, 2) transmits browser
requests and server responses, and 3) terminates the client/server connection. As a result, multiple
client/server connections are required for complex transactions that involve the request and submission of
multiple forms. However, because HTTP and CGI are stateless, these client/server connections and the
information communicated therein is not technically recognized as a single transaction. To solve this
problem CGI uses hidden fields to “associate” information requested and submitted via multiple forms. For
example, if a business transaction involved two forms – one to capture student information and a second to
capture the student’s school information – CGI would use hidden fields to store collected student data
(from the first form) within the second form as illustrated in Figure B-43. Obviously this is an inefficient
use of networking resources, but is required because the CGI application is not capable of maintaining the
student data within system memory. That is, CGI applications are themselves stateless – terminating with
each client/server connection.

In addition to efficiencies associated with the stateless nature of HTTP and CGI, performance deficiencies
can also result from Web-based distributed architectures that relying solely on server-based logic, like CGI,
and the Web’s request-response paradigm. That is, without the availability of client-based edit and
validation services, for example, the accuracy and completeness of data can not be determined without first
submitting the data to the Web Server and associated application components. This makes for inefficient
use of network and server resources. One solution to this architectural challenge is Java.

Java is an object-oriented programming language that allows developers to write scripts (JavaScript) or
small programs – applets – which can be downloaded to and executed by Java-compatible browsers (Java
can also be used to implement server-side application components). In short, Java allows executable code
to be distributed across the Web along with HTML data. In doing so, Java allows data processing to occur
before documents are submitted to the Web server. What is more, as illustrated in Figure B-44, Java is
managed from the server side of the distributed systems architecture. As a result, the benefits of simplified
configuration management and control are not sacrificed when Java is used within Web-based distributed
system architectures.

Figure B-43. CGI Uses Hidden Fields to Maintain Data from One Form Within a Second

Application Client with
Web Browser Software Application Server with

Web Server Software

CGI
Student Form

Student Form Request

Student Form

School Form Data + Student Form Data

Loan Application Form

Student Form Data

School Form + Student Form Data

CGI
Student Form

CGI
Student Form

Loan Application Form Data + Student Form Data + School Form Data

...

CGI
Student Form

hidden fields

hidden fields

Version 1.0, 09/15/97 B-52

COMMERCIAL OFFERINGS:

Vendor Product
Microsoft Corp. Internet Information Server, Internet Explorer,

Internet Studio
Netscape Inc. Netscape Navigator/ Navigator Gold, LiveWire Pro,

SuiteSpot, Enterprise Server, Catalog Server, Fast
Server, News Server, Proxy Server,

IBM Corp. Lotus Notes, NetCommerce Server, Visual Age
Oracle Corp. WebSystem: WebServer, PowerBrowser,

CommerceServer
Sun Microsystems Inc. HotJava

Figure B-44. Java is Managed from the Server Side of the Distributed Systems Architecture

Application Client with
Java-Enabled Web
Browser Software

Internet

Java-Enabled
HTML Document

Application Server with
Web Server Software

HTML Document
Archive

Java Applet
Archive

Request Applet

Receive
Applet

