
FSA Integration Partner
United States Department of Education
Federal Student Aid

EAI Enhancement Report

Task Order #117
Deliverable # 117.3.1

Version 1.0

August 22, 2003

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 2

Table of Contents

1 INTRODUCTION ... 3
1.1 SUMMARY.. 3

2 GENERIC WEB INTERFACE.. 3
2.1 CONNECTION POOLING .. 4

3 MQSI RETIREMENT .. 6
3.1 EAI TRANSFORMATION ENGINE .. 7

4 APPENDIX A – TECHNICAL DOCUMENTATION... 10

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 3

1 Introduction

1.1 Summary
The EAI team completed three development efforts which improve FSA’s ability to implement
and support integration using the EAI technology. They are:

• Generic Web Interface (section 2)
• Connection Pooling (section 2.1)
• MQSI Retirement (section 3)

Each of these efforts were designed, developed, and tested by the EAI team. They were then
migrated to the Inter-System Test (IST) environment and used in testing done by our trading
partners. After completion of testing in the IST environment, they were migrated to the
Production environment.

This document describes the Generic Web Interface with Connection Pooling, as well as the
revised interfaces to support MQSI Retirement.

2 Generic Web Interface
Integration Partner web application teams requiring messaging capability do not often have
developers with the skills and knowledge to quickly begin using the EAI architecture. The EAI
team needed to provide application teams with a way to take advantage of the capabilities of the
EAI architecture without having to learn its technical aspects. To decrease web application
development time, improve the quality of web application interfaces, and make interface support
easier and more cost effective, the EAI team developed a reusable and scalable interface to the
EAI architecture which web application developers can easily use.

The EAI Generic Web Interface is the reusable component that allows Integration Partner
developers to access EAI messaging capabilities using a Java application program interface (API).
It consists of a set of Java classes, listed in Appendix A, that are available to be incorporated into,
and used by, an application to send information and receive responses from another application
using the EAI Architecture.

The interface is designed to be simple to learn and easy to use. Application developers do not
need to know about the underlying transport mechanism, which is the WebSphere MQ
messaging software. No knowledge of the communications infrastructure is required.
Developers simply supply the request for information through one of the Generic Web Interface
Java APIs defined in the IEAI interface, and the corresponding information is returned.

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 4

Below is a simple diagram showing where the EAI Generic Web Interface fits in the over-all
architecture:

Web Application Server

Application

EAI
Generic

Web
Interface

Java
API EAI Bus

Other FSA Systems

Development and unit testing of the EAI Generic Web Interface with Connection Pooling began
on November 4, 2002. It was tested in the IST and Performance Test environments in November
and December 2002. It was deployed to FAFSA Production on January 1, 2003 and to LOWeb
Production on April 14, 2003.

2.1 Connection Pooling
Some applications require the ability to send and receive large volumes of requests and responses
in a short timeframe. For these applications, repeatedly opening and closing one or two
connections (MQ channels) will not provide the required interface performance. They need the
ability to open and reuse multiple connections in order to process large volumes of requests and
responses immediately and in parallel. To meet this requirement, the EAI team added
Connection Pooling to the Generic Web Interface design. Connection Pooling is part of the
Generic Web Interface, therefore it does not have its own publicly defined interface.

Connection pooling provides an interface capability that reuses WebSphere MQ channels which
are kept in a pool. Connection pooling is an enhancement to, and a subcomponent of, the EAI
Generic Web Interface. Its purpose is to improve the response time of web interface queries and
to increase the number of concurrent requests an application can perform. It enables many,
simultaneous, reusable, open connections to the underlying WebSphere MQ messaging
infrastructure, which eliminates the need to re-establish a connection with each request.

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 5

Below is a simple diagram showing where Data Pooling fits into the EAI Generic Web Interface:

Web Application Server

Application

EAI
Generic

Web
Interface

Java
API EAI Bus

Other FSA Systems

EAI
Generic

Web
Interface

Connection
Pooling EAI Bus

The Connection Pooling enhancement helped FAFSA reach its performance test goals of being
able to process over 100 messages per second. It processed the FAFSA Production peak in
February and March 2003 of 30-40 messages per second with no issues. For more information on
the FAFSA performance testing, see deliverable 102.1.5 FAFSA 7.0/PIN ITA Support Report
(correspondence # 03EDU0215).

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 6

3 MQSI Retirement
WebSphere MQSI is used in the EAI architecture for transformation of messages on the EAI Bus.
For example, Application A may store dates in the format MM/DD/YY, while Application B may
use the format CCYYMMDD. If Application A needs to send date information to Application B,
MQSI can be used to transform a date such as “08/22/03” to “20030822” so that Application A
can send the date in its native format, and Application B can receive the date in its own format.
MQSI is a powerful tool with many capabilities, but our requirements of it are limited to its
message transformation capabilities.

MQSI uses development tools and deployment processes that are completely different from the
ones that the EAI team uses for all other components of the EAI architecture. MQSI requires
developers to use a tool called Control Center for transformation development and to control the
MQSI Configuration Manager tool, which is used for deployment of transformation interfaces
called message flows. MQSI also requires a DB2 database to operate. These tools require EAI
developers to have Windows NT servers to develop message flows and to deploy the message
flows to the Test environment. They also require a separate Windows NT server in the
Production environment for deployment to Production.

Using these tools for Production deployments requires EAI developers to 1) export message flows
from the Development/Test Configuration Manager, 2) transfer the exported message flows to
the Production environment, 3) import the message flows to the Production Configuration
Manager, and 4) deploy the message flows from the Production Configuration Manager. This
process includes more manual steps and consequently greater possibility for errors than the
deployment process for all other EAI components using FSA’s enterprise configuration
management tool, Rational ClearCase, for versioning and building code releases.

Another challenge with using MQSI is that the EAI team has found that developers with
experience using MQSI Control Center, Configuration Manager, and DB2 are not very common.
Developers with Java skills, however, are readily available. Additionally, Java can be developed
on a variety of platforms including the developers’ own laptops and its code can be checked into
ClearCase. A Java solution can follow the build and deployment process that all other EAI
components use and it can be debugged, fixed and deployed remotely.

The benefits of a commercial off the shelf (COTS) product such as MQSI are that a COTS product
has gone through extensive testing, has a wide base of users, and has the dedicated support of the
vender. These benefits are balanced with the cost of licensing the COTS product and the cost of
maintaining personnel with the skills necessary to support it. The risk of developing a custom
solution to replace MQSI is greatly reduced by the fact that the EAI solution only attempts to
replace the simple capabilities required, rather than all the capabilities offered by MQSI. The risk
is also mitigated with thorough testing and by running both MQSI and the custom solution in
parallel to verify that their functionality is exactly the same. The EAI team will also leave MQSI
installed (but not running) in the Production environment for at least a month after the EAI

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 7

custom solution is deployed so that if there are any problems with it, all transformation can be
switch back to MQSI in a few minutes.

3.1 EAI Transformation Engine
Retaining the current hub and spoke architecture, the EAI team developed and implemented
standardized transformation and routing through the use of Java tools. The EAI Transformation
Engine is a Java program (technical documentation in Appendix A) that can simultaneously
process application messages from multiple sources and dispatch specialized transformation and
response modules. Using an interface to the Transformation Engine, EAI developers create
transformation modules to handle customized transformation within the Transformation Engine
for each interface. The format of the transformation modules is designed to be easy to learn and
use. No knowledge of the WebSphere MQ communications infrastructure is required. Testing,
debugging, and maintenance are all much easier to do using the EAI Transformation Engine with
the EAI Logger than with MQSI and Control Center.

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 8

Below is a simple diagram illustrating the EAI architecture components involved in the MQSI
Retirement:

EAI Bus

Application A

Transformation
using
EAI

Transformation
Engine

Application B

EAI Bus

Application A
Transformation

using
MQSI

Application B

MQSI
replaced with
EAI Transformation Engine

EAI Logger

EAI log files

DB2

Windows NT
MQSI Control Center

Deployment

MQSI log files

The EAI Transformation Engine replaces MQSI, but it alone does not transform messages. Like
MQSI uses custom message flows to transform messages, the EAI Transformation Engine uses

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 9

transformation modules to transform messages. The EAI team developed the following
transformation modules:

• Financial (COD to FMS)
• Confirmation/Error Response (FMS to COD)
• Financial (FMS to COD)
• Confirmation/Error Response (COD to FMS)
• Institution Data (COD to FMS)
• Unpaid Teacher Cancellation Liabilities (eCB to FMS)

Development and unit testing of the EAI Transformation Engine began on October 14, 2002 and
ended on June 16, 2003 (date when last changes were completed). Development and unit testing
of the transformation modules began on March 18, 2003. The EAI Transformation Engine with
transformation modules for each of the interfaces was deployed to the IST environment on June
2003 and was tested as part of the COD R2.1 IST testing effort. COD R2.1 IST testing for these
interfaces was completed on July 16, 003. The EAI Transformation Engine with transformation
modules was deployed to the Production environment on August 8, 2003.

This development effort replaced the following MQSI interfaces in Production:

• Financial between COD and FMS

• Institution Data between COD and FMS

• Unpaid Teacher Cancellation Liabilities between eCB and FMS

For documentation of test results, see deliverable number 117.1.1c EAI Operations Services
Performance Report III (correspondence # 03EDU0509).

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 10

4 Appendix A – Technical Documentation
Included in this deliverable is documentation generated by Javadoc, which is the tool from Sun
Microsystems for generating API documentation in HTML format from doc comments in source
code.

For technical documentation of the Generic Web Interface with Connection Pooling, see:
02_GenericWebInterface.html

It contains links to these html files:
IEAI.html – the public interface for the Generic Web Interface
EAIFactory.html - a simple class that has a single method that returns an EAI object.
EAIMQQueueManager.html - an extension of com.ibm.mq.MQQueueManager that works
with connection pooling
EAIMQQueueManagerConnections.html - manages a list of pooled connections to an
MQSeries queue manager
EAIMQQueueManagerFactory.html - handles pooled connections to multiple MQSeries
queue managers
EAIMQQueueManagerHolder.html - holds an EAIMQQueueManager object and its
associated in-use boolean value
EAIpool.html - this class acts as a front-end for sending/receiving to/from MQSeries
TestRequestReceive.html – this class is used for testing the Generic Web Interface
EAIException.html - EAIException is thrown when something within the EAI classes
reports an error

For technical documentation of the Transformation Engine (for MQSI Replacement), see:
03_TransformationEngine.html

It contains links to these html files:
EAITransformEngine.html - the transform engine processes a single message
EAIProcessCommandMessages.html - processes the "stop" and "refresh" engine commands
EAIProcessInitQ.html - reads a message from a queue, invokes a method to process the
message into an ArrayList of strings, then writes the ArrayList to another queue as a series
of messages
EAIProcessPerf.html - placeholder class that does nothing
EAIProcessQ.html - base class for handling an input queue
EAIProcessQFactory.html - generates an instance of an EAIProcessQ implementation for a
given EAI engine name
EAIProcessQPerf.html - processes performance events
EAIProcessQStandard.html - extends the abstract class EAIProcessQ, which in turn extends
Thread
EAITransformEngineTest.html - this class is used for testing the EAITransformEngine

US Department of Education
Federal Student Aid
FSA Integration Partner

EAI Release 4.0
EAI Enhancement Report

Version 1.0 117.3.1 11

EAIRollbackException.html – EAIRollbackException is thrown by the transformMessage
method of the TransformMQ class or its extensions when something in the transformation
reports an error

