
Open Source Software

Background
In the challenging world of security management today, system administrators are faced
with tough choices—how to maximize services that users demand while balancing a tight
budget and ensuring the security requirements are maintained. These constraints
motivate administrators to seek alternatives to traditional commercially available
software- in the form of open source software. Open source software (OSS) refers to
software that is developed, tested, or improved through public collaboration as opposed
to by an individual company. The software is usually free and unlike proprietary
commercial software, the source code is available to the public. There are many different
types of OSS, from operating systems like Linux, to security tools like the security
scanner called Nessus.

Within the information technology arena, there is currently debate over the usefulness of
open source software and there is not likely to be a unified agreement over whether open
source software should be used in an organization or not. There are attractive features
and drawbacks, and like with the consideration of any software, these pros and cons must
be weighed before a final decision can be made.

The following section describes the pros and cons of open source software. System
management can use this information to help them determine if using open source
software is right for them. The research is based upon research for public school systems
for usage of OSS, more information can be found at:
http://www.netc.org/openoptions/pros_cons/comparing.html

Pros:
• Low Initial Cost
The price of an open source program is usually far less than a comparable proprietary
program. Open source software doesn't have to be "no fee" but most programs are. Users
can either download the software directly or pay a negligible fee to have a CD-ROM
burned and shipped. Current users set up distribution networks using community Web
sites and CD burners. Their motto is "share and share alike." Open source means anyone
can try any program first for free. A user may eventually buy a formal copy (perhaps to
get better service), but doesn't have to do so. The software will never expire or demand
payment.

• Reliability/Stability/Security:
Open source software may be more reliable and secure than proprietary. It may not make
as many errors or crash as often. (e.g. Linux is famous for not crashing.) Since any
programmer can find and fix bugs, software may be repaired and improved more quickly.
The initial program may not be more reliable than a proprietary alternative, but it may
mature faster as hundreds or thousands of programmers correct mistakes and add

Open Source Software

features. Some people think of this as permanent beta testing. The open source
community can endlessly troubleshoot and improve software as needed or desired.

However, this advantage depends on the participation of enough competent programmers.
Just like proprietary software, the reliability of an open source program depends on clear
feedback after rigorous use in a variety of environments. Without enduring, sufficient,
talented interest, an open source project fails, and many do. In contrast, proprietary
software companies may create and support necessary programs that no one would enjoy
working on. Some companies are starting to blend the best of both models, by employing
a core group of programmers while attracting volunteers from the open source
community.

• Open source is more network friendly
Much of the popularity of open source comes from its performance on the Internet and
lesser networks. Open source software is often very networkable. For example, more than
half the World Wide Web runs on Apache, an open source solution. Apple builds its OS
X on BSD, an open source operating system. The Internet is a critical reason: Apple
recognizes they can't privately innovate Internet functionality as well or as fast as the
open source community. Most open source networking solutions are compatible with
proprietary software. For example, a lab of Linux computers can be seamlessly nested
inside a larger proprietary network using an open source intermediary (e.g. Samba).

• Open source makes license management easier
License management is much easier with open source. Users can install any number of
copies, so open source companies don't bother with complicated licenses (and most of the
possible licenses favor nonprofits like schools). There is no risk of illegal copies or
license audits, and there are no anti-piracy measures (e.g. CD keys, product activation).

• Open source can be more customized
By it's very nature, open source allows any user or organization with enough expertise to
tailor software to their needs. The diversity of Linux distributions reflects this flexibility.
Each distribution offers a customized operating system targeting a specific market. There
are even two competing graphical desktop interfaces: KDE and GNOME. On the
backend, the open, modular nature of open source solutions allows advanced users
extraordinary power to customize any aspect of a network (e.g. firewalls, spam filtering,
email filtering).

Beyond customization, anyone can make significant changes to open source code.
Proprietary software may offer new features or flexibility in each new version. But open
source will continue to offer greater ability to customize through the so-called right to
fork: anyone can take the source code and develop it in a new direction.

• Open source means greater independence from companies/Does not commit

organization to just one vendor
Open source users have more independence from software companies. Even if a software
company goes bankrupt, the community still has the source code. This independence also

Open Source Software

means "end of life" decisions or undesirable new features can't be forced on the users.
Schools aren't locked into a vendor or their support department. The original software
company may offer the best support. But since the software is open anyone can try to
improve or support it. Schools can choose the best solution now with the freedom to
change in the future. They don't have to rely on a single vendor for all aspects of the
solution. A comprehensive solution may be easier, but schools can essentially purchase
every component of a solution (including support) from different vendors.

Cons:
• Software Compatibility
Though open source projects like Open Office have come a long way towards reading
proprietary file formats and saving documents in formats that proprietary software can
read, compatibility issues can still arise, especially in a networked environment where
people are trying to collaborate across platforms.

• Hardware Compatibility
Many hardware vendors only provide proprietary drivers for their products, leaving it to
the open source community to write their own Linux drivers for new hardware. Users
without the wherewithal to whip up a hardware driver may be left waiting for someone
else to get around to writing drivers for cutting edge hardware.

• De-centralized Support/ Potential Maintenance Costs
Without centralized support, users may be left to research solutions to their technical
difficulties. Because the software was free, it comes with no warranty, and developers
have no legal obligation to replace non-working products.

• Proprietary software offers more features
On the frontend, proprietary software offers more necessary and desirable features. For
example, it may be easier to use peripherals like digital cameras with proprietary
software. Solutions like Microsoft Office have matured through years of added features,
interface improvements, and usability studies. Some open source projects are overtly
cloning proprietary products (e.g. OpenOffice.org is clearly influenced by Microsoft
Office). A cloned program may be just as user friendly as the original (such as it is). Of
course, while most programs are flush with features, most users (including schools) only
need a handful of features.

• Proprietary offers better service & support
Any software solution requires some service and support. For both open source and
proprietary software, experts depend on email lists and community Web sites as well as
contracted support. The quality and availability of help is proportional to interest and use,
especially in open source. The support costs for niche solutions are usually high. On the
backend, open source is common so the community is large and helpful. A variety of
companies offer help for using open source on the backend. On the frontend, open source

Open Source Software

is often still a niche. So it may be harder to find help (especially in rural areas) and
contracted help may be more costly.

A proprietary company may have a longer, better reputation for service and support. For
example, it's relatively easy to find hardware drivers for Microsoft Windows solutions.
Since the open source community depends on volunteers, help may not be as certain or as
timely.

Conclusion
There are many issues surrounding the usage of open source software for an organization.
For some agencies, usage of open source software may not be viable depending upon the
ability of their user base to use untraditional products or their system administrators to
maintain the software. However, open source software is a viable and well-recognized
way for agencies to meet their user needs. Private and governmental organizations
routinely use open source software. For example, National Institutes of Health uses
SARA, a vulnerability tool, in their computing environment.

Open source software can be used at FSA with the following constraints. Appropriate
research has to be done to verify that the program under consideration is from a
legitimate source and that there is sufficient active support by the IT community to
maintain the program. Two websites for reference information are The Open Source
Initiative, http://www.opensource.org/licenses/, for general license information and for
security tools, http://www.insecure.org/tools.html. The system must assess the potential
risk of using the software and determine the amount of risk that the new software may be
introducing. Maybe testing?

