FSA Modernization Partner
United States Department of Education
Federal Student Aid

FEDER AL
STUDENT AlD

Integrated Technical Architecture Release 3.0
Build & Test Report
Appendix

Task Order #69
Deliverable # 69.1.5

Version 2.0

October 28, 2002

ITA Release 3.0
Build & Test Report

FEDERAL
STUDEST AND

Table of Contents
1 RCS —Web Conversation FrameWOIKcooiiuiiiiiiiiiii e e e e e aaee s 12
L1 PURPOSE ..cciiiiiiittt ettt ettt e e o4ttt e e a4 oo kbbbt et e e e e e e e et e e e e e s e r e e e e s 12
i N @ -\ o] o TP RRR TR 12
G TS U 1Y 11V Y o RS SS 12
14 TEST HARNESS DESIGN ..iiiiiiiiiiiiiiii et 13
141 TESTING ENVIRONMENTcoomiiiiiirinesiissees s ssisss s ssssssssss s 13
0 O R =11 [Vo O =] T O PRURRR 13
1412 Testing CoNfIQUIAtiON..........cooiuiiiiiiiiiiii e 14
1.4.1.3 JProbe Configuration Filecccuiiiiiiiiiiiiie e 14
1414 UNIX SEIVEE SEHINGS . .vvieiiiiiiic ettt e e e e s anbaae e 15
1415 WebSphere Application Server Configuration.............ccccceeiiiiieeeiiiiiee e 15
1416 StrutsS-CONFIg.XMI FIlecooviiiiiiii s 16
1.4.1.7 Additional Required COMPONENTS..........cccuviiiiiiiiiiieiiiee it 16
1.4.1.8 DIreCtOrY SIIUCTUIE.uviiiiiie it e e e e e e e e s enaneaes 16
15 TESTING SCENARIO ...coiieiiiiititttiittee e e s e ettt et e e e e e e e ettt et e ee e e e s s etb bt e eeeeeeeaaantabe b e e aaeeessannbbbeeeaeeas 18
1.5.1 TEST PREPARATION w....ooiiiiiiitiesiitiessssisssssssssssssssssssssssssssssssssss s sssss s ssss s sssssssssssssssssssssssssssns 18
152 TEST SCENARIO ...ttt st sssss st 18
1.6 RESULTS AND ANALYSIS. .. iitttiititeeassaetitteeereeesasssstteeeteeeeessaastateeeeeaeessaassnseeeeeeeessansssreeeeees 19
1.6.1 HEAP SNAPSHOT (MEMORY USAGE)ccecovvviisirriisnessisssssssessnes 19
1.6.1.1 Heap Graph ANAIYSIS........ccoviiiiiiiiie e e e 19
1.6.1.2 INSEANCE SUMMIATY......utiiiiiiieiiiiiiiie et e ettt e e e e e e e e e e e st e e e e e e e s s anneeeees 20
1.6.2 PERFORMANCE SNAPSHOT (CODE EFFICIENCY)cosmmmiiiimriennsesssssssssssssssssssssssssssssssssssssssns 23
1.6.21 NUMDBEr OF CallS.......cciiiiieiiiee e erraee e 25
1.6.2.2 MEhOO TIME......eiiiiiiiiie et e e e e et a e e e nnaaaeeaans 25
1.6.2.3 CUMUIATIVE TIME ..iiiiiiiiii ettt e e e nrbe e e e an 26
1.6.24 Method ODBJECT COUNT......coiiiiiiiiiiiie ettt e e erreeeeaan 27
1.6.25 Cumulative ODJECt COUNLcoiiiiiiiiiieiiie e 28
1.6.2.6 Average Method TIME.........coiiiiiiiiiiiiie e 28
1.6.2.7 Average CumulatiVe TIME.......cooiiiiiiiiiiiie e 29

Version 2.0 69 -69.1.5 2

ITA Release 3.0
Build & Test Report

1.6.2.8 Average Method ODJECT...........ccvviiiiiii e 30
1.6.2.9 Average Cumulative ObJeCt COUNL...........ccoiiiiiieiiiiiie e 31
1.6.3 TEST CONGCLUSIONS ..ottt sttt sttt bt b b s st b s s s nn e 33
L7 A PPEN DX A 35
1.7.1 JPROBE CONFIGURATION FILE w..oossiiieieiiesisssssiessssssssss s ssssssssssssssssesssssssssssssssssssssssssssssssssns 35
172 STRUTS-CONFIG. XML ...cooiriireriisssisssssssssssssssssessssssssssssssssss s ssss s sssns 37
1.8 RESOURGCESoiuiittttiiteeee ettt e ettt e e a4 oo ekttt e e e e e s ook bbbt ettt e e e e e e ab b bbb et e e e e e s s annnbbbeeeeeeas 40
2 RCS = FTP FramMEWOIK.......cuiiiiiiiiiiii ettt ettt a e et e et e e e s 41
0 R U = SRR 41
F A N (0 Y X1 o TSRS 41
221 UNIT TESTING .ottt ssss st s 41
222 PERFORMANCE PROFILING.....cooovisiriiesiiessssssssssssssss s ssssssssssss st ssssssssssssssssssssssssssssssssssssssnns 41
2.3 BACKGROUND......ccutttttiiitteea sttt ettt e e e e ettt ettt e e e e s s et bbb ettt e e e e e e ek bbb b b e et e e e e e s e nsbbbe b et e eeeeeennnnnnnes 41
24 42
P2 T O 1 N S =0 N SRS 42
251 SUMMARY ..ooiiiiiiriiesisssssssssssssssssss st st ssss st 581551515888 42
252 TEST HARNESS DESIGNcoiiiiiiriiieeisesisssessssssssssssssssssssssssssssnssssssssssnns 42
Y R = 0 \V/ [{01] 0 11T o1 ST PP PRRPR 42
2.5.3 CONFIGURATIONootiiitiesiessissssissess st ssssssss s st 44
2.5.3.1 StrUtS-CONTIG. XM ..o e e 44
2.5.3.2 ProPErties FIlES........ooiiiiiiiieiiiiie e 45
2.5.3.3 TS SCENAIIO ..uvviiiii ittt e e e e e e e et e e e e e e s e et bbrreeeeeeeeans 45
254 AUTOMATED TESTING CONDITIONS......ccoimiiiireiiinssiessssssssssssssessesssssnns 48
255 MANUAL TESTING CONDITIONSossiviiimiiinsiissessss s sssssssssssssssesssssssssssssssssssssssssssssssssssssssesssssnns 48
2551 CyCle L= NOIMAL.......coiiiiiiiie e 48
2.55.2 Cycle 2 —ConNection EXCEPLION........ccuiiiiiieiiiiiieeiiiiee e et e st e e s eibeee e snieeeeaans 51
2553 Cycle 3 —Transfer EXCEPLION........ccciiiiiiiiiieiie e 52
2.6 PERFORMANCE PROFILINGuttuiiieieiiiiiitiii i s e e e e ettt e s s e e e e e e ettt s e e e e e e e e s ta s e s e e e e e e e antaan e aeeees 55
2.8.1 SUMMARY ..oosiioiieiisssie st 55

Version 2.0 69 -69.1.5 3

ITA Release 3.0
Build & Test Report

2.6.2 TEST HARNESS DESIGNoiiirveeumrreessneeessssesessessssssssssssssssssssssassssssssssssssnns 55
2.6.2.1 ENVIFONIMENT ...ttt ettt e e e st e e e s nnbaeeeaans 55
2.6.2.2 CONTIQUIALION.oiiiiiiiiiii ettt et e e e s e e e e et e e e e nneneeeaans 57
2.6.2.3 SCENAIIO SELUD .. .eiiiiiieitiie ettt ettt e et e et e e eaneeas 59

2.8.3 HEAP ANALYSIS ...oooreeeieeeeesseeeessssesesssssesssssesesssss s ess 5881458858888 59
2.6.3.1 INSTANCE SUMIMIAIY.. ..ottt 60

2.6.4 PERFORMANCE ANALYSIS ...t 62
2.6.41 Top ten FTP Framework related cumulative method time..............ccccccovvieees 64

3 RCS = XML Helper FramMEWOIKcccuiiieiiiiiie ettt e e e e ntee e e e e e nnneees 65
T8 A 1] = 1 O SRPPR 65
3.2 AAPPROAGCH. ...ttt tt ettt ettt ettt e e a4t e e a4 e e bttt e e e e e e e e e e e e e e nabnres 65
3.3 SUMMARY .tttiiitiie e e sttt ettt ettt ettt oo a4 oo et ettt e e e oo bbbttt e e e e e o a bbb e et e e e e e e e e bbb e bt e e ae e e e s annbaaes 65
34 TESTHARNESS DESIGN ...ooiiiiiiiiiiiiiiiiee e ettt e e e e ettt e e e e e e e et e e e e e e e e s antebnneeaeeeeeeennenees 66

341 TESTING ENVIRONMENT .ooouiieetuireesseeeesssseeessssseessssssesssssssesssssessssssssesssssssssssssssssssssssssssssassssssnsssssssnnnes 66

342 TESTING CRITERIAcoioirieitereeesseeseessseesess s es st 8 8888888 66

343 TESTING CONFIGURATIONcocuuireettreeessseeeessssseessssseesssssseesssssesssssssssssssssssssssssessssssssssssssassssssssssssssnnns 66

344 JPROBE CONFIGURATION FILE ..ciiiiirieeineeeesneeesssseeesssseesssssessnssssessnnnes 66

345 UNIX SERVER SETTINGS ...ocouirreeuuereesseeeessssesessssseesssssessssssssssssssessssssssssssssssssssssssssssssssssssssassssssssssssssnnnes 67
I N R (U] (=T o] o] o 1= o AL TP PP PP 67
T o | U =T (o o] f0] o 1= o 1 =R P 67
3453 VNOSES. PrOPEITIES: .. .eeiieiiiiiee ettt e s e et e e e e naeeeas 67

346 WEBSPHERE APPLICATION SERVER CONFIGURATION.....ccc.oimmiiimremeeinsissnssssssssssssssssssssans 68
3.4.6.1 Command liNe argUMENLS:coiiuiiiiiiieiiie e 68
I N A = V7T (o] o1 0 =T o | oo PR UPPRP 68

347 DIRECTORY STRUCTURE ..ot 69

3.5 TESTING SCENARIO .. .ctttttiiie e ettt e ettt ettt e e e s e e bbbttt e e e e e e e bbb b et e e e e e e e e ssbbbe b e e e aeeeesannabeees 71

3.6 RESULTS AND ANALYSIS . .ottiiieiiiettieiiteeeeeaaaettteeteeaaeassasateaeeeaeeaasaaantsaeeeaeaeeaaaasntnneeeeeeesaannnnnnes 72

3.7 HEAP SNAPSHOT (MEMORY USAGE)ccitiiiiiiiiiiiiiieiiieessiiee s siiee sttt et sbee e sbeessnneesnnaee e 72
3.7.1.1 Heap Graph ANAIYSIS.......ccuviiiiiiee e 72

Version 2.0 69 -69.1.5 4

E R AL

F i b L
STUDEST AND

ITA Release 3.0
Build & Test Report

3.7.2 INSTANCE SUMMARY ...oooimrireemsmmeresssnsssssesss 73
N 5 R B o T ¢ I =) 1] o PRSP 73
R S - D T I o F SRR S PP 73
O 0 B =11 0T =T] o JO TP OUPRTPPP 73
3.8 PERFORMANCE SNAPSHOT (CODE EFFICIENCY)...cutiiitiiiiiiiiiie ittt 75
3.8.1 DOMTEST.JSP SCENAR IO ..ot 75
3.8.1. 1 NUMDBEE OF CallS....cciiiiiiiiiii e 75
KIS IO 7 Y 1< 1 T To R T 1= USROS 76
3.8.1.3 CUMUIALIVE TIMIE ..uiiiiiiiiii e e e et e e e e e s 77
3.8.1.4 Method ODJeCt COUNL........ccoiiiiiiic it 78
3.8.1.5 Cumulative ODJECT COUNTuviieeiiiiiie et e e 78
3.8.1.6 Average Method TiMe........cuiiiiiiiiiiiiie e 79
3.8.1.7 Average CumMUIAtIVE TIME......ccoiiiiiiieiiiie et 80
3.8.1.8 Average Method ODJECL.........uuiiiiiiiiiiiic e 81
3.8.1.9 Average Cumulative ODJeCt COUNL.........oeiiiiiiiiiiiiiie e 81
3.8.2 SAXTEST.JSP SCENARIO ...ooiiiriieeeetireeeeeesssseseeseesssssssesesesssss s ssess s sss st 82
3.8.2.1 NUMDEF Of CallS.......cociiiiiiiiiiee e 82
3.8.2.2 MEENOA TIME. ... ittt 83
3.8.2.3 CUMUIALIVE TIMIE ..ottt 84
3.824 Method ODJECT COUNL........cociiiiiiiieiiii e 84
3.8.25 Cumulative ODJECt COUNTcocuiiiiiiieiiii e 85
3.8.26 Average Method TIMEe......ccuviiiiiiii e 86
3.8.2.7 Average CumMUIATIVE TIME.......uuiiiiiiiiie et e e neeeees 87
3.8.28 Average Method ODJECT..........coiiiiiiiieii e 87
3.8.2.9 Average Cumulative Object COUNt........ccvvieiiiiiii e 88
3.8.3 BINDTEST.JSP SCENARIO ..ottt 88
3.8.3.1 NUMDBEE OF CallS....cciiiiiiiiiiii e 89
3.8.3.2 MELNOA TIMIB...ei i ettt e e e e e e e st a e e e et e e e anneeeas 89
3.8.3.3 CUMUIALIVE TIMIE ...eiiiiiiiiic e e et e e e s nnaree s 91
3.8.34 Method ODJect COUNL.........oviiiiiii e 91
3.8.35 Cumulative ODJECT COUNTc.uviveeiiiiiie ettt srree e neeeees 92
3.8.3.6 Average Method TiMe........cciiiiiiiiiiieiiee e 92
3.8.3.7 Average CumMUIAtIVE TIME......cooiiiiiiieiiiie e 93
3.8.3.8 Average Method ODJECT........ccuiiiiiiiiiie e 94
3.8.3.9 Average Cumulative ODJeCt COUNL.........oeiiiiiiiiiiiiiie e 94
3.9 GENERAL PERFORMANCE TEST SUMMARYcciiitiiiiiiiiiteesiiiieeesaiieree st eesasiee e sninne e s s 95
.10 APPENDIX AL oottt 96
3.10.1 JPROBE CONFIGURATION FILE ..o 96

Version 2.0

69-69.1.5 5

ITA Release 3.0
Build & Test Report

E R AL

F i b L
STUDEST AND

.11 RESOURGCEStiiiiiititiee ittt ettt etttk s et e e sk bt e e st e e e b e e e e st e e 99
4 RCS — Scheduler FrameWOrK ...t 100
41 TESTHARNESS DESIGNoiiiiiiiiiiiiiiiiiiieee et e e e st e e e e s s e e e e e e s s annr e eeeeaesann 100
411 TESTING ENVIRONMENT .coootiiiirtieetstseeeseesssseseesesssssssesssssss s ssssss s ssssss s ssssss s sssssssssssssssssnns 100
4101 TeSHNG CrITEIIA.....ueiiiiiieiiii ettt e e e e et eesreee s 100
412 TESTING CONFIGURATIONcosmiiieermrressmreeessssessssssesssnns 100
4.1.21 JProbe Configuration Filecccccooiiii e 100
4122 UNDX SEIVEEN SETHINGS ...ooiiviiiieeiiiiiee ettt e et e e nnnae e e e nees 101
413 WEBSPHERE APPLICATION SERVER CONFIGURATIONccommreeemreseessinnenssessssnssessesnens 101
4131 Command liNe argUMENTS:cueeiiiieiiiieiiiie et 102
4.1.3.2 ENVIFONMENT ..ottt et 102
414 DIRECTORY STRUCTUREocoiitciriter et 103
4.2 TESTING SCENARIO ...cciitiitieititi ettt et e e ettt e et e e st e e e st e e e nnn e s 105
4.3 RESULTS AND ANALYSIS . ..etiiiitiitetattiteeaitieete e sttt e st e e st et e e abae e e e s asbb e e e e s nbe e e e s anbeeeeeannnees 106
4.4 HEAP SNAPSHOT (MEMORY USAGE)ciiiiiiiiiiieiiiieeiiiie sttt sttt ettt 106
441 HEAP GRAPH ANALYSIS...iiiiiiireeseessssesessssssessessessssssssssssssssssns 106
442 INSTANCE SUMMARYoimrrreiummmnnesseesssssessessssssssssssssssssns 107
N R o1 1=1 11 ¢ TN 1] o TR 107
A (= Tol U | £ 1 o PP P S PPPRT 107
45 PERFORMANCE SNAPSHOT (CODE EFFICIENCY)....utiiiiiiiiiiiieiiiiiessiiee et 108
451 ONETIME.JSP SCENARIOoivviireermeeeesssessssssessssssessnsssssssssssssssnnns 108
4511 NUMDEK Of CallS.......oiiiiiiiiiieii e 108
4.5.1.2 MENOA TIME....iiiiiiiiiii et 109
4513 CUMUIALIVE TIME ..ttt e e e et e e e s nnneeee e e 110
4514 Method ODJECT COUNL......ueiiiiiiiiiiie et 110
4515 Cumulative ObJECt COUNTuiiiiiiii i 111
4516 Average Method TIME........oooiiiiiiiiiiiiie et 112
4517 Average CuUMUIAIVE TIME.......ooiiiiiiiiiiiiiie it 112
45.1.8 Average Method ODJECL.........coiiiiiiiiii it 113
4519 Average Cumulative ODJeCt COUNL........cooiiiiiiiiiiiiee e 114
452 RECURS.JSP SCENARIOiiiiieeutiueeeeeessssseeeesessssssessssssssssessssssssss s ssss s sssss s ssssssssssssssssens 115
4521 NUMDEr OF CallS........eeiiiiiee e 115

Version 2.0 69 -69.1.5 6

ITA Release 3.0
Build & Test Report

FEDERAL
STUDEST AND

4522 METNOO TIME....eiiiiiiiiiie e e e 115
4523 CUMUIALIVE TIMIE .ouviiiiiei e e e s et e e e e e e e s saaraaee s 116
4524 Method ODJECT COUNT......uiiiiiiiiiiiie et 117
4525 Cumulative ODJECt COUNTeiiiiiiiiiie e 117
4526 Average Method TIME........oooiiiiiiiiiiiiie e 118
4527 Average CumMUIAtIVE TIME.......coiiiiiiiiiiiiiie e 119
4528 Average Method ODJECL..........ooiiiiiiiiii e 119
4529 Average Cumulative Object CoUNL...........cccvveiiiiiiiii e 120
46 GENERAL PERFORMANCE TEST SUMMARYutttiiiiiieeaiiiiittieeeeeaeasasasiteeeeeaeeessansssnneeeasaessaans 121
A7 AAPPENDIX A ettt ettt ettt ettt ettt ettt ettt e ettt ettt ettt ettt et ettt et ettt aaaaaaaaes 123
471 JPROBE CONFIGURATION FILEcomsiiiiiisinsriisssssisesssssssssssss s s ssssssssssssssssssssssssssssssnns 123
4.8 RESOURCESotttutiiieeeiieettiti s et e e e e ettt e et e e e e e e e ae e e s e e e eeeeeetaa e seeeaeeeestaaa s eeeeeeeestatasaaeeeeeaeres 125
5 RCS — SESSION FrAMEWOIK.......ciiiiiiiiiii ittt e et e e anbeeeaneeas 125
5.1 UNIT TEST REPORT ...ttt ettt ettt e e ettt e e e e e e ettt e e e e e e s e nntbbeeaeeaaeeaann 125
LT] = 1 SRR SPPPPRRRR 125
LT T AN == =70 X PSPPI 125
5.4 BACKGROUND.......uuutttiiititeaaiiiittttettte e et s aet bt eeeeeeaa s s e et bbbe e et aaee e s s s nbbb b et eaaeeesaastbbebeaeaeeessannnreaes 126
5.5 TEST DESIGN ..iiiietiiieiiietee ettt ettt ettt ettt ettt ettt ettt ettt et ettt et ettt eee e ettt e e eeeteeeeeeeeeeeeeees 126
55.1 TESTING ENVIRONMENT ...ossiiviiiiriiesssisiessssssesssnns 126
552 TESTING CYCLES ..ot 126
553 TESTING CONFIGURATIONccommiiriiimiriiessssisesssnns 127
5531 UNIX SEIVEI SEILINGSvviiiiiiiiiiieiiie ettt 127
55.3.2 WebSphere Application Server — Session Manager Configuration................... 127
5.5.3.3 DIFeCIONY STIUCTUIE.......uviiiieiiiiiie ettt e e e e e et e e e e nneeas 131
554 TESTING CONDITIONS AND RESULTS ...ccoviiorriiinnriiissnns 133
5541 TESECYCIE L ..o 135
5542 TESECYCIE 2 ..o 136
5543 TeSECYCIE 3 .. 137
5544 TESECYCIE A ... 138
5545 TESECYCIE D ..o 139
5546 TESECYCIE B ..ovveieeiiiiiie et 140
5.6 PERFORMANCE ANALYSIS .iiiittiiiiite e e e ettt te e e e e e s ettt e e e e e e e s s bbb e eaeaeesaaabbbereeeaeeessannnreaes 141

Version 2.0 69 -69.1.5 7

ITA Release 3.0
Build & Test Report

B.8.1 PURPOSE.....covieieesiees st sssssss s 141
5.8.2 APPROACHooiireveeeeeseses s 141
5.8.3 SUMMARY ..ot 141
5.6.4 TEST HARNESS DESIGNcoovivvooieveeienesiiesssssesssassssssssssssssnns 142
5.6.4.1 TeSting ENVIFONMENT...........ovviiiiiiie e 142
5.6.4.2 Testing CONTIQUIALION.........coiiiiiieiiiiiie et 142
5.6.5 TESTING SCENARIO......ccoooiviiieeirisse s sss s 145
5.6.6 RESULTS AND ANALYSIS ...ooiiiiiiieriinesisessssssessnns 146
5.6.6.1 Heap Snapshot (Memory USAQE)..........ccueuiuiiiiiieiiiieiiiee e 146
5.6.6.2 Performance Snapshot (Code EffiCIENCY)cccvveiiiiiiiiiiii e, 149
5.6.6.3 General Performance METIICS.........cuuviiiiiiiieiiiiie e 160
5.8.7 APPENDIX A....ooiiiiieeiisisessssssessssssss s sssssssssssssessssssssssssssss s ssss s ssssssssssssssssssans 161
5.6.7.1 JProbe Configuration Filecccciiiiiiiii e 161
5.8.8 RESOURCEScoooiiiiieeesiiess s 164
6 RCS —Web Services (SOAP) FrameWOrK...........ccooiiiiiiiiiiiiiiie e 164
5.1 PURPOSE ..tttttiieiei ittt ettt e oottt e e e e e e e e e bbbttt e e e e e r et e e e e e e anare e 164
8.2 AAPPROAGCH.ci ittt ittt ettt ettt oottt e e e oottt e e e e e e e bbbt e et e e e e e et br et eeeaee e e e anneenes 165
OIS T LY 1 = S ESSRR 165
6.4 TESTHARNESS DESIGN ..iiiiiiiiiiiiiiiiiii e 166
6.4.1 TESTING ENVIRONMENT ..ossiivirirevieissessssessssssessssssssssssssssssssssssssssssss s sss s sssssssssssssssssssssssssssnns 166
R O A 1 4 [[0 [) =T - P EUPRPPPPRR 166
6.4.1.2 JProbe Configuration Filecoccoiiiiiiii e 166
6.4.1.3 WebSphere Application Server Configuration..............ccccceeviiiiieiiiiiee e, 169
6.4.1.4 Additional Required COMPONENTS...........cceiiiiiiiie e 169
6.5 TESTING SCENARIOtiiiiiieieiiiitttt et ee e e e e e ettt bttt e e e e e s et bbb b et e e e e e e s s bbb b et aeeeesaaabbbeeeeeaeeessanneenaes 170
6.5.1 TEST PREPARATIONcossiiviirriiiteesisssnns 170
6.5.2 TEST SCENARIOcoimiivviirrriiieeesisssss s ssssssssssssss s s s 170
6.6 RESULTS AND ANALYSIS . ieiiiiiittttiittteeessaetttteeteeeaessasssstsaeeeaeeessansssseeeeeeesssassssnesereeeesssansssnes 170
6.6.1 HEAP SNAPSHOT (MEMORY USAGE) ...cceoovoiiierriiieeneiiisssssisssnns 170

Version 2.0 69 -69.1.5 8

ITA Release 3.0
Build & Test Report

6.6.1.1 Heap Graph ANAIYSIS.........cciiiiiiiiiiiiiice e 170
6.6.1.2 INSTANCE SUIMIMAIY.. ...ttt e e e e e e e e e s e snnbbe e aaeee e 171
0.7 TEST CONCLUSIONSuttiieiiuititeesasitete e sttt e e ettt e e e e e e e s skt e e e s b et e e aabb et e e e e e e e s nsbn e e e e nnnnee s 172
6.8 RESOURCES ...ceiiiiiiiittiii ittt e ettt e e ettt e e e e e e ek bbbttt e e e e e s s bbbt e e e e e e e e bbb et e e e e e e nnrnnes 173
6.9 JAVABEANS ACTIVATION FRAMEWORK WEBSITEccviiiiiriieiiiiiiiesiinieee s e 173
6.10 APACHE XERCES WEBSITEuteiiiiiutiiieeiitriee e st e e et e e st e e e st e e s e e s e e e s e e e e annnee s 173
6.11 BEAN SCRIPTING FRAMEWORK WEBSITEccittiiieiiiiiieesaiiiieeessiiiee e sttt e e s e e niinee e e 173
6.12 RHINO WEBSITE ...utiiiiiiiiiie ittt e s e e e s e e s 173
6.13 HTTP://WWW.MOZILLA.ORG/RHINOZ ..ottt 173
7 RCS - Configuration FrameWOrKcooiiiiiiiii s 174
T.1 PURPOSE ...ttt 174
7.2 AAPPROACH. ...ct i ettt ettt e e 174
7.3 BACKGROUND......cotiiiiitiiiei ittt ettt e et e e et e e ekt e e e et e et e e e s et e e nnnre s 174
74 TESTING ENVIRONMENT ...c.ttiuttitieitieieettesteesteaseesteaeeaseesteeseeaseesseaseeaneesseanseaseesseanseaseenseaneenns 174
TAAL XML FILES..oooutitreeeeeeeeeeesssssssss s ssssssssssssss s 175
742 DATABASE TABLES ...ooooiiiiimmieressseeessssssssses e sssssssssssssss s ssssssssssss s ssssssssssssssssssssssssssssssssssses 175

743 WEBSPHERE APPLICATION SERVER - CONFIGURATION FRAMEWORK

CONFIGURATION ..ottt sssssss s 176
7.5 AUTOMATED TESTING CONDITIONSiiittttiiiteeataiaitittiieteeeeessaibbieeeaeeesssessibbrreeeaeeessannnnnnes 177
7.6 PERFORMANCE TESTINGcciiiuttttiitiieea i s itttbeetae e e e e s ettt et eae e e s s anbbb b e eaeeeesaaabbbeeeeeaeeessannneenes 183

781 APPROACH ...ttt 183

7.8.2 SUMMARY ..ot sssssssss s ssssssss s s 0 183
7.7 TESTHARNESS DESIGN ...ccoiiiiiiiiiiiiiiiii 183

771 TESTING ENVIRONMENT ...oossiiiivvtiiseseesssessssss s sssssssssssssssss s ssssssssssssssssssss s 183

772 TEST CONFIGURATONcoommrirrviiisessesssssssssssssssssssesssssssssssssssssss s sssss s sssssss s ssssssssssssssssssss s 183

7.7.3 WEBSPHERE APPLICATION SERVER CONFIGURATION...........oiimmmmmrrviisssesessssssssesssssssssneees 184

Version 2.0 69 -69.1.5 9

ITA Release 3.0
Build & Test Report

E R AL

F i b L
STUDEST AND

7.7.3.1 Command liNe argUMENLTS:ccouviiiieee ettt e e e e e e 184
T7.7.3.2 ENVIFONIMENT ...ttt ettt e e e st e e e et e e e snse e e e e e sbeaeeenntneeeeas 184
7.8 TESTING SCENARIOS.....ctttteetiiiitttittteeeessaetttteeaaeeaeasaasstbeaeeaaeeassansbsaeeeaeeeesaasssnteseeaaeeessannneenes 184
1.0 AN ALY SIS ittt 184
7.9.1 MEMORY (HEAP) USAGE ..ottt sttt sssssssssnssssssnsnsnes 184
7.9.2 HEAP GRAPH ANALYSIS ..ot bbb bbb bbb bbb bbb bbbttt 185
7.0 INSTANCE SUMMARY ...oiiiieiiiiiititttitte e e ittt e eae e e e s s e bbbttt e ae e e s s anbbbbeeeaeeeessaabbbrreeaaeeessannnbenes 185
7.11 GARBAGE COLLECTIONS ..eeiiiiittttieteeeeessantttteeeeaaeaeaaansstsaeeaaeeessannntsaeeeeeeeasaaansnteeeeeaeeessannnnnnes 186
I =T 11 Lo = OSSP 187
7.12.1 GRNDS FRAMEWORKostivtrriinssisss s sssss s sssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssssssssns 187
7.12.2 SUN JAVA WEBSITEosivviriiesiisssiss s sssss s sssssssssssssssssssssss st sss s ssssssssssssssssssssssssns 187
8 RCS -JSP Custom Tag Library FramewWOrkKcccccoiiuiiiiiiiiiic e 187
8.1 JSP CUSTOM TAG LIBRARY UNIT TEST REPORT ...citiiiiiiiiiiiiiiiieee e e ettt e e ettt eee e e e e 187
8.1.1 187
B.LLL PUIMPOSE ..ttt ettt e 187
8.1.1.2 APPIOACH. ... 187
8.1.1.3 BaCKgIOUNG..........oviiiiiieiii it e et 187
8.1.2 TEST DESIGN...couiiirieeuresseeessnsessssessssesssssassssssessssesssssassasssssssssssssssnsssssnsssssnsssss 188
8.1.2.1 TeSting ENVIFONMENT.........ooiiiiiiiieiiiiiie et 188
8.1.2.2 Testing ConfiIgUIatioN..........c.coiiuiiiiiiiiiiiie e 188
8.1.3 TESTING CONDITIONS AND RESULTS ...oooimiiiirnriinssiissssisssens 191
8.1.3.1 Test Cycle 1 —Jakarta Struts Bean Taglib..............cccoovieeiiiiiic e, 193
8.1.3.2 TestCycle 2 -Jakarta Struts HTML Taglib ..., 195
8.1.3.3 Test Cycle 3 -Jakarta Struts Logic Taglibccoceiiiiiiiiiiice 197
8.1.34 Test Cycle 4 - Jakarta Struts Template Taglib...........cccooeiiiiii, 198
8.1.35 Test Cycle 5-Jakarta DateTime Taglib.............ooociviieiiiee i, 199
8.1.3.6 Test Cycle 6 -Jakarta I18N Taglib..........ccccoveiiiiiiiii e 200
8.1.3.7 Test Cycle 7 - Jakarta Input Taglib...........ccocoeiiiiiiiiii e 201
8.1.3.8 TestCycle8 -Logging Taglib.........ccccoiiiiiiiiiiiiiii e 203
8.1.3.9 TestCycle9-JakartaPage Taglib..........ccovviiiiiiiiii e 205
8.1.4 RESOURGCESiitiitreiiresessssesssssssssesssssssss s sss s as st s ss 18588888880 207
8.2 JSP CUSTOM TAG LIBRARY PERFORMANCE ANALYSISutttiiiiieeeeiaainieieeeeeeessaeeenneeeeeaaaaaans 207

Version 2.0 69 -69.1.5 10

ITA Release 3.0
Build & Test Report

8.2.1 207
8.2.2 PURPOSE.....ooovoeeesvteees oo 207
8.2.3 APPROACH ... 207
8.2.4 SUMMARY ..o 207
825 TEST HARNESS DESIGNcooiiooieerevioiesesseesessnns 209
8.25.1 TeSting ENVIFONIMENT...........oviiiiiiiie e 209
8.2.5.2 Testing CONFIQUIALION.........coiiuiiieiiiiiie et 209
826 TESTING SCENARIO.......coooioierreiisessiisesssssssss st 212
827 RESULTS AND ANALYSIS ...ooiririiirriiiiesssisissessssessses 213
8.2.7.1 Heap Snapshot (MemOry USAQE)........cccueiiuiiiiiieiiiieiiiee i 213
8.2.7.2 Performance Snapshot (Code EffiCIENCY)cccovviiiiiiiiiiiiic e, 215
8.2.7.3 General Performance METIICS.........cuuiiiiiiiiieiiiiie e 225
8.2.8 APPENDIX A....ooiiviooeesiisesssissesssssssssssssssssssssssssssss s sssss st 581588 227
8.2.8.1 JProbe Configuration Fileccocoiiiiiiiii e 227
8.2.9 RESOURCESoosiiiieesiiesssises s 230

Version 2.0 69 -69.1.5 11

ITA Release 3.0
Build & Test Report

1 RCS - Web Conversation Framework

1.1 Purpose

This section of the Performance Analysis Report documents the results of utilizing JProbe to
analyze the ITA R3.0 Reusable Common Services (RCS) Web Conversation framework. This
section provides an in-depth analysis of the results gathered from the JProbe and documents
performance issues. The Detailed Design, User Guide, and the Performance Analysis
documents for the Web Conversation framework will enable developers to quickly build
applications using the Web Conversation framework within the ITA environment architecture.

1.2 Approach

To ensure program efficiency and to detect possible bottlenecks, ITA used JProbe to analyze the
Web Conversation framework. JProbe is a performance-profiling tool and it was utilized to
detect performance issues such as loitering objects, unexpected references, and over-use of
objects in Java based programming.

Two key groups of statistics are collected from the JProbe Profiler: The memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow detailed information to be gathered on individual methods
and define the calling relationship between methods.

1.3 Summary

This section of the report contains the performance test harness design, performance analysis,
and resulting performance metrics for the Web Conversation framework. The example
application used for testing maintains user registration and subscription information. The most
commonly used Web Conversation classes and tag library methods (e.g. perform(),
findForward(), and html: FormTag) were profiled using the example application. The actual
results were compared against the results of how this framework is expected to function.
Overall, this framework does not produce any loitering objects that remain in the heap after its
useful life.

Version 2.0 69 -69.1.5 12

ITA Release 3.0
Build & Test Report

FEDERAL
STUDEST AND

1.4 Test Harness Design

1.4.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance analysis is to identify loitering objects and time spent on each method
relative to other methods within the Web Conversation Framework. The diagram below is
representative of the environment configuration used for the performance analysis.

TCP/P - port 4444

Y

| dam |

i |ftp i

Snapshot

Files

Devel oper
Vor kst at i on Server (su35e5)

Figure 1: JProbe Application Analysis Environment

1411 Testing Criteria

The ITA team has identified the most commonly used and most complicated Web Conversation
framework classes where potential for code bottlenecks exist. Since the Web Conversation
framework is an API, the example application packaged with the framework distribution was
used as a test harness to profile and analyze the performance of the various methods.

The most commonly used methods identified by the ITA team that were tested as part of the
example application included methods within:

Package Class
org.apache.struts.action Action
org.apache.struts.action ActionError
org.apache.struts.action ActionForm
org.apache.struts.action ActionForward

Version 2.0 69 —69.1.5 13

ITA Release 3.0

Build & Test Report

1412

Package

Class

org.apache.struts.action

ActionMapping

org.apache.struts.action

ActionServlet

org.apache.struts.util MessageResources
Package Tag
org.apache.struts.taglib.bean MessageTag
org.apache.struts.taglib.bean WriteTag
org.apache.struts.taglib.html BaseTag
org.apache.struts.taglib.html ButtonTag
org.apache.struts.taglib.html CancelTag
org.apache.struts.taglib.html CheckboxTag
org.apache.struts.taglib.html ErrorsTag
org.apache.struts.taglib.html FormTag
org.apache.struts.taglib.html HiddenTag
org.apache.struts.taglib.html HtmlTag
org.apache.struts.taglib.html ImgTag
org.apache.struts.taglib.html LinkTag
org.apache.struts.taglib.html OptionsTag
org.apache.struts.taglib.html PasswordTag
org.apache.struts.taglib.html RadioTag
org.apache.struts.taglib.html ResetTag
org.apache.struts.taglib.html SubmitTag
org.apache.struts.taglib.html TextareaTag
org.apache.struts.taglib.html TextTag
org.apache.struts.taglib.logic EqualTag
org.apache.struts.taglib.logic IterateTag

org.apache.struts.taglib.logic

NotEqualTag

Testing Configuration

A new Web Sphere Application Server instance (JPROBE) was created to profile the Web
Conversation example application using JProbe. The command line in the new Application
Server references a JProbe configuration file specially created for this test. Additional settings
and configurations were updated on the server and a struts-config.xml file was added to assist
the Controller in determining where to direct an incoming request.

1413

JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the settings that
JProbe requires to profile an application, applet, or serverside component (such as JavaServer

Pages and Servlets). The configuration file will determine which JVM is used to run JProbe and
the monitoring options.

Version 2.0

69-69.1.5

14

ITA Release 3.0
Build & Test Report

The example application test was conducted on the Solaris machine with the output directed to
a remote Windows NT workstation. Performance and heap snapshots were taken before the
Application Server was stopped. The configuration in the actual file used to conduct the test
can be found in Appendix A.

1414 UNIX Server Settings

The Web Conversation framework is closely tied to the configuration of the WebSphere
Application Server. Implementing this framework within a WebSphere environment removes
the need to use a web.xml file that is read when the JSP container starts. The web.xml file
would typically define which requests should be mapped to the ActionServlet. In a WebSphere
environment, these resources and paths that would typically be defined in the web.xml file are
spread across multiple Application Server and Web Application settings. Several WebSphere
ApplicationServer *.properties files had to be updated to profile the example application. Refer
to the Web Conversation Framework User Guide document for the *.properties files definition.

1415 WebSphere Application Server Configuration

The WebSphere Command Line was configured with the JProbe configuration file used to
ensure that the correct VM was used. Two Environment Variables were added to the
Application Server and two servlets were added to the Web Application.

14151 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/06102002_test_struts.jpl -Xnoclassgc —
Djava.compiler=NONE -ms128m -mx128m

1.4.1.5.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

1.4.1.5.3 Action Servlet:

Servlet: action

Description: Struts Action Servlet

Servlet Class Name: org.apache.struts.action.ActionServlet
Servlet Web Path List: default_host/JPROBEWebApp/*.do
Init Parameters:

Init Param Name | Value

detail 2

debug 2

validate true

config /struts-config.xml
application Resource

Debug Mode: False
Load at Startup: True

Version 2.0 69 -69.1.5 15

ITA Release 3.0
Build & Test Report

14154 Database Servlet:
Servlet: database

Description: refers to database.xml
Servlet Class Name: org.apache.struts.webapp.example.DatabaseServlet

1416 struts-config.xml File

In the Web Conversation framework, the struts-config.xml file is used to determine how to
process incoming requests. A struts-config.xml file is required for each instance of the
Application Server and can contain definitions for more than one Web Application. This
analysis was conducted with the struts-config.xml file packaged with the example application.
The struts-config.xml file was modified to look for the Document Type Definition (.dtd) file on
the local server instead of on the Internet. The contents of the struts-config.xml file used in the
test can be found in Appendix A.

1.4.1.7 Additional Required Components

The following java archive files are required to run the example application:
struts.jar
jaxp.jar
parser.jar

The following Document Type Definition files are required:
struts-config_1 0.dtd
web-app_2_2.dtd
web-app_2_3.dtd

The following Tag Library Descriptors are required:
- struts.tld
struts-bean.tld
struts-form.tld
struts-logic.tld
struts-template.tld

14138 Directory Structure

Version 2.0 69 -69.1.5 16

ITA Release 3.0
Build & Test Report

DL Al
STUDENT ALD
Su35e5
opt
WebSphere
AppServer
bi Jopt/stg35/WebSphere/AppServer/bin: includes startup and shutdown scripts for
n WAS and JProbe Application Server
lopt/stg35/WebSphere/AppServer/temp: contains the rules.properties,
tem queues.properties, and vhosts.properties files.
| p Also contains ./default_host/JProbeWebApp directory where compiled class files
for the JavaServer Pages are located
| lopt/stg35/WebSphere/AppServer/logs: includes log files that are useful in
- — 0gs tracking errors: tracefile, activity.log, and JPROBEstderr.log, JPROBEstdout.log
util
JProbe
ol il lopt/util/JProbel/jpl_files: directory for JProbe Configuration (*.jpl) files used to
Jpi_tiles profile the performance of applications
snapshots Jopt/util/lJProbe/snapshots: directory containing performance and heap snapshots
saved from JProbe tests; the files have to be sent via FTP to the developer's
workstation console in order to be viewed
www
stg
jprobe

/wwwistg/JProbel/lib: contains the various jar files needed to run the Struts
example application

Iwwwistg/JProbe/servlets: contains ApplicationResources.properties, and various
servlets Document Type Definition (*.dtd) files needed

Iwww/stg/JProbe/servlets/org/apache/struts/webapp/example: Full path to the

org... Struts example class files
web Iwww/stg/JProbe/web: Contains the *.jsp files used to test the Struts example
application

Iwww/stg/JProbe/web/WEB-INF: Contains the various Tag Library Descriptor
WEB-INF (*.tld) files, struts-config.xml, and database.xml file needed by the Struts example
application

Version 2.0 69 -69.1.5 17

ITA Release 3.0
Build & Test Report

1.5 Testing Scenario

The example application provided with the framework distribution was used as the test
harness. LoadRunner was used to execute the scenario twenty-five times to obtain an accurate
measurement of the test results on average.

1.5.1 Test Preparation

Refer to the JProbe Quick Start Guide for the test execution preparation information. This guide
identifies the steps required to profile an application using JProbe.

1.5.2 Test Scenario

1. Open aweb browser and connect to the site
http://stg.jprobe.fsa.ed.gov/JPROBEWebApp/index.jsp
2. Onindex page, select Register with the MailReader Demonstration Application link

3. Create a new user:

User: test

Password: testing

Full Name: testy tester

From Address: test@test.com

e. Reply-to: info@test.com

Save

Select "Edit your user registration profile"

Modify the From Address and Reply To Address to anything.
Press Reset

Select "Add"

Create a new subscription:

a. Mail Server: mail.yahoo.com

b. Mail Username: tt33

c. ttt

10. Save

11. Edit the newly created subscription

12. Press reset

13. Edit Mail Server: smtp.yahoo.com

14. Save

15. Delete the subscription from the list

16. Confirm

17. Save

18. Select "Log off MailReader Demonstration Application”
19. Select "Log on to the MailReader Demonstration Application”
20. Username: amy

21. Submit

22. Error message - Password: pass

23. Select "Log off MailReader Demonstration Application”

oo o

©oNG A

Version 2.0 69 -69.1.5 18

ITA Release 3.0
Build & Test Report

1.6 Results and Analysis

The JProbe Profiler with Memory Debugger application was used to trace both the memory
usage and performance measurement of the example application. Two snapshots were taken:
A heap snapshot and a performance snapshot.

1.6.1 Heap Snapshot (Memory Usage)

The heap snapshot was used to visualize how memory was used, obtain information on objects
allocated in the heap, and determine if there are any loitering objects at the end of the test.

16.1.1 Heap Graph Analysis

The screenshot below is obtained from executing Scenario 2 twenty-five times. The spiked lines
demonstrate that temporary objects are being allocated and garbage collected. The yellow
horizontal line has been added to assist the reader in better gauging the depth of the trough.
The yellow line, was used to determine that the level of the trough is getting higher over time
meaning that not all temporary objects are being garbage collected.

1 Runtime Heap Summany. com.ibm.ejs.sm.server.ManagedServe|
tefresh:| every second w | Show History:| &ll -

Memory (KB}
140000

Ran garbage
120000 coI lection & set
/ Checkpoint

100000
80000
60000

40000

/ End of test execution
Garbage collection
and take s1napshots

16:40 18:20

20000

yellow line

06:40 08:20 10:00 11:40 13:20 15:00

l][ll]:l]l] : 03:20 05:00
Memory usage for JPROBE
Application Server startup

Time

The spikes are expected since Scenario 2 is creating new user and subscription objects in the
scenario. The level change of the troughs is unexpected since the test was conducted with the

Version 2.0 69 -69.1.5 19

ITA Release 3.0
Build & Test Report

assumption that all temporary objects will be removed from the heap. The next section will
examine instance summary to determine if these are loitering objects.

16.1.2 Instance Summary

The table below is a section of the Instance Summary result associated with running Scenario 2.
The Count column displays how many instances of the class currently exist in the heap and the
Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the

Checkpoint was set. The Checkpoint tells JProbe to tag all subsequently created objects as

“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Package Class Count [Count Memory | Memory

Change Change

org.apache.struts.webapp.example | User 27 +25 0.756 +0.7
(18.1%) (18.3%)

org.apache.struts.util PropertyMessageResources 23 +21 0.644 +0.588
(15.4%) (15.6%)

org.apache.struts.webapp.example | EditRegistrationAction 1 +1 0.004 +0.004
(0.7%) (0.1%)

org.apache.struts.webapp.example | EditSubscriptionAction 1 +1 0.004 +0.004
(0.7%) (0.1%)

org.apache.struts.webapp.example | LogoffAction 1 +1 0.004 +0.004
(0.7%) (0.1%)

org.apache.struts.webapp.example | LogonAction 1 +1 0.004 +0.004
(0.7%) (0.1%)

org.apache.struts.webapp.example | SaveRegistrationAction 1 +1 0.004 +0.004
(0.7%) (0.1%)

org.apache.struts.webapp.example | SaveSubscriptionAction 1 +1 0.004 +0.004
(0.7%) (0.1%)

These results were gathered after the test scenario has finished executing and garbage collection
has occurred. The results were filtered for ‘org.apache.struts.*” since those are the classes this
report is concerned with. The Count Change column was used to sort the data to determine
which class had the most objects remaining in the heap after the scenario has been completed.

In the first row, the count change for the User class is +25; this number coincides with the

number of times the scenario was executed. From the Package name column, it is possible to
see that this class is part of the Struts example application and not actually part of the Struts
framework. A new User object was created in each cycle during the execution of the scenario
but the objects were never removed from the heap. These loitering objects are attributed to the
design of the example application and not to the Web Conversation framework.

Version 2.0

69-69.1.5

20

ITA Release 3.0
Build & Test Report

FEDERAL
STUDEST AND

The next class, PropertyMessageResources, is a class from the Web Conversation APl. The
PropertyMessageResources class is used to read message keys and their strings from the
property resources file. It was possible to determine where this class was allocated (initiated)
and any referrer objects by drilling down to the Instance Detail View.

SLIE

Tools Display Window Help

][l B EREREL

€, Instance Detail View -
Instance List Filter Classes: ﬂ|
Instance ID Size | Creation v |'eferrers #ferencesw

e
9 E

Tree Type: | Referrer Tree Hide Classes

% PropertyMessageResources DxES14FBED
@ O org.apache.struts. action ActionServliet 0xES141F 43 (internal)

@M org.apache.struts webapp example LogonAction 0xES2BES38 (semvet)
@M org.apache.struts webapp.example Logoffaction 0xE32AG948 (serviet)
M orgapache struts wehapp example SaveSuhscriptionAction 0xEB2749CE (serviet)
@M org.apache.struts webapp example EditSubscriptionAction 0xE828CEED (servet)
@0 org.apache.struts action Actiondappings 0xES1 43480 (semviet)
M org.apachestruts webapp.example SaveRegistrationaction 0xERBE3420 (servief)
@0 com.ibm.senvietengine webapp StrictServietinstance 0xES1430F 8 (_servief)
@O org.apache.struts digester Digester 0xE8154038 (root)
@M org.apache.struts webapp.example EditRegistrationAction 0xE3227E30 (servief)

Allocated At:
Package [Methind |Source

arg.apache.struts util ProperyMessageResourcesFactory createResources{String) FroperyMessageResourcesFactony java: 90

org.apache. struts.util MessageResources.gethessageResources(String) MessageResources. java, 528
org.apache struts action ActionServietinitinternal ActionServietjava: 1238
org.apache.struts. action ActionServietinitd ActionServlet java: 461
B ¥
ropertyiMessageResources DxEG14FB60 [

The ActionServlet class, which is loaded upon startup of the Web Application, initiates this
PropertyMessageResources instance. Since ActionServlet stores the PropertyMessages in the
form of a HashMap, it will not release these messages from this cache during the life of this
ActionServlet. Because the ActionServlet was loaded on startup of the Application Server, it
will not be unloaded until the Web Application is stopped. This release will not show up in the
profile of the example application as JProbe stops collecting data prior to the shutdown of the
Application Server.

Version 2.0 69 —69.1.5 21

ITA Release 3.0
Build & Test Report

Analyzing the remaining six classes that extend the Action class, it is possible to see that each
has an extra instance remaining in the heap after the end of the performance analysis. Using the
Instance Detail View for LogonAction below it is possible to trace the instance back to the
ActionServlet class.

2, Instance Detail View

Instance List Filter Classes: |

Instance D | Size | Creation |!eferrers |1ferenc95-{

Tree Type: | Referrer Tree v Hide Classes

P LogonAction OxEBZBE438
O M java.utiHashMap§Entry OxEE2BEBRS (value)

e B e e A A e e e e e e e e e e e e e e e e
Allocated At:
Package Method \Source
java.util Hashhap.putiObject, Object) HashMap.java: 351
org.apache.struts util FastHashMap. putiOhject, Ohject) FastHashMap java: 436

org.apache. struts action ActionServiet processhctionCreateActionapping, HitpServietRe ActionServiet java: 1633

ogonAction DXEB2BEY3S |

Even though the different Action classes were called multiple times, only one instance was ever
created. This leads to the conclusion that these objects are reachable and not loitering; therefore,
these objects can still be reused.

By examining the source code, it is determined that once the Action instance is created, it is
placed in a HashMap, which will not removed from the heap until the Web Application has
stopped. This means that any Action class defined by a mapping will be loaded into a
FastHashMap when it is used. The Action object is not removed from the HashMap until the
ActionServlet.destroy() or ActionServlet.reload() method is called. Since WebSphere loaded the
ActionServlet, the destroy() and reload() methods are will never be called within the scope of

Version 2.0 69 -69.1.5 22

ITA Release 3.0
Build & Test Report

the JProbe performance analysis. Although this is not a memory leak, it is necessary to keep in
mind that overall system performance could be impacted if a tremendous number of Actions
are defined per Application Server.

1.6.2 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe — five basic metrics and four
compound metrics. The basic metrics include: Number of calls, method time, cumulative time,
method object count, and cumulative object count. The compound metrics are averages per
number of calls, including: average method time, average cumulative time, average method
object count, and average cumulative object count. Time is measured as elapsed time in
milliseconds.

The following sections will describe each metric and display the top results for each
measurement for the performance assessment of the Web Conversation framework. These
metrics are basic indicators of process resource utilization. The detailed graphs associated with
each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by org.apache.struts.* to obtain only the classes
within the Web Conversation framework which is what the test is looking for. Then for each
section, the results were sorted by the metric under investigation to obtain the top ten results for
each metric.

Version 2.0 69 -69.1.5 23

ITA Release 3.0
Build & Test Report

16.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Package Name Calls Source
org.apache.struts.util FastHashMap.get(Object) 14,961 | FastHashMap.java
org.apache.struts.util PropertyUrtils.getPropertyDescriptors(Object) 12,705 | PropertyUtils.java
org.apache.struts.util PropertyUtils.getPropertyDescriptor(Object, String) 12,630 | PropertyUtils.java
org.apache.struts.util ResponseUtils.write(PageContext, String) 8,325 | ResponseUtils.java
org.apache.struts.util PropertyUtils.getAccessibleMethod(Method) 8,240 | PropertyUrtils.java
org.apache.struts.util PropertyUrtils.getSimpleProperty(Obiject, String) 5,375 | PropertyUtils.java
org.apache.struts.util PropertyUtils.getReadMethod(PropertyDescriptor) 5,175 | PropertyUrtils.java
org.apache.struts.util MessageResources.localeKey(Locale) 3,771 | MessageResources.java
org.apache.struts.util RequestUtils.message(PageContext, String, String, String, Object[]) 3,675 | RequestUtils.java
org.apache.struts.util MessageResources.getMessage(Locale, String, Object[]) 3,627 | MessageResources.java

The chart above lists the top ten most frequently called methods. The classes from the org.apache.struts.util package were used the
most. This is a part of the Web Conversation framework design in the separation of logic and presentation. The example JavaServer
Pages used to analyze this framework heavily utilized resource files to obtain the strings to display to the end users.

1.6.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants (sub-
methods).

Package Name Method Time Source
org.apache.struts.util PropertyUtils.getPropertyDescriptor(Object, String) 785.63 (12.8%) | PropertyUtils.java
org.apache.struts.util PropertyUrtils.getSimpleProperty(Obiject, String) 378.39 (6.2%) | PropertyUtils.java
org.apache.struts.util MessageResources.messageKey(Locale, String) 267.11 (4.4%) | MessageResources.java
org.apache.struts.util ResponseUtils.filter(String) 261.27 (4.3%) | ResponseUtils.java

Version 2.0 69 -69.1.5 25

ITA Release 3.0
Build & Test Report

Package
org.apache.struts.util

Method Time
220.33 (3.6%)

Name
PropertyUtils.setSimpleProperty(Object, String, Object)

Source
PropertyUrtils.java

org.apache.struts.taglib.html
org.apache.struts.taglib.bean
org.apache.struts.util
org.apache.struts.util
org.apache.struts.taglib.html

BaseFieldTag.doStartTag()
MessageTag.doStartTag()
PropertyUtils.getAccessibleMethod(Method)
PropertyUtils.getPropertyDescriptors(Object)
BaseHandlerTag.prepareEventHandlers()

199.35 (3.3%)
197.44 (3.2%)
175.19 (2.9%)
171.29 (2.8%)
170.40 (2.8%)

BaseFieldTag.java
MessageTag.java
PropertyUrtils.java
PropertyUtils.java
BaseHandlerTag.java

From the results of the top ten methods with the highest method times, it is possible to see that methods from the PropertyUtils class
have the largest impact on the overall program execution time. Since this is a class that is intrinsic to the Web Conversation
framework and should not be changed by the ITA team, developers should be aware of the amount of time it takes to execute
methods from this class and be prepared for any impact that it may have to their program.

16.23 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but excludes

the time spent in recursive calls to its descendants.

Package Name Cumulative Source
Time
org.apache.struts.action ActionServlet.process(HttpServletRequest, 2,225.03 | ActionServlet.java
HttpServletResponse) (36.3%)
org.apache.struts.action ActionServlet.doPost(HttpServietRequest, 1,561.41 | ActionServlet.java
HttpServletResponse) (25.5%)
org.apache.struts.action ActionServlet.processActionPerform(Action, ActionMapping, 1,096.33 | ActionServlet.java
ActionForm, HttpServletRequest, HttpServletResponse) (17.9%)
org.apache.struts.util PropertyUtils.getPropertyDescriptor(Object, String) 1,080.64 | PropertyUtils.java
(17.6%)
org.apache.struts.util PropertyUtils.getSimpleProperty(Obiject, String) 993.60 (16.2%) | PropertyUtils.java
org.apache.struts.util PropertyUtils.copyProperties(Object, Object) 854.67 (13.9%) | PropertyUtils.java
org.apache.struts.taglib.html | BaseFieldTag.doStartTag() 790.89 (12.9%) | BaseFieldTag.java

Version 2.0

69 -69.1.5

26

ITA Release 3.0
Build & Test Report

Package Name Cumulative Source
Time
org.apache.struts.taglib.bean | MessageTag.doStartTag() 726.13 (11.9%) | MessageTag.java
org.apache.struts.action ActionServlet.processPopulate(ActionForm, ActionMapping, 720.24 (11.8%) | ActionServlet.java
HttpServletRequest)
org.apache.struts.util PropertyUtils.getProperty(Object, String) 719.52 (11.7%) | PropertyUtils.java

The example application spent the most time exec uting methods from the org.apache.struts.action.ActionServlet class and the
org.apache.struts.util.PropertyUtils class. The results indicate that these classes lie in the critical path and have an impact on the
system performance.

16.24 Method Object Count

Measures the number of objects created during the method’s execution, excluding those created by its descendants.

Package Name Method Source
Objects
org.apache.struts.util PropertyUrtils.getSimpleProperty(Obiject, String) 5,829 (14.8%) | PropertyUtils.java
org.apache.struts.util ResponseUtils.filter(String) 3,900 (9.9%) [ResponseUtils.java
org.apache.struts.util MessageResources.messageKey(Locale, String) 3,629 (9.2%) | MessageResources.java
org.apache.struts.taglib.bean | MessageTag.doStartTag() 3,602 (9.1%) | MessageTag.java
org.apache.struts.util PropertyUtils.setSimpleProperty(Object, String, Object) 3,344 (8.5%) | PropertyUtils.java
org.apache.struts.taglib.html | BaseHandlerTag.prepareEventHandlers() 2,650 (6.7%) | BaseHandlerTag.java
org.apache.struts.taglib.html | BaseHandlerTag.prepareStyles() 2,650 (6.7%) | BaseHandlerTag.java
org.apache.struts.util BeanUtils.populate(Object, Map) 1,423 (3.6%) | BeanUtils.java
org.apache.struts.taglib.html | BaseFieldTag.doStartTag() 1,218 (3.1%) | BaseFieldTag.java
org.apache.struts.action ActionServlet.processActionForm(ActionMapping, 1,135 (2.9%) | ActionServlet.java
HttpServletRequest)

The above results indicate that the methods from the org.apache.struts.util package allocate the greatest number of objects. The main
culprits are the methods responsible for obtaining the messages located in the properties file. Since the properties files are integral
to the operation of the framework, developers need to be aware that loading the properties file utilizes system resources.

Version 2.0 69 -69.1.5 27

ITA Release 3.0

Build & Test

Report

1.6.2.5

Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Package Name Cumulative Source
Objects
org.apache.struts.action ActionServlet.process(HttpServletRequest, HttpServietResponse) 10,968 (27.8%) | ActionServlet.java
org.apache.struts.action ActionServlet.doPost(HttpServletRequest, HttpServletResponse) 7,623 (19.3%) | ActionServlet.java
org.apache.struts.taglib.bean MessageTag.doStartTag() 7,434 (18.8%) | MessageTag.java
org.apache.struts.taglib.html BaseFieldTag.doStartTag() 7,070 (17.9%) | BaseFieldTag.java
org.apache.struts.util PropertyUtils.getSimpleProperty(Object, String) 5,931 (15.0%) | PropertyUrtils.java
org.apache.struts.action ActionServlet.processActionPerform(Action, ActionMapping, 5,117 (13.0%) | ActionServlet.java
ActionForm, HttpServletRequest, HttpServletResponse)
org.apache.struts.util RequestUtils.message(PageContext, String, String, String, Object[]) 3,955 (10.0%) | RequestUtils.java

org.apache.struts.util

ResponseUtils.filter(String)

3,900 (9.9%)

ResponseUtils.java

org.apache.struts.util

MessageResources.getMessage(Locale, String, Object[])

3,898 (9.9%)

MessageResources.java

org.apache.struts.util

PropertyUtils.getNestedProperty(Object, String)

3,752 (9.5%)

PropertyUtils.java

The ActionServlet.process() and ActionServiet.doPost() methods create the most objects themselves or through their descendants.
These are expected since doPost() calls the process() method, which processes an HTTP request and performs the bulk of the

operations.

1.6.2.6

Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls.

Package

Name

Average
Method Time

Source

org.apache.struts.action

ActionServlet.initDigester(int)

20.16 (0.3%)

ActionServlet.java

org.apache.struts.action

ActionServlet.<init>()

9.78 (0.2%)

ActionServlet.java

org.apache.struts.action

ActionServlet.initinternal()

3.80 (0.1%)

ActionServlet.java

org.apache.struts.digester

Digester.getParser()

3.07 (0.1%)

Digester.java

Version 2.0

69 -69.1.5

28

ITA Release 3.0
Build & Test Report

Package Name Average Source
Method Time

org.apache.struts.action

ActionServlet.initDataSources()

2.93 (0.0%)

ActionServlet.java

org.apache.struts.digester

Digester.addCallMethod(String, String, int)

2.85 (0.0%)

Digester.java

org.apache.struts.util

ConvertUtils.<clinit>()

2.81(0.0%)

ConvertUrtils.java

org.apache.struts.taglib.html

SubmitTag.<clinit>()

2.36 (0.0%)

SubmitTag.java

org.apache.struts.digester

Digester.addSetTop(String, String)

1.61 (0.0%)

Digester.java

org.apache.struts.taglib.html

LinkTag.<clinit>()

1.55 (0.0%)

LinkTag.java

The above result shows that the ActionServlet initialization methods take the longest time to execute on average. This will not

interfere with the overall performance of the Web Conversation framework as the ActionServlet initialization is performed only once

on startup of the Application Server.

1.6.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls.

Package

Name

Average
Cumulative
Time

Source

org.apache.struts.action

ActionServlet.init()

189.90 (3.1%)

ActionServlet.java

org.apache.struts.action

ActionServlet.initMapping()

163.34 (2.7%)

ActionServlet.java

org.apache.struts.digester

Digester.parse(InputStream)

49.40 (0.8%)

Digester.java

org.apache.struts.action

ActionServlet.initDigester(int)

30.60 (0.5%)

ActionServlet.java

org.apache.struts.webapp.example

DatabaseServlet.init()

21.92 (0.4%)

DatabaseServlet.java

org.apache.struts.webapp.example

DatabaseServlet.load()

21.29 (0.3%)

DatabaseServlet.java

org.apache.struts.action

ActionServlet.<init>()

10.37 (0.2%)

ActionServlet.java

org.apache.struts.action

ActionServlet.initinternal()

8.45 (0.1%)

ActionServlet.java

org.apache.struts.action

ActionServlet.initServlet()

6.74 (0.1%)

ActionServlet.java

org.apache.struts.action

ActionServlet.initApplication()

6.64 (0.1%)

ActionServlet.java

Version 2.0

69 -69.1.5

29

ITA Release 3.0
Build & Test Report

Again, the ActionServlet initialization methods, together with their descendants, took the longest time to execute on average. These
results will not impact the system performance once the ActionServlet has been started.

1.6.2.8 Average Method Obiject

Measures Method Object Count divided by Number of Calls. Identifies the highest number of objects created for the least number of

calls.

Package Name Avg. Method Source
Object

org.apache.struts.action ActionServlet.initDigester(int) 56 (0.1%) | ActionServlet.java
org.apache.struts.action ActionServlet.<init>() 44 (0.1%) | ActionServlet.java
org.apache.struts.action ActionServlet.initServlet() 20 (0.1%) | ActionServlet.java
org.apache.struts.util ConvertUtils.<clinit>() 17 (0.0%) | ConvertUtils.java
org.apache.struts.action ActionServlet.initMapping() 16 (0.0%) | ActionServlet.java
org.apache.struts.webapp.example | DatabaseServlet.load() 15 (0.0%) | DatabaseServlet.java
org.apache.struts.action ActionServlet.initApplication() 12 (0.0%) | ActionServlet.java
org.apache.struts.action ActionServlet.initOther() 12 (0.0%) | ActionServlet.java
org.apache.struts.action ActionServlet.initUpload() 8 (0.0%) | ActionServlet.java
org.apache.struts.digester Digester.resolveEntity(String, String) 7 (0.0%) | Digester.java

The ActionServlet initialization methods all created the most objects for only one call to that ActionServlet method. These findings
will not affect the overall performance of the Web Conversation framework as it only creates these objects on initialization of the

ActionServlet when the Application Server or Web Application is first started.

Version 2.0

69 -69.1.5

30

ITA Release 3.0
Build & Test Report

1.6.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls.

Package

Name

Average
Method
Object

Source

org.apache.struts.action

ActionServlet.init()

809 (2.0%)

ActionServlet.java

org.apache.struts.action

ActionServlet.initMapping()

676 (1.7%)

ActionServlet.java

org.apache.struts.digester

Digester.parse(InputStream)

208 (0.5%)

Digester.java

org.apache.struts.webapp.example

DatabaseServlet.init()

112 (0.3%)

DatabaseServlet.java

org.apache.struts.webapp.example

DatabaseServlet.load()

106 (0.3%)

DatabaseServlet.java

org.apache.struts.action

ActionServlet.initDigester(int)

105 (0.3%)

ActionServlet.java

HttpServletResponse)

org.apache.struts.action ActionServlet.initApplication() 55 (0.1%) | ActionServlet.java
org.apache.struts.action ActionServlet.<init>() 52 (0.1%) | ActionServlet.java
org.apache.struts.action ActionServlet.initServlet() 45 (0.1%) | ActionServlet.java
org.apache.struts.action ActionServlet.doPost(HttpServiletRequest, 30 (0.1%) | ActionServlet.java

Again, the ActionServlet initialization methods created the greatest number of cumulative objects per number of calls. These objects

will not affect the overall performance of the Web Conversation framework.

Version 2.0

69 -69.1.5

31

ITA Release 3.0
Build & Test Report

1.6.3 Test Conclusions

From analyzing the results of the performance analysis of the example application packaged
with the Struts distribution, it is concluded that the Web Conversation framework does not
produce any loitering objects. Developers will need to keep in mind that Action objects are
loaded into a Hash Map that stays in memory once an ActionMapping has used it. Only one
object is created for each action and it is reusable. These objects still remain in reachable
memory during the life of the Web Application. This could impact the performance of the
system if numerous Action objects are defined for that application. Developers will also have
to be cautious about the use of Message Resources as those consume the most memory while
utilizing this framework.

Version 2.0 69 -69.1.5 33

ITA Release 3.0
Build & Test Report

1.7 Appendix A

1.7.1 JProbe Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
<program type="application">

<application
args=
working_dir=""
source_dir=""
classname="">
<classpath/>

</application>

<applet

working_dir=
source_dir=""
htmlfile=""
main_package="">
<classpath>
<classpath.path location="%CLASSPATH%"/>

</classpath>

</applet>

<serverside
suggested_filters=""
id="Other server"
server_dir="/opt/stg35/WebSphere/AppServer"
prepend_to_vm_args=""
source_dir=""
classname="com.ibm.ejs.sm.util.process.Nanny"
main_package="org.apache.struts"
exclude_server_classes="true"

working_dir="/opt/stg35/WebSphere/AppServer/serviets"

prepend_to_classpath="">
<classpath>
<classpath.path location="%CLASSPATH%"/>
<[classpath>
</serverside>
</program>
<vm
snapshot_dir="/opt/util/JProbe/snapshots"
location="/opt/util/jdk1.2.2/bin/java"
type="java2"
use_jit="true"/>
<viewer
socket="170.248.222.74:4444"
type="remote"/>
<analysis type="profile">
<performance
record_from_start="true"
timing="elapsed"
track_natives="true"
final_snapshot="true"
granularity="method">

Version 2.0 69 - 69.1.5

35

ITA Release 3.0
Build & Test Report

<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="*"
time="ignore"
granularity="method"/>
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="org.apache.struts.*"
time="track"
granularity="method"/>
</performance>
<heap
record_from_start="true"
no_stack_trace_limit="false"
final_snapshot="true"
max_stack_trace="4"
track_dead_objects="true"/>
<threadalyzer
record_from_start="true"
write_to_console="false">
<deadlock_detection
enabled="true"
deadlock_and_exit="true"
report_stalls="false"
track_system_threads="false"
block_can_stall="false"
deadlock_threshold="2"/>
<deadlock_prediction
enable_hold_and_wait="false"
enable_lock_order="false"
lock_order_maintains_covers="true"/>
<data_race
ignore_volatile="false"
enable_happens_before="false
no_stack_trace_limit="false"
enable_lock_covers="false"
max_stack_trace="1"
instrument_elements="false"/>
<visualizer
enabled="true"
visualization_level="1"/>
<threadalyzer filter
visibility="invisible"
enabled="true"
classmask="*"/>
<threadalyzer filter
visibility="visible"
enabled="true"
classmask=".*"/>

</threadalyzer>

<coverage
record_from_start="true"
final_snapshot="true"
granularity="line">

Version 2.0 69 -69.1.5 36

ITA Release 3.0
Build & Test Report

<coverage filter
visibility="invisible"
methodmask="*"
enabled="true"
classmask="*"/>

<coverage.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask=".*"/>

</coverage>
</analysis>
</jpl>

1.7.2 struts-config.xml

<?xml version="1.0" encoding="ISO-8859-1" ?>

<IDOCTYPE struts-config SYSTEM
"lwwwy/stg/jprobe/servlets/struts -config_1_0.dtd">

<I--
This is the Struts configuration file for the example application,
using the proposed new syntax.

NOTE: You would only flesh out the details in the "form-bean”
declarations if you had a generator tool that used them to create
the corresponding Java classes for you. Otherwise, you would
need only the "form-bean" element itself, with the corresponding
"name" and "type" attributes.

<struts -config>

<l-- ========== Form Bean Definitions

<form-beans>

<l-- Logon form bean -->
<form-bean name="logonForm"
type="org.apache.struts.webapp.example.LogonForm"/>

<l-- Registration form bean -->
<form-bean name="registrationForm"
type="org.apache.struts.webapp.example.RegistrationForm"/>

<!-- Subscription form bean -->
<form-bean name="subscriptionForm"
type="org.apache.struts.webapp.example.SubscriptionForm"/>

</form-beans>

<l-- ========== Global Forward Definitions

<§Iobal-f0rwards>
<forward name="logoff" path="/logoff.do"/>
<forward name="logon" path="/logon.jsp"/>

>

>

Version 2.0 69 - 69.1.5

37

ITA Release 3.0
Build & Test Report

<forward name="success" path="/mainMenu.jsp"/>
</global-forwards>

<l-- ========== Action Mapping Definitions -->
<action-mappings>

<l-- Edit user registration -->

<action path="/editRegistration”
type="org.apache.struts.webapp.example.EditRegistrationAction"
name="registrationForm"
scope="request"

validate="false">
<forward name="success" path="/registration.jsp"/>
</action>

<l-- Edit mail subscription -->
<action path="/editSubscription"
type="org.apache.struts.webapp.example.EditSubscriptionAction"
name="subscriptionForm"
scope="request"
validate="false">

<forward name="failure" path="/mainMenu.jsp"/>
<forward name="success" path="/subscription.jsp"/>
</action>

<!-- Process a user logoff -->
<action path="/logoff"
type="org.apache.struts.webapp.example.LogoffAction">
<forward name="success" path="/index.jsp"/>
</action>

<l-- Process a user logon -->

<action path="/logon"
type="org.apache.struts.webapp.example.LogonAction"
name="logonForm"
scope="request"
input="/logon.jsp">

</action>

<l-- Save user registration -->

<action path="/saveRegistration"
type="org.apache.struts.webapp.example.SaveRegistrationAction"
name="registrationForm"
scope="request"
input="/registration.jsp"/>

<l-- Save mail subscription -->

<action path="/saveSubscription"
type="org.apache.struts.webapp.example.SaveSubscriptionAction"
name="subscriptionForm"
scope="request"
input="/subscription.jsp">

<forward name="success" path="/editRegistration.do?action=Edit"/>
</action>

<l-- Display the "walking tour" documentation -->

Version 2.0 69 -69.1.5 38

ITA Release 3.0
Build & Test Report

<action path="/tour"
forward="/tour.htm">
</action>

<l-- The standard administrative actions available with Struts -->
<l-- These would be either omitted or protected by security -->
<l--in a real application deployment -->
<action path="/admin/addFormBean"
type="org.apache.struts.actions.AddFormBeanAction"/>
<action path="/admin/addForward"
type="org.apache.struts.actions.AddForwardAction"/>
<action path="/admin/addMapping"
type="org.apache.struts.actions.AddMappingAction"/>
<action path="/admin/reload"
type="org.apache.struts.actions.ReloadAction"/>
<action path="/admin/removeFormBean"
type="org.apache.struts.actions.RemoveFormBeanAction"/>
<action path="/admin/removeForward"
type="org.apache.struts.actions.RemoveForwardAction"/>
<action path="/admin/removeMapping"
type="org.apache.struts.actions.RemoveMappingAction"/>

</action-mappings>

</struts-config>

Version 2.0 69 - 69.1.5

39

ITA Release 3.0
Build & Test Report

1.8 Resources

Struts Homepage
- http://jakarta.apache.org/struts

Struts Documentation - Apache Struts Framework (Version 1.0)
- http://jakarta.apache.org/struts/api-1.0/index.html

Struts, an open-source MVC implementation
- http://www-106.ibm.com/developerworks/ibm/library/j-struts/

Strut Your Stuff with JSP Tags: Use and extend the open source Struts JSP tag library
- http://www.javaworld.com/javaworld/jw-12-2000/jw-1201-struts.html

Introduction to Jakarta Struts Framework — Parts 1 —3

- http://www.onjava.com/Ipt/a//onjava/2001/09/11/isp servlets.html
- http://www.onjava.com/pub/a/onjava/2001/10/31/struts2.html

- http://www.onjava.com/pub/a/onjava/Z2001/11/14/jsp servlets.html

Building a Web Application: Strut by Strut
- http://husted.com/about/scaffolding/strutByStrut.htm

Java Developer’s Journal
- http://www.sys-con.com/java/article.cfm?id=1175

Lennart Jorelid. J2EE FrontEnd Technologies: A Programmer’s Guide to Servlets,
JavaServer Pages, and Enterprise JavaBeans. New York. Apress, 2002.

Version 2.0 69 -69.1.5 40

ITARelease 3.0
Build & Test Report

2 RCS —-FTP Framework

2.1 Purpose

The RCS FTP Framework Build & Test Report documents testing configuration, unit
testing and performance profiling of Integrated Technical Architecture (ITA) Reusable
Common Services (RCS) FTP Framework. The report provides readers with detailed
information on ITA’s testing approach, testing conditions for unit testing and analysis
on performance profiling. The intended audience is developers and testers who have
interests in test conditions and profile of the framework. For applying the framework,
please refer to RCS FTP Framework User Guide.

2.2 Approach

The FTP Framework first went through unit testing to ensure proper functioning in both
API and web application aspects. The framework was then profiled to show its memory
usage and performance.

2.2.1 Unit Testing

Unit testing of the framework was done in two separate approaches since the framework
can be applied in two different ways. The unit testing of the API was done in an
automated fashion using JUnit automated testing tool. As for the web interface, the
framework was tested manually.

2.2.2 Performance Profiling

FTP Framework was performance profiled using JProbe. The profile captures heap
utilization and application efficiency. By profiling, loitering objects that cause memory
leak can be identified and performance bottleneck can be located. Profiling also offers
an overall look of an application and provides developer with performance matrixes as
references in his or hers development work.

2.3 Background

In the past, FSA applications had looked into a file transfer solution for batched files to
be transferred between systems. The need for an enterprise wide FTP service became
apparent during ITA Release 2 Strategic Assessment. The ITA responded to the need
and came up with a Java based FTP solution that can be run in a WebSphere application
Server (WAS) environment.

The FTP Framework provides developers with an APl and a generic graphical user
interface. Developers can use FtpClient as the interface to the framework and custom
build a FTP client. The graphical user interface provides a working example of using

Version 2.0 69 -69.1.5 41

ITARelease 3.0
Build & Test Report

RCS Web Conversation Framework for building JSP and Servlets that uses FtpClient as
the back end.

In particular the FTP Framework offers the following features:

API for building customized FTP client.

JSP and Servlet based front-end graphical user interface.
Secure Socket Layer data transfer option.

Active and passive data transfer modes.

2.4 Unit Testing

24.1 Summary

Unit testing was done in both automated and manual fashions during the test session.
Both automated and manual tests went through with pass status.

2.4.2 Test Harness Design Jawdevicony
2421 Environment

For automated unit testing, the code — lio
was tested on local development
machine. The main reason for this

setup was for testing SSL connection.] web
For SSL connection, SSL capable FTP
server needs to be installed. The L

ftp

current FSA development servers do
not have this type of FTP server
available for development and
testing purposes. The development
environment is shared across FSA L
application development teams.

Installing a SSL FTP server on the

shared environment might affect L
other teams negatively. Further

more, software installation needs to L

— servlets

gov

ed

be reviewed by CSC and the testing
schedule could not afford the lengthy fsa

SSL FTP server software “Surge FTP”
was installed on the local

process. Thus, A demo version of the L

ita

development machine and used
during the automated testing.

ftp

Version 2.0 69 -69.1.5 42

ITARelease 3.0
Build & Test Report

FTP Framework application was placed under /www/dev/conv/ directory on su35e5
development application server. The file structure is shown on the right. Two major
branches were setup for housing JSP and Servlets. Under ./web/ftp directory, all the
front end user interface JSP pages were kept. As for FTP Framework classes, they were
served out of the ./servlets/gov/ed/fsa/ita/ftp directory. RCS Web Conversation
Framework configuration file, struts-config.xml was placed in the ../web/WEB-INF
directory. The application properties files were in the ./servlets directory.

Version 2.0 69 -69.1.5 43

ITARelease 3.0
Build & Test Report

2.4.3 Configuration
2431 struts-config.xml

The FTP Framework uses RCS Web Conversation Framework for its front end user
interface. Web Conversation Framew ork uses a configuration file that serves as the
switchboard for the application and directs HTTP request and response traffic
accordingly. The configuration file is shown below:

<?xml version="1.0" encoding="1SO-8859-1" 7>

<IDOCTYPE struts-config SYSTEM
"/www/stg/jprobe/serviets/struts-config_1 0.dtd">

<struts-config>

<l-- ========== Form Bean Definitions ->
<form-beans>

<!- FTP Connection Form Bean ->
<form -bean name="connForm" type="gov.ed.fsa.ita.ftp.FTPConnectForm"/>

<!- FTP File Transfer Form Bean -->
<form -bean name="fileForm" type="gov.ed.fsa.ita.ftp.FTPMoveFileForm"/>

</form -beans>

<l-- ========== Global Forward Definitions -->
<global-forwards>

</global-forwards>

<l-- ========== Action Mapping Definitions ->
<action-mappings>

<!-FTP -->
<action
path="/login"

type="gov.ed.fsa.ita.ftp.FTPConnectAction"
name="connForm"
validate="true"
input="/ftp/FTPConnection.jsp">
<forward name="moveFiles" path="/ftp/FTPMoveFile.jsp"/>
<forward name="fail" path="/ftp/fail.jsp"/>
</action>

<action

path="/move"
type="gov.ed.fsa.ita.ftp.FTPMoveFileAction"
name="fileForm"
validate="true"
input="/ftp/FTPMoveFile.jsp">

<forward name="fail" path="/ftp/fail.jsp"/>

<forward name="movePage" path="/ftp/FTPMoveFile.jsp"/>

Version 2.0 69 -69.1.5 44

ITARelease 3.0
Build & Test Report

<forward name="quitPage" path="/ftp/quit.jsp"/>
</action>

</action-mappings>

</struts-config>

2.4.3.2 properties files

Two properties files were used in the FTP Framework. Resource.properties file was for
RCS Web Conversation Framework error messages and errorMessages.properties was
for RCS Exception Handling Framework error messages. RCS Exception Handling
Framework was used in Servlets for error catching purpose.

Resource.properties

error.hostname.required=Host name is required
error.username.required=User name is required
error.password.required=Password is required
error.clientChangeDir.null=Directory location is required
error.client.notDir=Selection was not a valid Directory
error.serverChangeDir.null=Directory location is required
error.server.netDir=Selection was not a valid Directory
error.get.file.notSelected=Please select a server side file
error.put.file.notSelected=Please select a client side file

errorMessages.properties

RCS Exception Handling Messages
This file contains mapping information from error codes to error messages

#1000-1100 Errors in the FTP Framework:
msg1001=Could not find host

msg1002=Could not create socket

msg1003=Could not create server socket
msg1004=Could not create input/output streams
msg1005=Could not set socket timeout
msg1006=Unexpected response from FTP server read
msg1007=Could not read response from input stream
msg1008=Could not close streams

msg1009=Could not close socket

2433 Test Scenario

Two test scenarios were used for both automated and manual testing. Automated
testing was done in JUnit unit testing tool. In the automated scenario, a user establishes
connections in the combination of Active/Passive transfer modes and SSL/NonSSL
connect modes. By doing this test, the proper functioning of the FTP client can be
assured. The manual testing had a different goal. Besides running through a typical
FTP session, the scenario also tries to test the application’s exception handling ability.
The automated testing script is provided below:

Version 2.0 69 -69.1.5 45

ITARelease 3.0
Build & Test Report

package gov.ed.fsa.ita.ftp;

/**

* <p>Title: RCS FTP Framework</p>

* <p>Description: </p>

* <p>Copyright: Copyright (c) 2002</p>
* <p>Company: Accenture</p>

* @author Chi-Yen Yang

* @version 1.0

*/

import junit.framework.*;
import gov.ed.sfa.ita.exception.*;

public class TestFtpClient extends TestCase {

public TestFtpClient(String name)
{
super(name);

}

public static Test suite() {
TestSuite suite = new TestSuite();

suite.addTest(new TestFtpClient("testNonSecureActiveFtpClient™));
suite.addTest(new TestFtpClient("testNonSecurePassiveFtpClient"));
suite.addTest(new TestFtpClient(“testSecureActiveFtpClient™));
suite.addTest(new TestFtpClient("testSecurePassiveFtpClient™));

return suite;

}

public void testNonSecureActiveFtpClient() {
try {

FtpClient client = new FtpClient("170.248.222.113", 21, "active", false);
client.login(“chi-yen_yang", "123456");
String currentPath = client.pwd();
client.changeDirectory("/temp");
String[] list = client.dir("/temp");
client.setTransferMode("ASCII");
client.getFile("test.log", "/home/Chi-Yen_Yang/");
client.setTransferMode("BIN");
client.putFile("test mdb", "/temp/");
client.quit();

catch (SFAException ex) {
Assert.fail(ex.getAddlInfo());
}
}

public void testNonSecurePassiveFtpClient() {
try {

FtpClient client = new FtpClient("170.248.222.113", 21, "passive", false);
client.login(“chi-yen_yang", "123456");
String currentPath = client.pwd();
client.changeDirectory("/temp");
String[] list = client.dir("/temp");
client.setTransferMode("ASCII");

Version 2.0 69 -69.1.5

46

ITA Release 3.0
Build & Test Report

client.getFile("test.log", "/");
client.setTransferMode("BIN");

client.putFile("testmdb", "/temp/");
client.quit();

}
catch (SFAException ex) {
Assert.fail(ex.getAddlInfo());
}
}

public void testSecureActiveFtpClient() {
try {

FtpClient client = new FtpClient("170.248.222.113", 990, "active", true);
client.login(“chi-yen_yang", "123456");
String currentPath = client.pwd();
client.changeDirectory("/temp");
String[] list = client.dir("/temp");
client.setTrarsferMode("ASCII");
client.getFile("test.log", "/");
client.setTransferMode("BIN");
client.putFile("testmdb", "/temp/");
client.quit();

}
catch (SFAException ex) {
Assert.fail(ex.getAddlInfo());
}
}

public void testSecurePassiveFtpClient() {
try {

FtpClient client = new FtpClient("170.248.222.113", 990, "passive", true);
client.login(“chi-yen_yang", "123456");
String currentPath = client.pwd();
client.changeDirectory("/temp");
String[] list = client.dir("/temp");
client.setTransferMode("ASCII");
client.getFile("test.log", "/");
client.setTransferMode("BIN");
client.putFile("test mdb", "/temp/");
client.quit();

}
catch (SFAException ex) {
Assert.fail(ex.getAddlInfo());
}
}
}

Version 2.0 69 -69.1.5 47

ITARelease 3.0
Build & Test Report

2.4.4 Automated Testing Conditions

Condition Detalled Test Class Name [Test Class Method | Class Name Method Name Results [Data File Name
Number Condition
1 The ftp client logs| TestFtpClient | TestNonSecureActiveF| FtpClient FtpClient() Get test.log Test.log
user in and tpClient() Login() and put Test.mdb
navigates into Pwd() test. ndb
appropriate ChangeDirectory() files.
directory for Dir()
downloading and SetTransferMode()
uploading test GetFile()
filesin Active PutFile()
mode and non- Quit()
secure channel.
2 The ftp client logs| TestFtpClient | TestNonSecurePassive| FtpClient FtpClient() Get test.log Test.log
user in and FtpClient() Login() and put Test.mdb
navigates into Pwd() test mdb
appropriate ChangeDirectory() files.
directory for Dir()
downloading and SetTransferMode()
uploading test GetFile()
files in Passive PutFile()
mode and non- Quit()
secure channel.
3 The ftp client logs| TestFtpClient | TestSecureActiveFtpCl| FtpClient FtpClient() Get test.log Test.log
user in and ient() Login() and put Test.mdb
navigates into Pwd() test mdb
appropriate ChangeDirectory() files.
directory for Dir()
downloading and SetTransferMode()
uploading test GetFile()
filesin Active PutFile()
mode and secure Quit()
channel.
4 The ftp client logs| TestFtpClient |[TestSecurePassiveFtpC| FtpClient FtpClient() Get test.log Test.log
user in and lient() Login() and put Test.mdb
navigates into Pwd() test. mdb
appropriate ChangeDirectory() files.
directory for Dir()
downloading and SetTransferMode()
uploading test GetFile()
files in Passive PutFile()
mode and secure Quit()
channel.
2.4.5 Manual Testing Conditions
2451 Cycle 1 -Normal
Component |FTP Version # 1
Name Framework
Prepared by [Chi-Yen Yang |Date Prepared 12-Jul-02
Tested by Chi-Yen Yang [Date Tested 12-Jul-02
Reviewed by Date Reviewed
Version 2.0 69 -69.1.5 48

ITARelease 3.0
Build & Test Report

Step Number Detailed Class Name |Method Name| JSP Name Expected
Condition Results
1 Go to URL: FTPConnectForm reset(ActionMapping|FTPConnection.jsp |Form clears.
http://dev.conv.sfa.e| , HttpServletRequest)
d.gov:8531/CONVW validate(ActionMapp
ebApp/ftp/FTPCon ing,
nection.jsp HttpServletRequest)
Enter the following
information in form:
Host Name:
4.20.14.132
User Name: chyang
Password: *rkiix
Press 'Reset’
2 Enter the following |FTPConnectForm validate(ActionMapp [FTPConnection.jsp [User logs in and
information in form: [FTPConnectAction |ing, returned with
Host Name: HttpServletRequest) FTPMoveFiles.jsp
4.20.14.132 page.
User Name: chyang perform(ActionMapp Client directory
Password: *r¥kkex ing, ActionForm, should show: 7/ and
HttpServletRequest, list of files and
Press 'Create HttpServietResponse directories under this|
Connection') path.
Server directory
should show:
/opt/home/chyang
and list of files and
directories under this
path.
3 Click Change Client [FTPMoveFilesForm [reset(ActionMapping|FTPMoveFiles.jsp Form clears.
Directory radio , HttpServletRequest)
button. validate(ActionMapp
Type ing,
/opt/home/chyang HttpServletRequest)
/clientTest in
crosponding text
field.
Press 'Reset’
4 Click Change Client |FTPMoveFilesForm |validate(ActionMapp [FTPMoveFiles.jsp Client Directory
Directory radio FTPMoveFilesAction [ing, changes to
button. HttpServietRequest) /opt/home/chyang
Type /clientTestand
/opt/home/chyang perform(ActionMapp selection box shows
/clientTest in ing, ActionForm, test.log.
crosponding text HttpServletRequest,
field. HttpServletResponse
)
Press Just do it'
Version 2.0 69 -69.1.5 49

ATUDENT LD

ITARelease 3.0
Build & Test Report

5 Click Change Server |FTPMoveFilesForm |validate(ActionMapp [FTPMoveFiles.jsp Server Directory
Directory radio FTPMoveFilesAction |ing, changes to
button. HttpServletRequest) /opt/home/chyang
Type /serverTest and
/opt/home/chyang perform(ActionMapp selection box shows
/serverTestin ing, ActionForm, test.log.
crosponding text HttpServletRequest,
field. HttpServletResponse
)
Press "Just do it'
6 Click Get File radio |FTPMoveFilesForm |validate(ActionMapp [FTPMoveFiles.jsp FTPMoveFiles.jsp
button. FTPMoveFilesAction [ing, refreshes with
Click BIN mode HttpServletRequest) test.doc showing on
radio button. both selection boxes.
Select test.doc from perform(ActionMapp
server selection box. ing, ActionForm,
HttpServletRequest,
Press Just do it' HttpServletResponse
7 Click Put File radio |FTPMoveFilesForm |validate(ActionMapp [FTPMoveFiles.jsp FTPMoveFiles.jsp
button. FTPMoveFilesAction [ing, refreshes with
Click ASCII mode HttpServletRequest) test.doc showing on
radio button. both selection boxes.
Select test.log from perform(ActionMapp
server selection box. ing, ActionForm,
HttpServletRequest,
Press ‘Just do it' HttpServietResponse
8 Click Quit radio FTPMoveFilesForm |validate(ActionMapp |FTPMoveFiles.jsp quit.jsp appears.
button. FTPMoveFilesAction [ing,
HttpServletRequest)
Press Just do it'
perform(ActionMapp
ing, ActionForm,
HttpServletRequest,
HttpServietResponse
)
Version 2.0 69 - 69.1.5 50

ITARelease 3.0
Build & Test Report

2452 Cycle 2 — Connection Exception
Component Name |FTP Framework [Version # 1
Prepared by Chi-Yen Yang Date Prepared 12-Jul-02
Tested by Chi-Yen Yang Date Tested 12-Jul-02
Reviewed by Date Reviewed
Step Number Detailed Class Name Method Name JSP Name Expected Results
Condition
1 Go to URL: FTPConnectForm (validate(ActionMa |FTPConnection.jsp |error messages
http://dev.conv.sf pping, appear next to
a.ed.gov:8531/CO HttpServletReques each text field.
NVWebApp/ftp/ 1) Prompting users to
FTPConnection.jsp enter required
information.
Enter the following
information in
form:
Host Name:
User Name:
Password:
Press 'Connect'
2 Hit Back button. [FTPConnectForm |validate(ActionMa |[FTPConnection.jsp |error.jsp appears
pping, and shows
Enter the following HttpServletReques unknown host
information in 1) exception.
form:
Host Name: perform(ActionMa
abcdefg pping,
User Name: ActionForm,
chyang HttpServletReques
Password: ****xrxx t,
HttpServletRespon
Press 'Connect’ se)
3 Hit Back button. [FTPConnectForm |reset(ActionMappi |[FTPConnection.jsp |error.jsp appears
ng, and shows User
Enter the following HttpServletReques not Log In messge.
information in 1)
form: validate(ActionMa
Host Name: pping,
4.20.14.132 HttpServletReques
User Name: adf 1)
Password: **xxkxrx
Version 2.0 69 - 69.1.5 51

ITARelease 3.0
Build & Test Report

Press 'Connect’

4 Hit Back button. [FTPConnectForm |reset(ActionMappi |[FTPConnection.jsp |error.jsp appears
ng, and shows User
Enter the following HttpServletReques not Log In messge.
information in 1)
form: validate(ActionMa
Host Name: pping,
4.20.14.132 HttpServletReques
User Name: 1)
chyang
Password: *
Press 'Connect’
2453 Cycle 3 — Transfer Exception
Component
Name FTP Framework [Version # 1
Prepared by Chi-Yen Yang Date Prepared 12-Jul-02
Tested by Chi-Yen Yang Date Tested 12-Jul-02
Reviewed by Date Reviewed
Step Number Detailed Class Name Method Name JSP Name Expected Results
Condition
1 Enter the FTPConnectForm (validate(ActionM |FTPConnection.js |User logs in and
following FTPConnectActio [apping, p returned with
information in n HttpServletReque FTPMoveFiles.jsp
form: st) page.
Host Name: Client directory
4.20.14.132 perform(ActionM should show: /
User Name: apping, and list of files
chyang ActionForm, and directories
Password: **x*¥xxx HttpServletReque under this path.
st, Server directory
Press 'Create HttpServletRespo should show:
Connection’ nse) /opt/home/chya
ng and list of files
and directories
Version 2.0 69 - 69.1.5 52

ITARelease 3.0
Build & Test Report

under this path.

Click Change
Client Directory
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServietReque
st)

perform(ActionM
apping,
ActionForm,
HttpServietReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp

error message
appears indicating
no client directory
path typed in the
text field.

Click Change
Server Directory
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServietReque
st)

perform(ActionM
apping,
ActionForm,
HttpServietReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp

error message
appears indicating
no server
directory path
typed in the text
field.

Click Put File
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServietReque
st)

perform(ActionM
apping,
ActionForm,
HttpServietReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp

error message
appears indicating
no client file
selected.

Version 2.0

69 - 69.1.5

53

ITARelease 3.0
Build & Test Report

Click Gut File
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServietReque
st)

perform(ActionM
apping,
ActionForm,
HttpServietReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp

error message
appears indicating
no server file
selected.

Click Quit radio
button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServietReque
st)

perform(ActionM
apping,
ActionForm,
HttpServietReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp

quit.jsp appears.

Version 2.0

69 - 69.1.5

54

ITARelease 3.0
Build & Test Report

2.5 Performance Profiling

2.5.1 Summary

Performance profiling on RCS FTP Framework was done on JProbe profiling tool. Two
sets of statistics were taken, memory (heap) usage and application performance.
Analysis was done on these two sets of data; both heap analysis and performance
analysis are shown below.

During the heap analysis, one object was found loitering in the heap. One instance of
FtpControlSocket was not garbage collected at the end of the profiling session. Code
changes were applied and the problem was fiexed. Application performance did not
pose to be an issue. FtpClient.putFile() did appear to be high on execution time,
however, it was due to the file transfer time instead of actual execution time. A table of
the top ten method time is provided for developer to reference back when including the
framework in his or hers application.

2.5.2 Test Harness Design
2521 Environment

Iwwwistg/jprobe

The performance profiling was done in — ib
an isolated environment on su35e5
application server. By running only
one application in the environment, it
can be made sure that the statistics L
captured are from the application.

ftp

In the performance profiling

environment, the FTP Framework L1 serviets
application was placed under
/wwwy/stg/jprobe/ directory on L

su35e5 application server. The file
structure is shown on the right. Two

major branches were setup for housing L
JSP and Servlets. Under ./web/ftp

directory, all the front end JSP pages L
were kept. As for FTP Framework

ed

fsa

Java classes, they were served out of
the ./servlets/gov/ed/fsa/ita/ftp L
directory. RCS Web Conversation ita

Framework configuration file, struts-
config.xml was placed in the
../web/WEB-INF directory. The

ftp

Version 2.0 69 -69.1.5 55

ITA Release 3.0
Build & Test Report

application properties files were in the ./servlets directory. Required jar files such as
jsse.jar, jnet.jar and jcert.jar were in the ./lib directory.

Version 2.0 69 -69.1.5 56

ITARelease 3.0
Build & Test Report

25.2.2 Configuration

Configuration setting for FTP Framework was the same as it was in unit testing. As for
JProbe, it uses its own configuration file, “.jpl” file. The .jpl file lets JProbe know what
type of statistics to collect and what Java classes to monitor specifically. The following
Jpl file was used for the profiling session:

<?xml version="1.0" encoding="UTF-8" 7>
<IDOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
<program type="application">
<application

working_dir=
source_dir=""
classname="">
<classpath/>

</application>

<applet
working_dir=""
source_dir=""
htmifile=""
main_package="">
<classpath>

<classpath.path location="%CLASSPATH%"/>

</classpath>

</applet>

<serverside
suggested_filters=""
id="Other server"
server_dir="/opt/stg35/WebSphere/AppServer"
prepend_to_vm_args=""
source_dir=""
classname="com.ibm.ejs.sm.util.process.Nanny"
main_package="gov.ed.fsa.ita.ftp"
exclude_server_classes="true"
args=""
working_dir="/opt/stg35/WebSphere/AppServer/servlets"
prepend_to_classpath="">
<classpath>

<classpath. path location="%CLASSPATH%"/>

</classpath>

</serverside>

</program>
<vm
snapshot_dir="/opt/util/JProbe/snapshots"
location="/opt/util/jdk1.2.2/bin/java"

args=
type="java2"
use_jit="true"/>
<viewer

socket="170.248.222.113:4444"
type="remote"/>
<analysis type="profile">
<performance
record_from_start="true"

Version 2.0 69 -69.1.5 57

ITA Release 3.0
Build & Test Report

timing="elapsed"
track_natives="true"
final_snapshot="true"
granularity="method">
<performance.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="*"
time="ignore"
granularity="method"/>
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="gov.ed.fsa.ita.ftp.*"
time="track"
granularity="method"/>
</performance>
<heap
record_from_start="true"
no_stack_trace_limit="false"
final_snapshot="true"
max_stack_trace="4"
track_dead_objects="true"/>
<threadalyzer
record_from_start="true"
write_to_console="false">
<deadlock_detection
enabled="true"
deadlock_and_exit="true"
report_stalls="false"
track_system_threads="false"
block_can_stall="false"
deadlock_threshold="2"/>
<deadlock_prediction
enable_hold_and_wait="false"
enable_lock_order="false"
lock_order_maintains_covers="true"/>
<data_race
ignore_volatile="false"
enable_happens_before="false"
no_stack_trace_limit="false"
enable_lock_covers="false"
max_stack_trace="1"
instrument_elements="false"/>
<visualizer
enabled="true"
visualization_level="1"/>
<threadalyzer filter
visibility="invisible"
enabled="true"
classmask="*"/>
<threadalyzer filter
visibility="visible"
enabled="true"
classmask="*"/>
</threadalyzer>
<coverage

Version 2.0 69 -69.1.5

58

ITARelease 3.0
Build & Test Report

record_from_start="true"
final_snapshot="true"
granularity="line">
<coverage filter
visibility="invisible"
methodmask="*"
enabled="true"
classmask="*"/>
<coverage.filter
visibility="visible"

</coverage>
</analysis>
</jpl>

To run FTP Framework in JProbe’s JVM, several configuration changes were made on
the application server.
Under application command line arguments:
0 Added —p_input=/opt/util/JProbe/jpl_files/07152002_test_ftp.jpl
0 Added -Djava.compiler=NONE
Under Environment:
0 Added EXECUTABLE=/opt/util/JProbe/profiler/jprun
0 EXECUTE=YES

2523 Scenario setup

To profile the FTP Framework, LoadRunner was used to simulate real users stepping
through the application. In the profiling scenario, the user logged onto a ftp server,
navigated to the desired location and uploaded/downloaded files in both ASCII and
BIN modes. The same process was repeated for 20 times. By running the same process
multiple times, better statistics could be collected.

2.5.3 Heap Analysis

The heap snapshot can be used to visualize how memory is being used in the heap,
obtain information on objects allocated in the heap, and determine if there are any
loitering objects at the end of the test.

Version 2.0 69 -69.1.5 59

ITA Release 3.0
Build & Test Report

®, Runtime Heap Summary: com.ibm.ejs.sm.server.ManagedServer = II:Il‘El

File Edit Program Tools Display Window Help

Refresh: every second v | Show History:| Al ~| MZlx]| el =]

BCE

Memory (KB)
160000

120000 ¢

80000 ¢

40000 ¢

I] i
00:00 01:40 03:20 05:00 06:40 08:20 10:00 11:40
Time

id classes updated (846

The above heap graph shows the memory usage throughout the profiling session. The
pink portion of the graph indicates the maximum allocated memory for the application
server. In this case, the maximum memory allocated for the application server is 128
MB. The blue region shows the memory used within the allocated amount. The green
line is a base for comparison (number of objects remain in the heap) at the end of the
profiling session.

As the graph indicates, three garbage collections were done during the profiling session.
The first garbage collection was manually requested to establish a base line for later
comparison. The second garbage collection was done by the JRE as the application
approached its allocated memory size. The third garbage collection was also requested
manually to identify remaining objects in the memory after the scenario finished its 20
iterations.

2531 Instance Summary

The table below is a section of the Instance Summary. An instance summary shows
objects that are currently in the heap. The Count column displays the number of
instances of an object currently exist in the heap and the Memory column shows the
amount of memory those instances consume.

Version 2.0 69 -69.1.5 60

ITARelease 3.0
Build & Test Report

®, Heap Browser: snapshot_1) ;l.gl.)ﬂ

File Edit Tools Display Window Help

] [w

Classes With Reachable Instances: 1208 Fitter Classes: Ipw_ed_fsa_“a_ﬂp_* E|

Caunt Mermony

Mame Count | Memao

|Change H Zhange ‘
FTRConnectAction 1 [0.0%) +1 4 [0.0%) +4
FTPMoveFileAction 1 [0.0%) +1 4 [0.0%) +4
FTRConnectForm 30 [0.0%) - 1,080 (0.0%) -
FSAFtpClient 30 [0.0%) - 360 [0.0%) -
FSaFtpDataSocket 120 | 0.0%) - 1,440 [0.0%) -
FTPMoveFileFarm 30 [0.0%) - 1,080 (0.0%) -
Class: gov.ed.fsa.ita fip FEAFtpControlSocket
[Instances of Class | By Allocation Point |

Instance D | Size |Creatinn | Refarrers : Instance ID: FSAFtpControlSocket OxES2CEDED

FSAFtpControlSocke 12 1177495 i rH.EfEHEfS rﬁ]éfa’rences rﬁmml
FSAFtpControlSocke 12 11:36:743 | ' I|Field
..I. e ' o /| <raat= Statics FSAFtpClient
LA 4 -

FSAFtpControlSocket

The above matrix was sorted based on the Count Change column. Count Change
column was calculated based on the “base” (green vertical line) at the beginning of the
test scenarios. A positive number in this column means this number of objects is left in
heap after the final garbage collection. A positive number is significant because it is a
good indication, but not “THE” indication, that the associated class creates loitering
objects and causes memory leak.

As one can see, three FTP Framework classes, FTPConnectAction, FTPMoveFileAction
and FtpControlSocket, left one object each in the heap after the third garbage collection.
As shown in RCS Web Conversation Performance Profiling report, *Action classes are
reused through out the life of the application. Thus, it was normal for the framework to
leave one instance of FTPConnectAction and FTPMoveFileAction in its heap. However,
FtpControlSocket was not expected to remain in the heap after the last garbage
collection. This situation could potentially cause memory leak.

From the instance summary, it can be observed that the FtpControlSocket class was
called by FtpClient class. In the FtpClient class, the logout() method is supposed to close

Version 2.0 69 -69.1.5 61

ITA Release 3.0
Build & Test Report

EIDERAL
ATUDENT LD

input/output streams and control socket itself. However, the method does not set
FtpControlSocket to null after the end of the execution. Thus, one class object remains.

Code changes were made to include this new discovery. The graph below shows the
new heap snapshot after 40 iterations. The only classes that remained in the heap were
the two *Action classes.

®, Runtime Heap Summary: com.ibm.ejs.sm.server.ManagedServer = |I:II5!

File Edit Program Tools Display Window Help

Refresh:| every second ¥ | Show Histony:| All v. @@mii@@@iélﬁ@lﬂ

Memory (KB}
160000

120000 1
80000 1
40000 1

I] 4
00:00 01:40 03:20 05:00 06:40 08:20 10:00 11:40

flnstan[:e Summary r;;é"mam
l_ : [- . _
E Filter Classes: Igw.ed.fsa.lta.ftp. E| Visibhle Classes: 2 | 826
Count M ermuory
Fackage © Class Count hemao
! ‘ ‘ Change ‘ 4 Change ‘
Total 2 {(100.0%) +2 & (100.0%) +8
gov.ed.fsa.ita.ftp FTPConnectaction) 1 [50.0%) +l 4 [50.0%) +4
nov.ed fsaitaftp FTPMoveFileAction) 1 [50.0%) +1 4 [50.0%) +
classes updated /845

2.5.4 Performance Analysis

The following tree graph shows a list of methods that were used during the profiling
session. The root of the graph is Javax.servlets.http.HttpServlet.service and from there
on, it is divided into JSP and Servlets services. The graph is color-coded based on
cumulative time. The darker the color, the more time spent in a class or method. Only
the top methods are shown in the graph.

Version 2.0 69 -69.1.5 62

ITA Release 3.0
Build & Test Report

EIDERAL
ATUDENT LD

®, Call Graph: snapshot_1

=10l x|

File Edit Tools Display Window Help

Reset SthT_Dp-:. 20 E

Cumulative Time v | Color By | Cumulative Time ~| Wl == [=EE

FSAFEC latgetFle (3

FSOFRC lkatprif ik

FTRMOUF [k ACton p...
Lo Sl i S Uk Eproc s .. sctasenetprces.. |8
>

FTRCONNECTAzion per...

(4 Htpse ke tse e

EA FSAFRCleatdir (3

/| Mame Calls Cum_ula_ti\te Method Cu:’ﬁ;ati?rg A;:Esz
e il Time Time

Wl FTPMaoveFileAct (ActionMapping, ActionFarm, HitpSendetRequest, HitpSe 120 2,732 { 94.8%) 23 (0.8%) 23 { 0. o

[¥] FTPConnecttction.performifctioniapping, ActionForm, HitpServetReguest, HitpSe { 4 1

[¥] FSAFtpClientdir(String) 60 112 [3.9%) 31 (l.1%) 2 { 0.1%) 1 |

[¥] FSAFtpClientgetFilerSting, String) 30 45 [1.6%) 19 [0.7%) 2 0.1%) 1 |

[¥] HitpdspBase.serice(HitpServletRequest, HitpSerdetResponse) 1a0 70 0.2%) 0 0.0% 0 0.0% 01§

FY

pMisible: 14:8705

As indicated in the graph, most time was spent in the servlets branch. In particular, the
FtpClient.putFile() method took the most execution time. Thus, the path that led to
FtpClient.putFile() was the critical path of this framework. To improve performance, the
critical path should be looked at first.

The graph below shows the references of the put() method. As can be seen, the top
reference to the put() method was the createDataSocket() method with a cumulative
method time of 10 milliseconds. Further more, the total method time for the reference
methods did not add up to the put() method cumulative time. Also, the actual average
execution time for the method was 85 milliseconds. Thus, it can be concluded that the
majority time was spent in file transfer rather than method execution. The conclusion is
reasonable since the file used during the profiling session was a large binary file.

Version 2.0 69 -69.1.5 63

ITA Release 3.0
Build & Test Report

EIDERAL
ATUDENT LD

®, Method Detail: gov.ed.fsa.ita.ftp.FSAFtpClient.putFile{String, String) 3] B |EI|5|
File Edit Tools Window Help

[¥i Show Time (] Show Object Count | 4 | FSAFtpClient putfile(String, String) | 1

‘ Time Details for ParentsiMethodiChildren
calls W Cumulative hethod Cumulative ethod
o Time Time Ohjects Dhjects
E . 30 FTPMoveFileAction. performiActionhe 2 568 (100.0%) 2,541 (100.0%) 362 (100.0%) 216 (100.0%)
8
calls Narme Cumulative Method Cumulative method
Avy Time Time Ohjects Objects
=
% Meth J 30 FSAFtpClientputFiledString, Stringy 2,568 (89.1%) 2,541 (88.2%) 362(15.9%) 216 ¢ 9.2%)
= Cumul
89.1% 1]
calls M Cumulative J hethod Cumulative method
Titne Titne Ohjects Ohjects
E T = e T =) = e S T . T s [
lﬁ Ay e A R T e TP AR e, v R (et i, ¥ FeE W 3 5
5 30 FSAFtpControlSocket.sendCommar B(23.2%) 2(12.5%) INC19.7%)
30 FEAFtpControlSacket.readRephd) 20 8.0%) 2014.4%) 0¢ 0.0%) 0 0.0%)

254.1 Top ten FTP Framework related cumulative method time

®, Call Graph: snapshot_1 _ 0] x|
File Edit Tools Display Window Help

[Reset| Show To:[10__ [| Cumulative Time | Color By:| Cumulative Time ~| (W) < [=EE]E

¢ | Mame Galls Sli e ouriﬁ;aﬂig Aﬁiﬁﬂﬁ
Time Time Tirne Time
[¥] FESAFtpClientputFile(String, String) 30 2,568 [B9.1%) 2,541 | 88.2%) 86 [3.0%) % | 2.9%15
[v FEAFtpClient dinString) &0 112 [3.9%) 300 l.l%) 2 [0.1%) 1 D.D%]i"—i:-;'
[vi FESAFtpControlSocket createDataSocket(String, boolean) 120 94 [3.3%) 65 [2.2%) 1 [0.0%) 1 [0.0%)
[Vl FSAFtpContralSocket sendCammand(String) 450 79 [2.7%) 36 (1.3%) 0 (0.0%) 0 ¢ 0.0%)
¥l FSAFtpControlSocket readReply) &0 57 [Z.0%) BT o0 Z2.0%) 0 (0.0%) 0 (0.0%)
[vl FSAFtpClientgetFile(String, String) 30 45 [l.6%) 19 ¢ 0.7%) 2 (0.1%) 1L (0.0%)
vl FSAFtpClientinit=(String, int, String, boolean) 30 29 [l.0%) o[0.4%) 1 [0.0%) 0 0.0%)
[vi FSAFtpControlSocket =init=(5tring, int, boolean) 30 19 [0.7%) 11 { 0.4%) 1 (0.0%) 0 (0.0%)
[FSAFtpClient setTransferModeString) &0 19 [0.6%) 9 0 0.3%) 0 (0.0%) 0 (0.0%)
[V FEAFtpClientlaginiSting, String) 30 17 | 0.6%) 6 0.2%) 1 { 0.0% 0 { 0.0%)
JE : : : : : : : : = vl
ov.ed.fsa.tafip.FTPConnectAction performiorg.apache.struts.action.ActionMapping, org.apache.struts_action.ActionForm, javax.sendet. hittp. Htt... |Visihle: 66/8705

Version 2.0 69 -69.1.5 64

ITARelease 3.0
Build & Test Report

The above table shows the top ten FTP Framework related cumulative method time.
The table should be used as reference in application development that includes the
framework.

3 RCS- XML Helper Framework

3.1 Purpose

This Performance Analysis Report documents the results of utilizing JProbe to test the
ITA R3.0 Reusable Common Services (RCS) XMLHelper framework. This report
provides an in-depth analysis of the results gathered from the JProbe application
profiling and documents any performance issues and suggests resolutions. The Detailed
Design, User Guide, Unit Test Report, and the Performance Analysis documents for the
XMLHelper framework documentation will enable developers to quickly build
applications using the XMLHelper framework within the ITA environment architecture.

3.2 Approach

To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to
analyze the XMLHelper framework. JProbe is a performance-profiling tool and it was
used to detect performance issues such as loitering objects, unexpected references, and
over-use of objects in Java based programming. In order to profile this framework,
portions of the unit test scripts were used to conduct this test. The performance analysis
of this framework is documented in this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap)
usage and performance detail usage which include detailed method times, average
method times, detailed object counts within methods and average method counts. This
tool can be used to identify loitering objects and inefficiencies in code more easily.
JProbe also contains the capabilities to drill-down and allow gathering detailed
information on individual methods and the interaction between them.

3.3 Summary

This report contains the background information, performance test harness design,
performance analyses, and resulting performance metrics for the framework. Profiling
the XMLHelper framework using the test scripts will test the code performance of the
framework. The actual results will be compared against the results of how this
framework is expected to function. Overall, this framework does not produce any
loitering objects or create an excessive amount of objects. Of course memory used is in
direct relationship to the size of the XML document but for most XML documents used
by FSA developers memory usage per document is tiny. This framework is a robust API
that should not cause any performance issues for calling applications.

Version 2.0 69 -69.1.5 65

ITARelease 3.0
Build & Test Report

3.4 Test Harness Design

3.4.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The
focus of this performance test is to identify loitering objects and time spent on each
method relative to each other in the XMLHelper framework.

3.4.2 Testing Criteria
The three main components of the XMLHelper framework will be tested:

Parsing XML documents using the DOM parser.

Parsing XML documents using the SAX parser and a custom developed SAX parsing
class.

Instantiating a Java object from an XML document using a Data-Bind parser.

Since the XMLHelper framework is an API, the JavaServer Pages developed for the unit
test will serve as a test harness to profile and analyze the performance of the various
methods.

3.4.3 Testing Configuration

In order to profile the XMLHelper framework with JProbe, the JPROBE Application
Server configured in WebSphere was used and some of the configurations were
changed. In the command line reference of the Application Server, there is a reference to
the JProbe configuration file. The file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/08282002_test xmlhelper.jpl. Due to the fact that some of
the applications use STRUTS there are several servlets that are present in the
configuration that are not needed for this test. Thus the action, database, and
HelloWorld servlets were all disabled.

3.4.4 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the
settings that JProbe requires to profile an application, applet, or server side component
(such as JavaServer Pages and Servlets). The configuration file will determine which
JVM is used to run JProbe and the monitoring options. The user will be able to specify
the activity of the Profiler. For example, the file can be configured to cause JProbe
Profiler to take a heap snapshot before it exits and the directory to save the snapshots in.

The example application test will be conducted on the Solaris machine with the output
being sent to a remote Windows NT workstation. The configuration in the actual file
used to conduct the test can be found in Appendix A. A filter for the main package,
gov.ed.sfa.ita.xmlhelper, was added to narrow the scope of the test to this package.

Version 2.0 69 -69.1.5 66

ITARelease 3.0
Build & Test Report

3.4.5 UNIX Server Settings

The current methodology that ITA uses to do performance testing of RCS packages is to
run custom built test harnesses off a Application Server called JPROBE that is running in
the stage environment of the development Solaris server. The server URI that is
configured in the J’PROBE Application server is stg.jprobe.fsa.ed.gov. The WebSphere
JSP servlet Web path to call the test harnesses is JPROBEWebApp. So the following
URL’s should execute the three performance tests.
http:\\Stg.jprobe.fsa.ed.gov/IJPROBEWebApp/xmlhelper/domTest.jsp
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/xmlhelper/saxTest.jsp
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/xmlhelper/databindTest.jsp

To accomplish the above URLSs, the following WebSphere configuration files (located in
/opt/stg35/WebSphere/AppServer/temp) were configured as documented.

3451 rules.properties:

default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/serviet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

3452 queues.properties:

ose.srvgrp.ibmoselink4.clonel.port=8241
ose.srvgrp.ibmoselink4.clonel.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK
ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

3453 vhosts.properties:

| stg.jprobe.fsa.ed.gov=default_host

Version 2.0 69 -69.1.5 67

ITARelease 3.0
Build & Test Report

3.4.6 WebSphere Application Server Configuration

The WebSphere Command Line will identify the JProbe configuration file to use and
ensure that the correct JVM is used. Two Environment Variables will be added to the
Application Server to enable it to run with JPROBE.

3.4.6.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/08282002_test_xmlhelper.jpl —Xnoclassgc —
Djava.compiler=NONE -ms128m -mx128m

3.4.6.2 Environment;

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

Version 2.0 69 -69.1.5 68

ITA Release 3.0
Build & Test Report

3.4.7 Directory Structure

Version 2.0 69 -69.1.5 69

sTUENT

ITARelease 3.0
Build & Test Report

Su35e5
opt
stg35
WebSphere
AppServer
bin lopt/stg35/WebSphere/AppServer/bin: includes startup and shutdown scripts for
WAS and JProbe Application Server
lopt/stg35/WebSphere/AppServer/temp: contains the rules.properties,
tem queues.properties, and vhosts.properties files.
p Also contains ./default_host/JProbeWebApp directory where compiled class files
for the JavaServer Pages are located
util
logs lopt/stg35/WebSphere/AppServer/logs: includes log files that are useful in
9 tracking errors: tracefile, activity.log, and JPROBEstderr.log, JPROBEstdout.log
JProbe
L lopt/util/JProbe/jpl_files: directory for JProbe Configuration (*.jpl) files used to
ipl_files profile the performance of applications
www snapshots Jopt/util/JProbe/snapshots: directory containing performance and heap snapshots
saved from JProbe tests; the files have to be sent via FTP to the developer's
workstation console in order to be viewed
stg
jprobe
f Iwwwi/stgl/jprobeflib: contains the various ITA - RCS jar files needed to run the
lib XMLHelper framework unit test cycles
web
XMLHelper
Iwwwi/stgl/jprobe/web/XMLHelper/domTest.jsp:
domTest.jsp Java Server Page that enters a loop and parses a single XML document
mulitpe times.using the DOM protocal.
Iwww/stg/jprobe/web/XMLHelper/saxTest.jsp:
saxTest.jsp Java Server Page that enters a loop and parses a single XML document
mulitpe times.using the SAX protocal.
bindTests Iwww/stg/jprobe/web/XMLHelper/bindTest.jsp:
Hsp Java Server Page that enters a loop and instatated a Java Object
multiole times usina a maopina XML document and a data XML
Version 2.0 69 -69.1.5 70

ITARelease 3.0
Build & Test Report

3.5 Testing Scenario

Test applications created for the unit test of the RCS framework will be used to execute
the performance analysis. These test applications are actually Java Server Pages that
access the XMLHelper framework to do work.

DomTest.jsp-Currently configured to build a DOM tree of an example XML document
located at /www/stg35/jprobe/properties/example.xml and then search for a specific
element, using the XMLHelper searchDom method, which returns the elements value.
Once the value is returned, the value is checked against what was configured and wiill
output whether the value matches or doesn’t. This JSP can be configured to loop
multiple times so that multiple DOM parses and multiple searches take place. In this test
the loop was configured to 10 passes.

SaxTest.jsp-Currently configured to use the SAX protocol to parse the example XML
document located at /www/stg35/jprobe/properties/example.xml and then using and
then search for a specific element, using the XMLHelper searchSAX method, which
returnsthe elements value. Once the value is returned, the value is checked against what
was configured and will output whether the value matches or doesn’t. This JSP can be
configured to loop multiple times so that multiple DOM parses and multiple searches
take place. In this test the loop was configured to 10 passes.

BindTest.jsp-Configured to instantiate a Java Object from two XML documents. The
first document located at /www/stg35/jprobe/properties/mapping.xml defines the
attributes of the Java object that the parser is trying to build. The second XML document
located at /www/stg35/jprobe/properties/schedule.xml holds the objects attribute values.
This Java Server Page will construct the Java object called ScheduleEntry from the
scheduler framework. This JSP can be configured to loop multiple times so that multiple
ScheduleEntry objects will be built. . In this test the loop was configured to 10 passes.

The results gathered from the application that are external to the XMLHelper
Framework APIs will not be included in the performance profiling results. These results
will be excluded since the purpose of profiling is to determine the performance of the
application under normal conditions. The performance of the methods used to test the
APIs has to be excluded to test just the behavior of the framework.

Version 2.0 69 -69.1.5 71

ITARelease 3.0
Build & Test Report

3.6 Results and Analysis

The JProbe Profiler with Memory Debugger application is used to trace both the
memory usage and performance measurement of the XMLHelper framework API. Two
snapshots are taken for each test scenario: a heap snapshot and a performance snapshot.
Each snapshot provides different information regarding our test.

3.7 Heap Snapshot (Memory Usage)

The heap snapshot can be used to visualize how memory is being used in the heap,
obtain information on objects allocated in the heap, and determine if there are any
loitering objects at the end of the test.

3.7.11 Heap Graph Analysis

The screenshot below is obtained from executing domTest.jsp. It is the only heap graph
screenshot depicted in this report since the heap graphs from executing other test cycle
exhibit the same pattern.

®, JFrstn P vk My Dobuage - Seremididn Edion o e opon e, Hassgedi e
Ele E¥ Brogran Seseshal Tikk [eciey ysrdes Help
gy] CRE =5 e R I R R

4 b, Pt by Gy Gy ity e s 00 st s sy B oo
e ey Esoand = Shiew Bstone #5 mindnc v

e vy
(RIeE LA}

Frene |
11000 +
o alui i Ran garbage collection &
WAS L nitialtzat on set Checkpoint
——
]

eoan

oM

A0 +

TN

T

10

| ——
lisien| Ejraos

Wanags FServes Som |, 780 SSNETT FH | Homearyg |
o el - | et =] Lacall Coracls | mrrneawnd | e ez, | & s Sopk - | o [1728, vk P i a20PM

Version 2.0 69 -69.1.5 72

ITARelease 3.0
Build & Test Report

In the graph above, it is possible to see that when the Application Server is initialized, a
great deal of memory is consumed. Once the App Server has finished initializing, the
memory usage levels off to a flat line. JProbe will call the Garbage Collector to remove
objects that are no longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance
analysis. The object count will be measured against the count at the checkpoint. By
reading the graph, it can be determined that the overall memory usage for the
XMLHelper framework is very low and will not result in huge increase to the overhead
of calling applications.

3.7.2 Instance Summary

The tables below represent Instance Summary result’s associated with conducting the
different test scenarios. The Count column displays how many instances of the class
currently exist in the heap and the Memory column shows how much memory (in bytes)
those instances consume.

Test execution

3721 DomTest.jsp Garbage collection
/and take snapshots
Package Class Count Memory
gov.ed.sfa.ita.xmlhelper DomXml 40 (0.0%) 1,760 (0.0%)
gov.ed.sfa.ita.xmlhelper PpKey 80 (0.0%) 960 (0.0%)
gov.ed.sfa.ita.xmlhelper PpValue 80 (0.0%) 960 (0.0%)
gov.ed.sfa.ita.xmlhelper DomXml$ 40 (0.0%) 480 (0.0%)
gov.ed.sfa.ita.xmlhelper DomXml$ 40 (0.0%) 480 (0.0%)
gov.ed.sfa.ita.xmlhelper DomXmi$3 | 10 (0.0%) 120 (0.0%)
gov.ed.sfa.ita.xmlhelper XMLHelper | 1 (0.0%) 44 (_0.0%)
3.7.2.2 SaxTest.jsp
Package Class Count Memory
gov.ed.sfa.ita.xmlhelper SaxSearchHandler | 10 (0.0%) 120 (0.0%)
gov.ed.sfa.ita.xmlhelper XMLHelper 1 (0.0%) 44 (0.0%)
gov.ed.sfa.ita.xmlhelper SaxxXml 10 (0.0%) 40 (0.0%)
3.7.2.3 BindTest.jsp
Package Class Count Memory

org.exolab.castor.xml.util

XMLFieldDescriptorimpl

551 (0.1%)

46,284 (0.4%)

org.exolab.castor.util

List

941 (0.1%)

18,820 (0.2%)

org.exolab.castor.xm

UnmarshalState

310 (0.0%)

13,640 (0.1%)

Version 2.0

69 - 69.1.5

73

ITARelease 3.0
Build & Test Report

Package Class Count Memory

org.exolab.castor.mapping.xml FieldMapping 110 (0.0%) 9,240 (0.1%)
org.exolab.castor.xml FieldVvalidator 420 (0.1%) 8,400 (0.1%)
org.exolab.castor.mapping.loader FieldHandlerlmpl 110 (0.0%) 8,360 (0.1%)
org.exolab.castor.mapping.loader FieldDescriptorimpl 110 (0.0%) 4,840 (0.0%)
org.exolab.castor.xml.validators NameValidator 90 (0.0%) 3,960 (0.0%)
org.exolab.castor.mapping.loader | Typelnfo 110 (0.0%) 3,960 (0.0%)
org.exolab.castor.xml.validator StringValidator 90 (0.0%) 3,240 (0.0%)

The DataBind API does take a bit more memory in comparison to the other XML API
parsing technologies but the functionality that the DataBind APl adds is much more
complex then simply parsing the XML document. The DataBind API parses two XML
documents and then builds a Java Object that reflects the data that is in the XML
documents. The DataBind API also has the ability to build a XML document that reflects
an existing Java Object. The DataBind API uses a DataBinding Framework called
CASTOR to accomplish the marshalling and demarshalling activities.

Version 2.0 69 -69.1.5 74

ITARelease 3.0
Build & Test Report

3.8 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe — five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The
compound metrics are averages per number of calls, including: average method time, average cumulative time, average
method object count, and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance
assessment of the XMLHelper framework. These metrics are basic indicators of process resource utilization. The detailed
graphs associated with each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by *xmlhelper* to obtain only the classes within the XMLHelper framework
which is what the test is looking for. For the DataBind API we also filtered for *exolab*. Then for each section, the results
were sorted by the metric under investigation to obtain the top ten results for each metric.

3.8.1 DomTest.jsp Scenario
3.8.11 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Name Calls Source

DomXml.getRootNamespaceURI() 728 DomXml.java
PpKey.hasDefaultNamespaceURI() 727 PpKey.java

PpValue.isSingleltem() 600 PpValue.java
PpKey.hashCode() 430 PpKey.java

PpValue.getSingleltem() 320 PpValue.java
PpKey.equals(Object) 297 PpKey.java

PpValue.isString() 240 PpValue.java
PpValue.isAttribute() 160 PpValue.java
DomXml.uncheckedPut(Object, Object) 110 DomXml.java

Version 2.0 69 -69.1.5 75

ITARelease 3.0
Build & Test Report

Name Calls Source

PpKey.setPropertiesPlus(DomXml) 110 PpKey.java

For every DOM element encounter, the XMLHelper framework must decide if there is a namespace associated with that
element and if the root namespace has changed. Thus the method getRootNamespaceURI() is the most called method.

3.8.1.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants
(sub-methods).

Name Method Time Source
DomXml.elementToObject(Element) 18 (18.3%) DomXml.java
PpKey.hashCode() 11 (11.1%) PpKey.java
DomXml.privPut(PpKey, Object, boolean) 6 (5.7%) DomXml.java
DomXml.elementKeys() 5(5.5%) DomXml.java
DomXml.attributeKeys() 5(5.3%) DomXml.java
PpKey.hasDefaultNamespaceURI() 5(5.1%) PpKey.java
DomXml.fromXML(InputStream) 4(4.1%) DomXml.java
PpKey.equals(Object) 4 (4.0%) PpKey.java
PpValue.isString() 2 (2.3%) PpValue.java
XMLHelper.searchDom(String, DomXml) 2 (2.2%) XMLHelper.java

The results above show the longest running method is elementToObject(Element). This is the method that builds the DOM tree
and places elements within a hash table for quick retrieval. Method times are below 50 milliseconds and no one method is
dominating the times.

Version 2.0 69 -69.1.5 76

ITARelease 3.0
Build & Test Report

3.8.1.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name Cumulative Source
Time
XMLHelper.parse(String) 49 (50.3%) XMLHelper.java

DomXml.loadXML(InputStream)

48 (48.4%)

DomXml.java

DomXml.fromXML(InputStream)

41 (41.8%)

DomXml.java

DomXml.elementToObject(Element)

37 (37.6%)

DomXml.java

XMLHelper.searchDom(String, DomXml)

34 (34.4%)

XMLHelper.java

XMLHelper.<init>()

15 (15.3%)

XMLHelper.java

PpKey.hashCode()

15 (15.3%)

PpKey.java

DomXml.privPut(PpKey, Object, boolean)

13 (13.6%)

DomXml.java

DomXml.privAdd(PpKey, Object)

13 (13.4%)

DomXml.java

DomXml.attributeKeys()

12 (12.6%)

DomXml.java

The framework entry point is the parse(String) method. It would be expected that parse(String) would be the longest

cumulative time method.

Version 2.0

69 - 69.1.5

77

ITARelease 3.0
Build & Test Report

3.8.14 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name

Method
Objects

Source

DomXml.elementToObject(Element)

206 (26.1%)

DomXml.java

PpKey.hashCode()

144 (18.3%)

PpKey.java

DomXml.attributeKeys()

122 (15.5%)

DomXml.java

DomXml.elementKeys()

122 (15.5%)

DomXml.java

DomXml.privPut(PpKey, Object, boolean)

84 (10.6%)

DomXml.java

DomXml.<init>(String, String) 42 (5.3%) DomXml.java
XMLHelper.parse(String) 24 (3.0%) XMLHelper.java
DomXml.keys() 12 (1.5%) DomXml.java
DomXml.fromXML(InputStream) 8 (1.0%) DomXml.java
XMLHelper.<init>() 8 (1.0%) XMLHelper.java

Since the elementtoObject(Element) method is the method that builds the DOM tree it had the most number of objects.

3.8.15 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name

Cumulative
Objects

Source

XMLHelper.parse(String)

442 (56.0%)

XMLHelper.java

DomXml.loadXML(InputStream)

418 (53.0%)

DomXml.java

DomXml.fromXML(InputStream)

386 (48.9%)

DomXml.java

DomXml.elementToObject(Element)

378 (47.9%)

DomXml.java

XMLHelper.searchDom(String, DomXml)

324 (41.1%)

XMLHelper.java

DomXml.elementKeys()

152 (19.3%)

DomXml.java

Version 2.0

69 - 69.1.5

78

ITARelease 3.0
Build & Test Report

Name Cumulative Source
Objects
DomXml.attributeKeys() 152 (19.3%) DomXml.java
PpKey.hashCode() 144 (18.3%) PpKey.java
DomXml.privPut(PpKey, Object, boolean) 114 (14.4%) DomXml.java
DomXml.privAdd(PpKey, Object) 90 (11.4%) DomXml.java

Again very similar to Cumulative Time and Cumulative object count, parse(String) is the entry method to the framework so it
would be expected to have the most objects. The interesting fact about this chart is that if a developer traced the code from
parse() hash table loading, the trace would look very similar to the above chart with each successive method adding a few
more objects but not one adding more then 50%.

3.8.1.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method Source
Time

XMLHelper.<init>() 2 (1.6%) XMLHelper.java
DomXml.fromXML(InputStream) 0 (0.4%) DomXml.java
DomXml.elementToObject(Element) 0 (0.3%) DomXml.java
XMLHelper.parse(String) 0 (0.2%) XMLHelper.java
DomXml.elementKeys() 0(0.1%) DomXml.java
DomXml.attributeKeys() 0 (0.1%) DomXml.java
DomXml.keys() 0 (0.1%) DomXml.java
DomXml.<init>() 0 (0.1%) DomXml.java
DomXml.mergeln(DomXml) 0 (0.1%) DomXml.java
DomXml.privPut(PpKey, Object, boolean) 0 (0.1%) DomXml.java

Version 2.0 69 -69.1.5 79

ITA Release 3.0
Build & Test Report

3.8.1.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their

descendants, take a long time (on average) to execute.

Name Average Source
Cumulative
Time

XMLHelper.<init>() 15 (15.3%) XMLHelper.java
XMLHelper.parse(String) 5 (5.0%) XMLHelper.java
DomXml.load XML (InputStream) 5 (4.8%) DomXml.java
DomXml.fromXML(InputStream) 4 (4.2%) DomXml.java
XMLHelper.searchDom(String, DomXml) 1(0.9%) XMLHelper.java
DomXml.mergeln(DomXml) 1(0.6%) DomXml.java
DomXml.elementToObject(Element) 1 (0.5%) DomXml.java
DomXml.attributeKeys() 0 (0.3%) DomXml.java
DomXml.elementKeys() 0 (0.3%) DomXml.java
DomXml.privAdd(PpKey, Object) 0 (0.2%) DomXml.java

The results above and below do not present any surprises and are consistent with the expected results based on evaluation of

the previous performance metrics.

Version 2.0

69 - 69.1.5

80

ITARelease 3.0
Build & Test Report

3.8.1.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per

number of calls.

Name

Avg. Method
Object

Source

DomXml.elementToObject(Element)

206 (26.1%)

DomXml.java

PpKey.hashCode()

144 (18.3%)

PpKey.java

DomXml.attributeKeys()

122 (15.5%)

DomXml.java

DomXml.elementKeys()

122 (15.5%)

DomXml.java

DomXml.privPut(PpKey, Object, boolean)

84 (10.6%)

DomXml.java

DomXml.<init>(String, String) 42 (5.3%) DomXml.java
XMLHelper.parse(String) 24 (3.0%) XMLHelper.java
DomXml.keys() 12 (1.5%) DomXml.java
XMLHelper.<init>() 8 (1.0%) XMLHelper.java
DomXml.fromXML(InputStream) 8 (1.0%) DomXml.java

3.8.19 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object

count per number of calls.

Name Average Source
Cumulative
Object

XMLHelper.parse(String) 44 (5.6%) XMLHelper.java
DomXml.loadXML(InputStream) 41 (5.2%) DomXml.java
DomXml.fromXML(InputStream) 38 (4.8%) DomXml.java
XMLHelper.<init>() 23 (2.9%) XMLHelper.java
XMLHelper.searchDom(String, DomXml) 8 (1.0%) XMLHelper.java

Version 2.0

69 - 69.1.5

81

ITARelease 3.0
Build & Test Report

Name Average Source
Cumulative
Object
DomXml.elementToObject(Element) 5 (0.6%) DomXml.java
DomXml.attributeKeys() 3 (0.4%) DomXml.java
DomXml.elementKeys() 3 (0.4%) DomXml.java
DomXml.mergeln(DomXml) 3 (0.4%) DomXml.java
DomXml.privPut(PpKey, Object, boolean) 1(0.1%) DomXml.java

382 SaxTest.jsp Scenario

3.8.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls.

streamline excessive method calls.

Helps to determine and

Name Calls Source
SaxSearchHandler.characters(char[], int, int) 130 SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 70 SaxSearchHandler.java
SaxSearchHandler.getSearchName() 70 SaxSearchHandler.java
SaxSearchHandler.startElement(String, String, String, Attributes) 70 SaxSearchHandler.java
XMLHelper.parse(String, SaxHandlers) 10 XMLHelper.java
XMLHelper.searchSax(String, String) 10 XMLHelper.java
SaxHandlers.<init>() 10 SaxHandlers.java
SaxHandlers.endDocument() 10 SaxHandlers.java
SaxHandlers.startDocument() 10 SaxHandlers.java
SaxSearchHandler.<init>() 10 SaxSearchHandler.java

The Sax parser calls established methods depending upon what it is parsing within the XML document. For example the sax
parser will call the method startElement(String, String, String, Attributes) if the parser is parsing the start of a element. The

Version 2.0 69 -69.1.5

82

ITARelease 3.0
Build & Test Report

method characters(char[], int, int) is called everytime a character is encountered in the XML document. This would explain

why this method has the highest amount of calls

3.8.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants

(sub-methods).

Name Method Time Source
XMLHelper.parse(String, SaxHandlers) 5 (16.0%) XMLHelper.java
XMLHelper.searchSax(String, String) 4 (13.5%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 3 (10.3%) SaxXml.java
XMLHelper.<init>() 2 (5.4%) XMLHelper.java
SaxSearchHandler.startElement(String, String, String, Attributes) 1(3.3%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 1(1.7%) SaxSearchHandler.java
SaxHandlers.startDocument() 0(1.4%) SaxHandlers.java
SaxHandlers.<init>() 0(1.3%) SaxHandlers.java
SaxXml.<init>() 0(1.3%) SaxXml.java
SaxSearchHandler.endElement(String, String, String) 0 (0.7%) SaxSearchHandler.java

Due to the fact that the Sax parser is dependent upon the developer in providing a handler class that provides the
implementation of the parsing methods, the parse(String, SaxHandlers) method for the SAX API is a lot more active then the
other two XMLHelper API parse methods. The parse(String, SaxHandlers) method takes the handler class as a argument and
instantiates it. This will mean that parse(String, SaxHandlers) will be more active and more objects associated with it.

Version 2.0 69 -69.1.5

83

ITARelease 3.0
Build & Test Report

3.8.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name Cumulative Source
Time

XMLHelper.parse(String, SaxHandlers) 5 (43.8%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 3 (28.2%) SaxXml.java
SaxSearchHandler.startElement(String, String, String, Attributes) 1(9.0%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 1(4.7%) SaxSearchHandler.java
SaxHandlers.startDocument() 0(3.9%) SaxHandlers.java
SaxXml.<init>() 0(3.4%) SaxXml.java
SaxSearchHandler.endElement(String, String, String) 0(1.8%) SaxSearchHandler.java
SaxHandlers.endDocument() 0(1.8%) SaxHandlers.java
SaxSearchHandler.getSearchName() 0(1.7%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0(0.3%) SaxSearchHandler.java

The framework entry point is the parse(String, SaxHandlers) method. It would be expected that parse(String, SaxHandlers)
would be the longest cumulative time method.

3.8.24 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method Source
Objects
XMLHelper.parse(String, SaxHandlers) 32 (41.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 32 (41.0%) SaxXml.java
SaxHandlers.startDocument() 6 (7.7%) SaxHandlers.java
SaxXml.<init>() 4 (5.1%) SaxXml.java

Version 2.0 69 -69.1.5 84

ITARelease 3.0
Build & Test Report

Name

Method
Objects

Source

SaxSearchHandler.startElement(String, String, String, Attributes)

2.6%)

SaxSearchHandler.java

SaxHandlers.endDocument()

2.6%)

SaxHandlers.java

SaxSearchHandler.characters(char(], int, int)

0.0%)

SaxSearchHandler.java

SaxSearchHandler.endElement(String, String, String)

SaxSearchHandler.java

SaxSearchHandler.getSearchName()

0.0%)

SaxSearchHandler.java

SaxSearchHandler.setSearchValue(String)

(
(
(
0 (_0.0%)
(
(

0.0%)

SaxSearchHandler.java

As explained in the method time area, SAX parsing uses a Handler class and where in DOM the elementToObject(Element) was

the heaviest used method, in the SAX API most of the work is done in the parse method.

3.8.25 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name Cumulative Source
Obijects
XMLHelper.parse(String, SaxHandlers) 78 (100.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 42 (153.8%) SaxXml.java
SaxHandlers.startDocument() 6 (7.7%) SaxHandlers.java
SaxXml.<init>() 4 (5.1%) SaxXml.java
SaxSearchHandler.startElement(String, String, String, Attributes) 2 (2.6%) SaxSearchHandler.java
SaxHandlers.endDocument() 2 (2.6%) SaxHandlers.java
SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java

Version 2.0 69 -69.1.5

85

ITA Release 3.0
Build & Test Report

3.8.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method Source
Time

XMLHelper.parse(String, SaxHandlers) 0 (4.4%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 0 (2.8%) SaxXml.java
SaxHandlers.startDocument() 0 (0.4%) SaxHandlers.java
SaxXml.<init>() 0 (0.3%) SaxXml.java
SaxHandlers.endDocument() 0 (0.2%) SaxHandlers.java
SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.1%) SaxSearchHandler.java
SaxSearchHandler.characters(char(], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

Version 2.0 69 -69.1.5 86

ITARelease 3.0
Build & Test Report

3.8.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average Source
Cumulative
Time

XMLHelper.parse(String, SaxHandlers) 1 (10.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 1(5.1%) SaxXml.java
SaxXml.<init>() 0(0.4%) SaxXml.java
SaxHandlers.startDocument() 0(0.4%) SaxHandlers.java
SaxHandlers.endDocument() 0(0.2%) SaxHandlers.java
SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.2%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

3.8.2.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

Name Avg. Method Source
Object
XMLHelper.parse(String, SaxHandlers) 3 (3.8%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 3 (3.8%) SaxXml.java
SaxXml.<init>() 0 (0.0%) SaxXml.java
SaxHandlers.startDocument() 0 (0.0%) SaxHandlers.java
SaxHandlers.endDocument() 0 (0.0%) SaxHandlers.java

Version 2.0 69 -69.1.5 87

ITARelease 3.0
Build & Test Report

Name Avg. Method Source
Object
SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.characters(char(], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

3.8.29 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object
count per number of calls.

Name Average Source
Cumulative
Object

XMLHelper.parse(String, SaxHandlers) 7 (9.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 4 (5.1%) SaxXml.java
SaxXml.<init>() 0 (0.0%) SaxXml.java
SaxHandlers.startDocument() 0 (0.0%) SaxHandlers.java
SaxHandlers.endDocument() 0 (0.0%) SaxHandlers.java
SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.characters(char(], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

3.8.3 BindTest.jsp Scenario

The XMLHelper framework does include the open source CASTOR framework to accomplish marshalling XML document to
a Java object. This means for this test, we filtered JPROBE on package names that included xmlhelper as well exolab.

Version 2.0 69 -69.1.5 88

ITARelease 3.0
Build & Test Report

3.8.3.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and

streamline excessive method calls.

Name Calls Source
List.size() 7,590 List.java
List.get(int) 4,140 List.java
ValidationUtils.isLetter(char) 4,120 ValidationUtils.java
XMLFieldDescriptorimpl.getHandler() 3,700 XMLFieldDescriptorimpl.java
XMLFieldDescriptorimpl.isReference() 3,130 XMLFieldDescriptorimpl.java
List.add(Object) 2,340 List.java
XMLFieldDescriptorimpl.getValidator() 2,320 XMLFieldDescriptorimpl.java
FieldValidator.validate(Object, ClassDescriptorResolver) 2,320 FieldValidator.java
XMLFieldDescriptorimpl.isRequired() 2,270 XMLFieldDescriptorimpl.java
MarshalFramework.isPrimitive(Class) 2,240 MarshalFramework.java

The marshalling technology that CASTOR uses to instantiate an Object uses Lists to move attributes and data around. A high

use of LIST methods is expected.

3.8.3.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants

(sub-methods).

Name Method Time Source
XMLHelper.parse(String, String) 8 (24.0%) XMLHelper.java
DataBind.parse(String, String) 7 (21.2%) DataBind.java
XMLHelper.<init>() 2 (5.9%) XMLHelper.java
DataBind.<init>() 0(1.2%) DataBind.java
DomXml.<init>() 0 (0.5%) DomXml.java

Version 2.0

69 - 69.1.5

89

ITA Release 3.0
Build & Test Report

Name Method Time Source
List.size() 0 (0.0%) List.java
List.get(int) 0 (0.0%) List.java
ValidationUtils.isLetter(char) 0 (0.0%) ValidationUtils.java
XMLFieldDescriptorimpl.getHandler() 0 (0.0%) XMLFieldDescriptorimpl.java
XMLFieldDescriptorimpl.isReference() 0 (0.0%) XMLFieldDescriptorimpl.java

The only methods available to XMLHelper using the DataBind API are XMLHelper.parse(String, String) and
XMLHelper.write(String, String). The marshalling and demarshalling from CASTOR are accomplished in the parse methods

and thus are expected to be the high use methods in this test scenario

Version 2.0

69 - 69.1.5

90

ITARelease 3.0
Build & Test Report

3.8.3.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name

Cumulative

Time

Source

XMLHelper.<init>()

18 (52.1%)

XMLHelper.java

XMLHelper.parse(String, String)

17 (47.9%)

XMLHelper.java

DataBind.parse(String, String) 8 (22.3%) DataBind.java
DataBind.<init>() 0(1.4%) DataBind.java
Unmarshaller.unmarshal(InputSource) 0 (0.9%) Unmarshaller.java
DomXml.<init>() 0 (0.5%) DomXml.java
UnmarshalHandler.endElement(String) 0 (0.5%) UnmarshalHandler.java
FieldHandlerimpl.setValue(Object, Object) 0 (0.5%) FieldHandlerImpl.java
UnmarshalHandler.startElement(String, AttributeList) 0(0.4%) UnmarshalHandler.java
List.size() 0 (0.0%) List.java

3.8.34 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name

Method
Objects

Source

DataBind.parse(String, String)

66 (49.6%)

DataBind.java

XMLHelper.parse(String, String)

40 (30.1%)

XMLHelper.java

XMLHelper.<init>() 8 (6.0%) XMLHelper.java
DataBind.<init>() 4 (3.0%) DataBind.java
DomXml.<init>() 1(0.8%) DomXml.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
AccessMode.<init>(String) 0 (0.0%) AccessMode.java

Version 2.0

69 - 69.1.5

91

ITARelease 3.0
Build & Test Report

Name Method Source

Objects
AccessMode.<clinit>() 0 (0.0%) AccessMode.java
AccessType.toString() 0 (0.0%) AccessType.java
AccessType.valueOf(String) 0 (0.0%) AccessType.java

3.8.35 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name

Cumulative
Objects

Source

XMLHelper.parse(String, String)

110 (82.7%)

XMLHelper.java

DataBind.parse(String, String)

66 (49.6%)

DataBind.java

XMLHelper.<init>()

23 (17.3%)

XMLHelper.java

DataBind.<init>() 4 (3.0%) DataBind.java

DomXml.<init>() 1 (0.8%) DomXml.java

AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
AccessMode.<init>(String) 0 (0.0%) AccessMode.java
AccessMode.<clinit>() 0 (0.0%) AccessMode.java
AccessType.toString() 0 (0.0%) AccessType.java
AccessType.valueOf(String) 0 (0.0%) AccessType.java

3.8.36 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on

average, take a long time to execute.

Name Avg. Method Source
Time
XMLHelper.<init>() 2 (5.9%) XMLHelper.java
XMLHelper.parse(String, String) 1(2.4%) XMLHelper.java

Version 2.0

69 - 69.1.5

92

ITARelease 3.0
Build & Test Report

Name Avg. Method Source
Time

DataBind.parse(String, String) 1(2.1%) DataBind.java

DomXml.<init>() 0 (0.5%) DomXml.java

DataBind.<init>() 0 (0.1%) DataBind.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
AccessMode.<init>(String) 0 (0.0%) AccessMode.java
AccessMode.<clinit>() 0 (0.0%) AccessMode.java
AccessType.toString() 0 (0.0%) AccessType.java
AccessType.valueOf(String) 0 (0.0%) AccessType.java

3.8.3.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their

descendants, take a long time (on average) to execute.

Name Average Source
Cumulative
Time

XMLHelper.<init>() 18 (152.1%) XMLHelper.java
XMLHelper.parse(String, String) 2 (4.8%) XMLHelper.java
DataBind.parse(String, String) 1(2.2%) DataBind.java
DomXml.<init>() 0 (0.5%) DomXml.java
DataBind.<init>() 0 (0.1%) DataBind.java
Unmarshaller.unmarshal(InputSource) 0 (0.0%) Unmarshaller.java
FieldHandlerImpl.setValue(Object, Object) 0 (0.0%) FieldHandlerlmpl.java
UnmarshalHandler.endElement(String) 0 (0.0%) UnmarshalHandler.java
UnmarshalHandler.startElement(String, AttributeList) 0 (0.0%) UnmarshalHandler.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java

Version 2.0

69 - 69.1.5

93

ITARelease 3.0
Build & Test Report

3.8.38 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

Name Avg. Method Source
Object

AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
UnmarshalHandler.startElement(String, AttributeList) 0 (0.0%) UnmarshalHandler.java
UnmarshalHandler.endElement(String) 0 (0.0%) UnmarshalHandler.java
FieldHandlerImpl.setValue(Object, Object) 0 (0.0%) FieldHandlerImpl.java
Unmarshaller.unmarshal(InputSource) 0 (0.0%) Unmarshaller.java
DataBind.<init>() 0 (0.0%) DataBind.java
DomXml.<init>() 1(0.8%) DomXml.java
DataBind.parse(String, String) 6 (4.5%) DataBind.java
XMLHelper.parse(String, String) 4 (3.0%) XMLHelper.java
XMLHelper.<init>() 8 (6.0%) XMLHelper.java

3.8.3.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object
count per number of calls.

Name Average Source
Cumulative
Object

XMLHelper.<init>() 23 (17.3%) XMLHelper.java
XMLHelper.parse(String, String) 11 (8.3%) XMLHelper.java
DataBind.parse(String, String) 6 (4.5%) DataBind.java
DomXml.<init>() 1 (0.8%) DomXml.java
DataBind.<init>() 0 (0.0%) DataBind.java
Unmarshaller.unmarshal(InputSource) 0 (0.0%) Unmarshaller.java
FieldHandlerImpl.setValue(Object, Object) 0 (0.0%) FieldHandlerlmpl.java

Version 2.0 69 -69.1.5 94

ITARelease 3.0
Build & Test Report

Name Average Source
Cumulative
Object
UnmarshalHandler.endElement(String) 0 (0.0%) UnmarshalHandler.java
UnmarshalHandler.startElement(String, AttributeList) 0 (0.0%) UnmarshalHandler.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java

3.9 General Performance Test Summary

All methods tested in the previous test scenarios executed very similar to each other and no one method stood out as being a
performance problem or something that needed attention. Numbers of objects created per method were small and well
distributed among the methods. No loitering objects or memory leaks were found in the heap at the end of each test cycle.
Application groups using this RCS component should expect good performance low memory usage.

Version 2.0 69 -69.1.5 95

ITARelease 3.0
Build & Test Report

3.10 Appendix A

3.10.1 JProbe Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
<program type="application">

<application
args=""
working_dir=""
source_dir=""
classname="">
<classpath/>

</application>

<applet
working_dir=""
source_dir=""
htmlfile=""

main_package="">
<classpath>
<classpath.path location="%CLASSPATH%"/>

</classpath>

</applet>

<serverside
suggested_filters=""
id="Other server"
server_dir="/opt/stg35/WebSphere/AppServer"
prepend_to_vm_args=""
source_dir=""
classname="com .ibm.ejs.sm.util.process.Nanny"
main_package="gov.ed.sfa.ita.xmlhelper"
exclude_server_classes="true"
args=""

working_dir="/opt/stg35/WebSphere/AppServer/servlets"

prepend_to_classpath="">
<classpath>
<classpath.path location="%CLASSPATH%"/>
</classpath>
</serverside>
</program>
<vm
snapshot_dir="/opt/util/JProbe/snapshots"
location="/opt/util/jdk1.2.2/bin/java"
args=""
type="java2"
use_jit="true"/>
<viewer
socket="170.248.222.52:4444"
type="remote"/>
<analysis type="profile">
<performance
record_from_start="true"
timing="elapsed"

Version 2.0 69 -69.1.5

96

ITARelease 3.0
Build & Test Report

track_natives="true"
final_snapshot="true"
granularity="method">
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="*"
time="ignore"
granularity="method"/>
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="gov.ed.sfa.ita.xmlhelper.*"
time="track"
granularity="method"/>

</performance>

<heap

record_from_start="true"
no_stack_trace_limit="false"
final_snapshot="true"
max_stack_trace="4"
track_dead_objects="true"/>

<threadalyzer

record_from_start="true"
write_to_console="false">
<deadlock_detection
enabled="true"
deadlock_and_exit="true"
report_stalls="false"
track_system_threads="false"
block_can_stall="false"
deadlock_threshold="2"/>
<deadlock_prediction
enable_hold_and_wait="false"
enable_lock_order="false"
lock_order_maintains_covers="true"/>
<data_race
ignore_volatile="false"
enable_happens_before="false"
no_stack_trace_limit="false"
enable_lock_covers="false"
max_stack_trace="1"
instrument_elements="false"/>
<visualizer
enabled="true"
visualization_level="1"/>
<threadalyzer filter
visibility="invisible
enabled="true"
classmask="*"/>
<threadalyzer filter
visibility="visible"
enabled="true"
classmask=".*"/>

</threadalyzer>

Version 2.0

69 -69.1.5 97

ITA Release 3.0
Build & Test Report

<coverage
record_from_start="true"
final_snapshot="true"
granularity="line">
<coverage filter
visibility="invisible"
methodmask="*"
enabled="true"
classmask="*"/>
<coverage.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask=".*"/>
</coverage>
</analysis>
<ljpl>

Version 2.0 69 -69.1.5 98

ITA Release 3.0
Build & Test Report

3.11 Resources
W3C Document Object Model specifications
- http://www.w3c.orq/DOM/

IBM’s Developer-Works
- http://www.ibm.com/developerworks/

XML Org
- http://www.xml.org/

Castor
- http:/ /castor.exolab.org/

Sax Specifications
- http://www.saxproject.org/

Version 2.0 69 -69.1.5 99

ITARelease 3.0
Build & Test Report

4 RCS - Scheduler Framework
4.1 Test Harness Design

4.1.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The
focus of this performance test is to identify loitering objects and time spent on each
method relative to each other in the schedule framework.

4111 Testing Criteria

The main components of the Schedule framework that will be tested are:

Adding a scheduled event that occurs at a specific time from a XML Document
Adding a event that recursively occurs every minute from a XML document
Checking that the event has been added using the schedule’s framework method
containsAlarm().

Removing the event using the schedule’s framework method removeAllAlarms().

Since the Schedule framework is an API, the JavaServer Pages developed for the unit
test will serve as a test harness to profile and analyze the performance of the various
methods.

4.1.2 Testing Configuration

In order to profile the Schedule framework with JProbe, the JPROBE Application Server
configured in WebSphere was used and some of the configurations were changed. In
the command line reference of the Application Server, there is a reference to the JProbe
configuration file. The file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/09122002_test scheduler.jpl. Due to the fact that some of the
applications use STRUTS there are several servlets that are present in the configuration
that are not needed for this test. Thus the action, database, and HelloWorld servlets were
all disabled.

4121 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the
settings that JProbe requires to profile an application, applet, or server side component
(such as JavaServer Pages and Servlets). The configuration file will determine which
JVM is used to run JProbe and the monitoring options. The user will be able to specify
the activity of the Profiler. For example, the file can be configured to cause JProbe
Profiler to take a heap snapshot before it exits and the directory to save the snapshots in.

Version 2.0 69 - 69.1.5 100

ITARelease 3.0
Build & Test Report

The example application test will be conducted on the Solaris machine with the output
being sent to a remote Windows NT workstation. The configuration in the actual file
used to conduct the test can be found in Appendix A. A filter for the main package,
gov.ed.sfa.ita.schedule, was added to narrow the scope of the test to this package.

4122 UNIX Server Settings

The current methodology that ITA uses to do performance testing of RCS packages is to
run custom built test harnesses off a Application Server called JPROBE that is running in
the stage environment of the development Solaris server. The server URI that is
configured in the JPROBE Application server is stg.jprobe.fsa.ed.gov. The WebSphere
JSP servlet Web path to call the test harnesses is JPROBEWebApp. So the following
URL’s should execute the three performance tests.
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/scheduler/onetime.jsp
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/scheduler/recurs.jsp

To accomplish the above URLs, the following WebSphere configuration files (located in
/opt/stg35/WebSphere/AppServer/temp) were configured as documented.

4.1.2.2.1 rules.properties:

default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/servlet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

41222 queues.properties:

ose.srvgrp.ibmoselink4.clonel.port=8241
ose.srvgrp.ibmoselink4.clonel.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK
ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

vhosts.properties:

stg.jprobe.fsa.ed.gov=default_host

4.1.3 WebSphere Application Server Configuration

The WebSphere Command Line will identify the JProbe configuration file to use and
ensure that the correct JVM is used. Two Environment Variables will be added to the
Application Server to enable it to run with JPROBE.

Version 2.0 69 -69.1.5 101

ITARelease 3.0
Build & Test Report

4131 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/09122002_test_scheduler.jpl -Xnoclassgc —
Djava.compiler=NONE -ms128m -mx128m
4132 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

Version 2.0 69 -69.1.5 102

ITA Release 3.0
Build & Test Report

4.1.4 Directory Structure

Version 2.0 69 - 69.1.5 103

ITARelease 3.0
Build & Test Report

ITARelease 3.0
Build & Test Report

4.2 Testing Scenario

Test applications created for the unit test of the RCS framework will be used to execute
the performance analysis. These test applications are actually Java Server Pages that
access the Schedule framework to do work.

onetime.jsp-Currently coded to build a schedule object and then read in a specific timed
schedule entry (launch method1() at 05:00:00) from two XML documents, onetimem.xml
and onetimed.xml. The onetimem.xml has the mapping attribute parameters of the
ScheduleEntry class and onetimed.xml has the data values for the ScheduleEntry object
that the jsp builds. This JSP can be configured to loop multiple times so that multiple
Schedule Entries can take place. In this test the loop was configured to 10 passes.

recurs.jsp- This JSP was coded to build a schedule object and then read in a schedule
entry from two XML documents, recursm.xml and recursd.xml. that will recursivly
activate every minute. The recursm.xml has the mapping attribute parameters of the
ScheduleEntry class and recursd.xml has the data values for the ScheduleEntry object
that the jsp builds. By setting different data parameters within the data XML document
(recursd.xml and onetimed.xml) that represents the data values for schedule entry is
how the behavior is changed between recursive or one time type scheduling. This JSP
can be configured to loop multiple times so that multiple Schedule Entries can take
place. In this test the loop was configured to 10 passes.

The results gathered from the application that are external to the Schedule Framework
APIs will not be included in the performance profiling results. These results will be
excluded since the purpose of profiling is to determine the performance of the
application under normal conditions. The performance of the methods used to test the
APIs has to be excluded to test just the behavior of the framework.

Version 2.0 69 - 69.1.5 105

ITARelease 3.0
Build & Test Report

4.3 Results and Analysis

The JProbe Profiler with Memory Debugger application is used to trace both the
memory usage and performance measurement of the schedule framework API. Two
snapshots are taken for each test scenario: a heap snapshot and a performance snapshot.
Each snapshot provides different information regarding our test.

4.4 Heap Snapshot (Memory Usage)

The heap snapshot can be used to visualize how memory is being used in the heap,
obtain information on objects allocated in the heap, and determine if there are any
loitering objects at the end of the test.

4.4.1 Heap Graph Analysis

The screenshot below is obtained from executing recurs.jsp. It is the only heap graph
screenshot depicted in this report since the heap graphs from executing other test cycle
exhibit the same pattern.

® JPaska P wilh Maney Debuggen - Soreorbds Edion oo ibeoei o oo, Hassged v

Fle bW Brogror Sespekdl Toik [Reley yWnoos Heig
Sl ERENE-T . AFa PR T T

4 T, Pt M G 00 1 et It By |
e ruey oo = Ghewelistirg B mindee -

oy i

1pnm

10E

1A -

AT Ran garbage collection &
Menory usage during .
i WAS initialization set Checkpoint

Ll

HiH

T

Test execution
{LLI0]

g Ls s ’ :
1§50 ES] (3T (LR (IR &1 rial E] 10 11

blll. rrosp erL use e ags R e fam |, JHDVESETTFH | Homeey §
lisien | E]Piaces Sl thul - | A] Ll Coraols | 3 sl v |Eﬂ:mu|1wm | 8 |Pocus Srepls il | o0 172, v e Pt s, _ AP

Version 2.0 69 - 69.1.5 106

ITARelease 3.0
Build & Test Report

In the graph above, it is possible to see that when the Application Server is initialized, a
great deal of memory is consumed. Once the App Server has finished initializing, the
memory usage levels off to a flat line. JProbe will call the Garbage Collector to remove
objects that are no longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance
analysis. The object count will be measured against the count at the checkpoint. By
reading the graph, it can be determined that the overall memory usage for the schedule
framework is very low and will not result in huge increase to the overhead of calling
applications.

4.4.2 Instance Summary

The tables below represent Instance Summary result’s associated with conducting the
different test scenarios. The Count column displays how many instances of the class
currently exist in the heap and the Memory column shows how much memory (in bytes)
those instances consume.

4421 onetime.jsp

Package Class Count Memory
gov.ed.sfa.ita.schedule ScheduleEntry 40 (0.0%) 3,040 (' 0.0%)
fr.dyade.jdring AlarmEntry 20 (0.0%) 1,040 (0.0%)
fr.dyade.jdring AlarmWaiter 20 (0.0%) 560 (0.0%)
gov.ed.sfa.ita.schedule Schedule 20 (0.0%) 240 (0.0%)
gov.ed.sfa.ita.schedule Schedule$2 20 (0.0%) 240 (0.0%)
scheduler_onetime_jsp_19 DomXml$3 1(0.0%) 20 (0.0%)
4422 recurs.jsp
Package Class Count Memory
gov.ed.sfa.ita.schedule ScheduleEntry 20 (| 0.0%) 1,520 (0.0%)
fr.dyade.jdring AlarmEntry 10 (0.0%) 520 (0.0%)
fr.dyade.jdring AlarmWaiter 10 (0.0%) 280 (0.0%)
gov.ed.sfa.ita.schedule Schedule 10 (_0.0%) 120 (0.0%)
Version 2.0 69 -69.1.5 107

ITA Release 3.0
Build & Test Report

4.5 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe — five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The
compound metrics are averages per number of calls, including: average method time, average cumulative time, average
method object count, and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance
assessment of the Schedule framework. These metrics are basic indicators of process resource utilization. The detailed
graphs associated with each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by *schedule* to obtain only the classes within the Schedule framework
which is what the test is looking for. Since the schedule also includes the package jdring we also filtered for that. Then for
each section, the results were sorted by the metric under investigation to obtain the top ten results for each metric.

451 onetime.jsp Scenario
4511 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Name Calls Source
AlarmWaiter.debug(String) 80 AlarmWaiter.java
ScheduleEntry.<init>() 40 ScheduleEntry.java
AlarmManager.debug(String) 40 AlarmManager.java
AlarmEntry.debug(String) 40 AlarmEntry.java
onetime _jsp 19. jspx_writeString(JspWriter, String) 36 onetime _jsp 19.java

Version 2.0 69 - 69.1.5 108

ITA Release 3.0
Build & Test Report

Name Calls Source
onetime jsp 19. jspx_writeString(JspWriter, char[]) 36 onetime jsp 19.java
Schedule.configureXML(String, String) 20 Schedule.java
ScheduleEntry.setArg0(Object) 20 ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 20 Schedule java
Schedule.<init>() 20 Schedule.java

451.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants

(sub-methods).

Name Method Time Source

Schedule.configureXML(String, String) 22 (42.4%) Schedule.java
ScheduleEntry.setArg0(Object) 5 (9.8%) ScheduleEntry.java
ScheduleEntry.<init>() 5 (9.3%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 2 (4.3%) Schedule.java
Schedule.<init>() 2 (4.3%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.9%) Schedule.java
Schedule.removeAllAlarms() 0(0.8%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.4%) Schedule.java
_onetime_jsp_19._jspService(HttpServletRequest, HttpServiletResponse) 0 (0.0%) _onetime_jsp_19.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

Version 2.0 69 -69.1.5

109

ITA Release 3.0
Build & Test Report

451.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but

excludes the time spent in recursive calls to its descendants.

Name Cumulative Source
Time
onetime jsp 19. jspService(HttpServletRequest, HttpServietResponse) 51 (100.0%) onetime jsp _19.java

Schedule.configureXML(String, String)

32 (63.1%)

Schedule.java

Schedule.<init>()

15 (28.7%)

Schedule.java

ScheduleEntry.setArg0(Object) 5 (110.4%) ScheduleEntry .java
ScheduleEntry.<init>() 5 (110.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 3 (5.0%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 1(1.1%) Schedule.java
Schedule.removeAllAlarms() 1(1.0%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.4%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4514 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method Source
Objects
ScheduleEntry.<init>() 88 (131.0%) ScheduleEntry.java
Schedule.configureXML(String, String) 78 (27.5%) Schedule.java
ScheduleEntry.setArg0(Object) 68 (23.9%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 24 (8.5%) Schedule.java

Version 2.0 69 -69.1.5

110

ITA Release 3.0
Build & Test Report

Name Method Source
Objects

Schedule.<init>() 8 (2.8%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (0.7%) Schedule.java
Schedule.removeAllAlarms() 2 (0.7%) Schedule.java
_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _onetime_jsp_19.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4515 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name Cumulative Source
Obijects

_onetime_jsp_19. jspService(HttpServletRequest, HttpServletResponse) 284 (100.0%) | _onetime_jsp_19.java
Schedule.configureXML(String, String) 210 (73.9%) Schedule.java
ScheduleEntry.<init>() 88 (31.0%) ScheduleEntry.java
ScheduleEntry.setArg0(Object) 68 (23.9%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 24 (8.5%) Schedule.java
Schedule.<init>() 22 (7.7%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (0.7%) Schedule.java
Schedule.removeAllAlarms() 2 (0.7%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

Version 2.0 69 -69.1.5

111

ITA Release 3.0
Build & Test Report

45.1.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method Source
Time

Schedule.configureXML(String, String) 1(2.1%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.5%) ScheduleEntry.java
ScheduleEntry.<init>() 0(0.2%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0 (0.2%) Schedule.java
Schedule.<init>() 0 (0.2%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
_onetime_jsp_19._jspService(HttpServletRequest, HttpServiletResponse) 0 (0.0%) _onetime_jsp_19.java
AlarmWaiter.debug(String) 0 (. 0.0%) AlarmWaiter.java

4517 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average Source
Cumulative
Time
onetime jsp 19. jspService(HttpServletRequest, HttpServietResponse) 25 (50.0%) onetime _jsp _19.java

Version 2.0 69 - 69.1.5 112

ITA Release 3.0
Build & Test Report

Name Average Source
Cumulative
Time
Schedule.configureXML(String, String) 2 (3.2%) Schedule.java
Schedule.<init>() 1(1.4%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.5%) ScheduleEntry.java
ScheduleEntry.<init>() 0 (. 0.2%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0 (0.2%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0 (0.1%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4518 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per

number of calls.

Name Avg. Method Source
Object

_onetime_jsp_19._jspService(HttpServletRequest, HttpServiletResponse) 25 (50.0%) _onetime_jsp_19.java
Schedule.configureXML(String, String) 2 (3.2%) Schedule.java
Schedule.<init>() 1(1.4%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.5%) ScheduleEntry.java
ScheduleEntry.<init>() 0 (0.2%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0(0.2%) Schedule.java

Version 2.0

69-69.1.5

113

ITA Release 3.0
Build & Test Report

Name Avg. Method Source
Object
Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0 (0.1%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4519 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object

count per number of calls.

Name Average Source
Cumulative
Object

_onetime_jsp_19._jspService(HttpServletRequest, HttpServiletResponse) 142 (50.0%) _onetime_jsp_19.java
Schedule.configureXML(String, String) 10 (3.5%) Schedule.java
ScheduleEntry.setArg0(Object) 3(1.1%) ScheduleEntry.java
ScheduleEntry.<init>() 2 (0.7%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 1(0.4%) Schedule.java
Schedule.<init>() 1(0.4%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

Version 2.0 69 -69.1.5

114

ITA Release 3.0
Build & Test Report

452 recurs.jsp Scenario

4521 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and

streamline excessive method calls.

Name Calls Source
Al ar mMi t er. debug(String) 40 AlarmMai ter.java
AlarmManager.debug(String) 20 AlarmManager.java
ScheduleEntry.<init>() 20 ScheduleEntry.java
_recurs_jsp_1. jspx_writeString(JspWriter, String) 18 _recurs_jsp_1l.java
_recurs_jsp_1. jspx_writeString(JspWriter, char[]) 18 _recurs_jsp_l.java
Schedule.<init>() 10 Schedule.java
Schedule.addAlarm(ScheduleEntry) 10 Schedule.java
Schedule.configureXML(String, String) 10 Schedule.java
Schedule.containsAlarm(ScheduleEntry) 10 Schedule.java
Schedule.removeAllAlarms() 10 Schedule.java

45272 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants

(sub-methods).

Version 2.0

115

ITA Release 3.0
Build & Test Report

Name Method Time Source
Schedule.configureXML(String, String) 19 (45.7%) Schedule.java
ScheduleEntry.setArg0(Object) 3(7.1%) ScheduleEntry.java
ScheduleEntry.<init>() 2 (5.6%) ScheduleEntry.java
Schedule.<init>() 2 (5.3%) Schedule.java
Schedule.addAlarm(ScheduleEntry) 1(3.1%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.7%) Schedule.java
Schedule.removeAllAlarms() 0 (0.6%) Schedule.java
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.3%) Schedule.java
_recurs_jsp_1._jspService(HttpServletRequest, HttpServiletResponse) 0 (0.0%) _recurs_jsp_1l.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4523 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but

excludes the time spent in recursive calls to its descendants.

Name Cumulative Source
Time
_recurs_jsp_1. jspService(HttpServletRequest, HttpServiletResponse) 42 (100.0%) _recurs_jsp_1l.java
Schedule.configureXML(String, String) 25 (60.1%) Schedule.java
Schedule.<init>() 15 (134.6%) Schedule.java
ScheduleEntry.setArg0(Object) 3 (7.4%) ScheduleEntry.java
ScheduleEntry.<init>() 3 (6.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 2 (3.6%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0(0.8%) Schedule.java
Schedule.removeAllAlarms() 0 (0.7%) Schedule.java

Version 2.0 69 -69.1.5

116

ITA Release 3.0
Build & Test Report

Name Cumulative Source
Time
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.3%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4524 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method Source
Objects
Schedule.configureXML(String, String) 58 (29.9%) Schedule.java
ScheduleEntry.setArg0(Object) 48 (24.7%) ScheduleEntry.java
ScheduleEntry.<init>() 48 (24.7%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 14 (7.2%) Schedule.java
Schedule.<init>() 8 (4.1%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (1.0%) Schedule.java
Schedule.removeAllAlarms() 2 (1.0%) Schedule.java
recurs jsp 1. jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) recurs jsp 1.java
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4525 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Version 2.0 69 -69.1.5

117

ITA Release 3.0
Build & Test Report

Name Cumulative Source
Objects
_recurs_jsp_1._jspService(HttpServletRequest, HttpServiletResponse) 194 (100.0%) | _recurs_jsp_1.java
Schedule.configureXML(String, String) 140 (72.2%) Schedule.java
ScheduleEntry.setArg0(Object) 48 (24.7%) ScheduleEntry.java
ScheduleEntry.<init>() 48 (24.7%) ScheduleEntry .java
Schedule.<init>() 22 (11.3%) Schedule.java
Schedule.addAlarm(ScheduleEntry) 14 (7.2%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (1.0%) Schedule.java
Schedule.removeAllAlarms() 2 (1.0%) Schedule.java
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

45.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on

average, take a long time to execute.

Name Avg. Method Source
Time
Schedule.configureXML(String, String) 2 (4.6%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.7%) ScheduleEntry.java
Schedule.<init>() 0 (0.5%) Schedule.java
Schedule.addAlarm(ScheduleEntry) 0 (0.3%) Schedule.java
ScheduleEntry.<init>() 0 (0.3%) ScheduleEntry.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0(0.1%) Schedule.java
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java

Version 2.0 69 -69.1.5

118

ITA Release 3.0
Build & Test Report

Name Avg. Method Source
Time
_recurs_jsp_1._jspService(HttpServletRequest, HttpServiletResponse) 0 (0.0%) _recurs_jsp_1l.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4527 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average Source
Cumulative
Time
_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 42 (100.0%) _recurs_jsp_1l.java
Schedule.configureXML(String, String) 3 (6.0%) Schedule.java
Schedule.<init>() 1(3.5%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.7%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0 (0.4%) Schedule.java
ScheduleEntry.<init>() 0 (0.3%) ScheduleEntry.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0 (0.1%) Schedule.java
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4528 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

Version 2.0 69 - 69.1.5 119

ITA Release 3.0
Build & Test Report

Name Avg. Method Source
Object
Schedule.configureXML(String, String) 5 (2.6%) Schedule.java
ScheduleEntry.setArg0(Object) 4(2.1%) ScheduleEntry.java
ScheduleEntry.<init>() 2 (1.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 1(0.5%) Schedule.java
Schedule.<init>() 0 (0.0%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
_recurs_jsp_1._jspService(HttpServletRequest, HttpServiletResponse) 0 (0.0%) _recurs_jsp_1l.java
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4529 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object

count per number of calls.

Name Average Source
Cumulative
Object
_recurs_jsp_1._jspService(HttpServletRequest, HttpServiletResponse) 194 (100.0%) | _recurs_jsp_1.java
Schedule.configureXML(String, String) 14 (7.2%) Schedule.java
ScheduleEntry.setArg0(Object) 4(2.1%) ScheduleEntry.java
Schedule.<init>() 2 (1.0%) Schedule.java
ScheduleEntry.<init>() 2 (1.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 1 (0.5%) Schedule.java

Version 2.0 69 -69.1.5

120

ITA Release 3.0
Build & Test Report

Name Average Source
Cumulative
Object
Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
Schedule$l.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.6 General Performance Test Summary

All methods tested in the previous test scenarios executed very similar to each other and no one method stood out as being a
performance problem or something that needed attention. Numbers of objects created per method were small and well
distributed among the methods. No loitering objects or memory leaks were found in the heap at the end of each test cycle.
Application groups using this RCS component should expect good performance low memory usage.

Version 2.0 69 - 69.1.5 121

ITA Release 3.0
Build & Test Report

4.7 Appendix A

4.7.1 JProbe Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
<program type="application">

<application
args=
working_dir=""
source_dir=""
classname="">
<classpath/>

</application>

<applet

working_dir=
source_dir=""
htmlfile=""
main_package="">
<classpath>
<classpath.path location="%CLASSPATH%"/>

</classpath>

</applet>

<serverside
suggested_filters=""
id="Other server"
server_dir="/opt/stg35/WebSphere/AppServer"
prepend_to_vm_args=""
source_dir=""
classname="com.ibm.ejs.sm.util.process.Nanny"
main_package="gov.ed.sfa.ita.schedule"
exclude_server_classes="true"

working_dir="/opt/stg35/WebSphere/AppServer/serviets"

prepend_to_classpath="">
<classpath>
<classpath.path location="%CLASSPATH%"/>
<[classpath>
</serverside>
</program>
<vm
snapshot_dir="/opt/util/JProbe/snapshots"
location="/opt/util/jdk1.2.2/bin/java"
type="java2"
use_jit="true"/>
<viewer
socket="170.248.222.52:4444"
type="remote"/>
<analysis type="profile">
<performance
record_from_start="true"
timing="elapsed"
track_natives="true"
final_snapshot="true"
granularity="method">

Version 2.0 69 - 69.1.5

123

ITA Release 3.0
Build & Test Report

<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="*"
time="ignore"
granularity="method"/>
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="gov.ed.sfa.ita.schedule.*"
time="track"
granularity="method"/>
</performance>
<heap
record_from_start="true"
no_stack_trace_limit="false"
final_snapshot="true"
max_stack trace="4"
track_dead_objects="true"/>
<threadalyzer
record_from_start="true"
write_to_console="false">
<deadlock_detection
enabled="true"
deadlock_and_exit="true"
report_stalls="false"
track_system_threads="false"
block_can_stall="false"
deadlock_threshold="2"/>
<deadlock_prediction
enable_hold_and_wait="false"
enable_lock_order="false"
lock_order_maintains_covers="true"/>
<data_race
ignore_volatile="false"
enable_happens_before="false"
no_stack_trace_limit="false"
enable_lock_covers="false"
max_stack_trace="1"
instrument_elements="false"/>
<visualizer
enabled="true"
visualization_level="1"/>
<threadalyzer filter
visibility="invisible"
enabled="true"
classmask="*"/>
<threadalyzer filter
visibility="visible"
enabled="true"
classmask=".*"/>
</threadalyzer>
<coverage
record_from_start="true"
final_snapshot="true"
granularity="line">

Version 2.0 69 - 69.1.5

124

ITA Release 3.0
Build & Test Report

<coverage filter
visibility="invisible"
methodmask="*"
enabled="true"
classmask="*"/>

<coverage.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask=".*"/>

</coverage>
</analysis>

</jpl>

4.8 Resources
IBM’s Developer-Works
http://www.ibm.com/developerworks/

JDRing Web Site
http://webtools.dyade.fr/jdring/

Castor
http://castor.exolab.org/

5 RCS - Session Framework
5.1 Unit Test Report

5.2 Purpose

This Unit Test Report documents the test conditions and test script of the ITA R3.0 Reusable
Common Services (RCS) User Session framework. This report also provides the expected

results and actual results from running the test script.

5.3 Approach

To ensure quality of the RCS, the User Session framework went through extensive unit testing.

ITA conducted manual unit testing of this framework.

Benefits to the unit test approach are:

Standardize test conditions and cycles

Increase code quality

Increase consistency in the approach to testing

Increase productivity

Reduce time for regression testing

More time available to spend on enhancements as less time is required for fixes

Version 2.0 69 - 69.1.5

125

ITA Release 3.0
Build & Test Report

5.4 Background

The purpose of the ITA User Session framework is to provide a standard to simplify,
standardize, and extend the use of user session/context information within the J2EE standard.
The session framework will provide a common way to access session information. The
framework will decouple session information from the request, session, and cookie contexts;
and it will wrap WebSphere session extension classes.

55 Test Design

5.5.1 Testing Environment

The unit test for the User Session framework will be conducted manually. The unit test will be
conducted on a Sun SPARC machine running Solaris 2.6 interacting with a client browser
running on a Windows 2000 machine. Both Microsoft Internet Explorer 5.0.1 and Netscape
Navigator 6.2 client browsers were used to conduct the tests scripts. The focus of this unit test
is to identify that the User Session framework is functioning as designed.

5.5.2 Testing Cycles

The User Session framework is designed to retrieve user session information stored in cookies
on the client (user’s) machine or in the session object stored on the application server. There are
many possible configurations to WebSphere’s Session Manager that affects how the User
Session framework will be used.

The following test cycles will be conducted to test the different scenarios the application
developer could encounter:

Cycle Number Type Storage Type Notes
1 Normal Cookie -
2 Normal HttpSession Variable
3 Normal HttpSession Persistent
4 Normal IBMSession Manual update method not called
5 Normal IBMSession Manual update method called
6 Exception Session Does not matter if HttpSession or
IBMSession

Developers could encounter the scenarios above due to the complexity of managing user
session state and using WebSphere Session Manager. The session object can be maintained in
the server’s cache (memory) or in a database depending on how WebSphere’s Session Manager
is configured. Storing user session information in a database (persistence) is required if the
application is configured for cloning so that a user can be directed to different servers but still
be able to access his or her session information. The Session Manager offers an IBMSession
interface that extends HttpSession and provides the capability to manually request the session
information be persisted to the database. If persistence is enabled and manual update is not
enabled, the user information is persisted at the end of every servlet’s service() method call.

Version 2.0 69 -69.1.5 126

ITA Release 3.0
Build & Test Report

5.5.3 Testing Configuration

In order to test the User Session framework, several JavaServer Pages had to be developed to
utilize the User Session framework classes. An existing development Application Server
(CONV) was used to conduct the tests, with some modification to the Session Manager settings
and directory structure. The UNIX server settings were not modified and are listed below for
reference only.

5531 UNIX Server Settings

The usage of the User Session framework is closely tied to how the WebSphere Session Manager
is configured. The WebSphere properties files have not been updated and the existing settings
are used to run the test cycles.

The following sections list the properties related to the Web Application created to unit test the
User Session framework. The configuration settings used in the Administration Console is
defined in the next topic.

55.3.1.1 rules.properties:

default_host/CONVWebApp/*.activity=ibmoselink15
default_host/CONVWebApp/*.jsp=ibmoselink15
default_host/CONVWebApp/ErrorReporter=ibmoselink15
default_host/CONVWebApp/servlet/=ibmoselink15
default_host/CONVWebApp/servlet/messagerouter=ibmoselink15
default_host/CONVWebApp/servlet/rpcrouter=ibmoselink15
default_host/CONVWebApp/servlet=ibmoselink15

55.3.1.2 queues.properties:

ose.srvgrp.ibmoselink15.clonel.port=8400

ose.srvgrp.ibmoselink15.clonel.type=remote

ose.srvgrp.ibmoselink15.clonescount=1

ose.srvgrp.ibmoselink15.type=FASTLINK
ose.srvgrp=ibmoselink,ibmoselink1,ibmoselink2,ibmoselink3,ibmoselink4,ibmoselink5,ibmoselink6,ibmoselink7,ibmos
elink9,ibmoselink8,ibmoselink10,ibmoselink12,ibmoselink13,ibmoselink14,ibmoselink15,ibmoselink16,ibmoselink17,i
bmoselink18

55.3.1.3 vhosts.properties:

dev.conv.sfa.ed.gow:8531=default_host

55.3.2 WebSphere Application Server — Session Manager Configuration

The WebSphere Application Server level and Web Application level properties were not
changed to conduct this unit test. The Session Manager settings had to be changed for each test
according to the setup instructions for that test cycle.

The follow screenshots demonstrate the different configuration options for the Session Manager
in the WebSphere Administration Console. The circled settings are options that will be

Version 2.0 69 -69.1.5 127

ITARelease 3.0
Build & Test Report

FEDERAL
STUDEST AND

modified during the test cycles. If an option is not listed in the setup for the test cycle, then the

current setting of that option is not important to the test and can be left as is.
 WebSphere Advanced Administrative Console 18] =

Console View Help

v e [HE -

Session Manager:Session Manager

2| »

E Remote Serviet Redireqa| :

G B FOTW

= IFAP

= cBS

5 EAl

= ep

B ITA

= TESTZ

B, FOTWS0

B INTRANET

= FOTWSX

= oMB

B BT

2 POLICY

=1 B2 COny

{@ Default Container
= CON‘JSewIetEngine
= CONVWebapp

'% User Profile Man
=} Session Manager

=, STUGOY

ZPORTALS

Figure 2: Enable Tab

(Enable Sessions:

" Yes

DNo)

Enable Sessions in use:

Yes

(Enable Cookies:

" Yes

cm.;)

Enable URL Rewriting:

Enable Protocol Switch Rewnriting:

" Yes

" Yes

' Ho
' Mo

(Enable Persisient Sessions:

" Yes

DNu)

Enable Persistent Sessions in use:

Yes

\ Websphere Advanced Administrative Console

Console view Help

Apply

Reset

o =]]

[B

@ ".«n».

e ¥

[} Remote Serviet Redired a

H B FOTW

B2 IFAP

= cBS

B EAl

B EP

B 1A

= TEST2

= FOTWS0

_@ INTRAHET

B3, FOTWSX

5 oMB

= ExIT

B2, POLICY

= B2 COMv
iz Default Container
= CONVSer\rletEngine

[=l CONVWebapp

'% User Profile Man:
[Session Manage

o STUGOYV
_+ P PORTALS

Figure 3: Cookies Tab

[Session Manager session Manager

Cookie Name: [convdevid

)

Cookie Comment:

|intranet session suppurq

Cookie Domain: |

Cookie Maximum Age: |1

Cookie Path: |

Cookie Secure:) Yes

Apply

Reset

Version 2.0

69 -69.1.5

FEDERAL
STUDEST AND

ITA Release 3.0
Build & Test Report

{'WEhSphere Advanced Administrative Console

Console View Help

g =] 3

] Otn»

8| |EE

@[»

T

@ Remote Serviet Redired.a |

B rotw
B, IFAP
= cBs
B2 Eal
B EIP
B Ima
B TEST2
&, FOTWS0
E INTRAHET
B, FOTWSX
B oMB
B EXIT
2, POLICY
£l B CONY
(@ Default Container
= =1 CONvServietEngine
CONVWebApp
i User Profile Man

2, STUGOV
PORTALS

Persistence Type:

JSession Manager:Session Mahager

directodb «

Persistence Type in use: directodb

~JDBC Data Source
Datasource:

Datasource in use:

Userid in use:

Password:

Userd: (

|Default DataSource

Default DataSource

lejsadmin

ejsadmin

C

|mmw""

Apply ||

Reset

i =] 3

S
B

bz
m 3
]

INTRAMET

FOTWax

OMB

EXIT

POLICY

CONY

f Default Container

=l =1 CONvServietEngine
CONvWebspp

i3 User Profile Man,

[THFHEFHCEHEEHEHFHEEHERHE

BREAERERERERER

Figure 5: Intervals Tab

(Invalidate Time: 600

| seconds)

Reset

Apply ||

Version 2.0

69-69.1.5

129

ITA Release 3.0
Build & Test Report

MAFFREARFEERERE

REEYE S LK o L b e 1 e R LR IR

Version 2.0 69 -69.1.5 130

[C
sTUDES T AND

ITA Release 3.0
Build & Test Report

5533

Directory Structure

Su35e5
opt
dev35
WebSphere
AppServer
bin lopt/dev35/WebSphere/AppServer/bin: includes restart scripts for WAS
% Jopt/dev35/WebSphere/AppServer/temp: contains the rules.properties,
temp queues.properties, and vhosts.properties files.
Also contains ./default_host/ CONVWebApp/session directory where compiled
class files for the JavaServer Pages are located
| lopt/dev35/WebSphere/AppServer/logs: includes log files that are useful in
0gs tracking errors: tracefile and activity.log
Www
dev
conv
Dﬁ vwwidev/convllib: contains the various ITA - RCS jar files needed to run the
lib Session framework unit test cycles
web
session
% wwidev/conviweb/sesssion/cookieTest: Contains the * jsp files used to
cookieTest test the storage and retrieval of user session information from Cookies
stored on the client's browser
% vwwideviconviweb/sesssion/sessionTest: Contains the *jsp files used to
sessionTest te;t the storage and retrieval of user session information from HttpSession
object stored on the server
Dﬁ wwidev/conviweb/sesssion/cookieTest: Contains the *.jsp files used
ITest to test the storage and retrieval of user session information from
IBMSession objects stored on the server and to test manual update
Version 2.0 69-69.1.5 131

ITA Release 3.0
Build & Test Report

5.5.4 Testing Conditions and Results

Three sets of applications have been created to test the different functionality available within
the User Session framework. The basic design and flow of these applications are the same with
slight changes in the constructor used to access the User Session framework’s ContextManager
to store and retrieve user session information.

The files associated with each set of the test applications have been placed into separate
directories: cookieTest, sessionTest, sessionIBMTest. See the previous section for the complete
path to the directory.

The following URLSs are used to access the different pages of the test applications:
http://dev.conv.sfa.ed.qov:8531/CONVWebApp/session/cookieTest/*.jspt
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/session/sessionTest/*.isp
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/session/session|BMTest/*.jsp

All test cycles were conducted using Microsoft’s Internet Explorer (IE). Netscape Navigator
was used for testing cycles 1, 4, and 5 to ensure that the framework will behave as expected in
another browser. Browser differences can occur though; such as when opening a completely
new Internet Explorer browser (i.e. clicking the IE icon), the generated Session ID will be
different in the new browser window; but launching a new window from within an existing
browser window (i.e. Ctrl + N) will result in the same Session ID being used in the new browser
window. Whereas, in Netscape, if one Navigator window is already open, opening a new
browser in either method will still result in it using the same Session ID being used in the new
browser window.

The test conditions are provided below and the configuration of the Session Manager settings
and actual test scripts are provided in Appendix A. To check if persistent session information
has been stored in the database, a SQL query has to be executed. To access the database, type at
the command prompt “sqlplus ejsadmin@was35d” without the “ ”’s. Execute the SQL select
statement “select id, maxinactivetime from sessions;” without the “ ““s. This will current
sessions stored in the database.

1 Where *.jsp refers to the different JavaServer Pages within each directory as listed in the test
conditions and test scripts.

1 Where *.jsp refers to the different JavaServer Pages within each directory as listed in the test conditions
and test scripts.

Version 2.0 69 -69.1.5 133

EIDERAL

STUENT A

ITA Release 3.0
Build & Test Report

5541

Tests the storage and retrieval of user session information from session cookies on the user’s browser.

Test Cycle 1

Condition | Detailed Condition| Class Name Method Name JSP Name Form Data Input Expected Results
Number

1 Call the ContextManager |ContextManager, ContextManager, cookieTest/ input.jsp|First Name: Ben Constructor is initialized and it in turn
constructor to access the |CookieRetrieval CookieRetrieval Last Name: Franklin initializes the CookieRetrieval
cookie retrieval type Age: 100 constructor

2 Save the information to a |ContextManager, Constructor & cookieTest/ Information passed in from Cookies are saved and values displayed
session cookie sent back |CookieRetrieval setAttribute processinput.jsp previous condition is stored in |should be identical to values entered in
to the client the cookie condition 1

3 Retrieve and display the |ContextManager, Constructor, cookieTest/ Information passed in from Obtain a list of all name and values
information stored in the [CookieRetrieval getNames, & display.jsp condition 1 is stored in the saved in cookies. The list should match
cookie getAttribute cookie data entered in condition 1 plus display

the Session ID

4 Delete information from a |ContextManager, Constructor & cookieTest/ Delete: Age The cookie for age is deleted
cookie CookieRetrieval deleteAttribute deleteForm.jsp

5 Call the ContextManager |ContextManager, Constructor & cookieTest/pathTest|First Name: George
to set cookies with a path |CookieRetrieval setAttribute pathlnput.jsp Last Name: W
(new browser) Age: 10

6 Determine that the cookie |ContextManager, Constructor, cookieTest/pathTest]Information passed in from Information passed in from previous
set with a path can be CookieRetrieval getNames, & displayPath.jsp previous condition is stored in [condition is displayed
displayed in the same getAttribute the cookie
directory

7 Determine that the cookie |ContextManager, Constructor, cookieTest/ none No cookies except for the session
set with a path can not be|CookieRetrieval getNames, & displayPath.jsp cookie should be displayed
displayed in a parent getAttribute
directory

8 Determine that the cookie [ContextManager, Constructor, cookieTest/pathTest]Information passed in from Information passed in from condition 5 is
set with a path can be CookieRetrieval getNames, & subDir/displayPath.j |condition 5 is stored in the displayed.
seen in a sub directory. getAttribute sp cookie.

9 Ensure cookies are not |ContextManager, Constructor, cookieTest/ No information should be The Session ID from the test condition 1
maintained across CookieRetrieval getNames, & display.jsp persisted here from test should not be displayed and all values
separate new browsers getAttribute condition 1 should be null

10 Ensure cookies are none none none none No cookies should exist for
session cookies and not dev.conv.sfa.ed.gov in the test
persistent cookies computer’s cookie folder.

Version 2.0 69-69.1.5 135

EIDDERAL

ITA Release 3.0
Build & Test Report

STUDENT AL
55.4.2 Test Cycle 2
Tests the storage and retrieval of user session information stored in the HttpSession object in the application server’s memory
(cache).
Condition | Detailed Condition Class Name Method Name JSP Name | Form Data Input Expected Results
Number
1 Call the ContextManager ContextManager, ContextManager, sessionTest/ First Name: Ben Constructor is initialized and it in turn
constructor to access the SessionRetrieval SessionRetrieval input.jsp Last Name: Franklin [initializes the SessionRetrieval constructor
session retrieval type Age: 100
2 Bind the information to ContextManager, Constructor & sessionTest/ Information passed in |Session objects are saved in the server
session object SessionRetrieval setAttribute processinput.jsp [from previous conditionmemory and attributes entered in condition 1
is stored in the session|should be displayed
variables
3 Retrieve and display the ContextManager, Constructor, sessionTest/ Information passed in |Obtain a list of all name and values saved in
information bound to the SessionRetrieval getNames, & display.jsp from condition 1 is the session variables. The list should match
session object getAttribute stored in the session |data entered in condition 1 plus display the
variables Session ID
4 Delete information bound to [ContextManager, Constructor & sessionTest/ Delete: Age Delete the session variable for age
session object SessionRetrieval deleteAttribute deleteForm.jsp
5 Introduce a second Session |ContextManager, Constructor, sessionTest/ No information should |The Session ID displayed should be different]
ID (open new browser) to the [SessionRetrieval getNames, & newsSession.jsp [be persisted here from [then the Session ID from test condition 1 and
browser's memory to ensure getAttribute test condition 1 all other values should be null
objects bound to the session [ContextManager, Constructor & sessionTest/ Delete: First Name Delete the session variable for first name
are not maintained across |SessjonRetrieval deleteAttribute deleteForm.jsp
new browsers and also to
ensure that the first session is
still held in the memory cache
6 Retrieve and display the ContextManager, Constructor, sessionTest/ Last name: Franklin Last name from condition 1 will be the only
information bound to the SessionRetrieval getNames, & display.jsp value remaining
session object to show that getAttribute
the first session was still held
in cache
Version 2.0 69-69.1.5 136

EE ial
sTUDES T AND

ITA Release 3.0
Build & Test Report

5543

Test Cycle 3

Tests the storage and retrieval of user session information stored in the HttpSession object in the application server’s database
(persistent).

Condition | Detailed Condition Class Name Method Name JSP Name | Form Data Input Expected Results
Number
1 Call the ContextManager ContextManager, ContextManager, sessionTest/ First Name: Ben Constructor is initialized and it in turn
constructor to access the SessionRetrieval SessionRetrieval input.jsp Last Name: Franklin [initializes the SessionRetrieval constructor

session retrieval type

Age: 100

2 Ensure session has been ContextManager, Constructor & sessionTest/ Information passed in [A entry with the Session ID from test
persisted to the sessions table|SessionRetrieval setAttribute processinput.jsp [from previous conditionfcondition 1 should be listed with a
in the database is stored in the session|maxinactivetime of 600 and attributes

object entered in condition 1 should be displayed in
the JSP
Verify database population by using the SQL
command: select id, maxinactivetime from
sessions;

3 Retrieve and display the ContextManager, Constructor, sessionTest/ Information passed in [Obtain a list of all name and values saved in
information stored in the SessionRetrieval getNames, & display.jsp from condition 1 and [the session table. The list should match
sessions table getAttribute stored in the sessions [data entered in condition 1 plus display the

table Session ID

4 Delete information from ContextManager, Constructor & sessionTest/ Delete: Age Delete the session for age from the session
session table SessionRetrieval deleteAttribute deleteForm.jsp table

5 Introduce a second session to|ContextManager, Constructor, sessionTest/ No information should [The Session ID displayed should be different]
ensure session information is [SessionRetrieval getNames, & newSession.jsp [be persisted here from [then the Session ID from test condition 1 and
not maintained across new getAttribute test condition 1 all other values should be null
browsers and to ensure that (ContextManager, Constructor & sessionTest/ Delete: First Name Delete the session variable for first name
the first session is no longer |SessjonRetrieval deleteAttribute deleteForm.jsp
held in the memory cache so
that the data retrieved has to
come from the database

6 Retrieve and display the ContextManager, Constructor, sessionTest/ Last name: Franklin Last name from condition 1 will be the only
information stored in the SessionRetrieval getNames, & display.jsp value remaining
session variables to show that getAttribute
the first session in the
sessions table is still
accessible

Version 2.0 69-69.1.5 137

ITA Release 3.0
Build & Test Report

5544

Test Cycle 4

Tests the storage and retrieval of user session information stored in the IBMSession object in the application server’s database
(persistent) without manually calling the method to persist the information to the database.

Condition | Detailed Condition Class Name Method Name JSP Name | Form Data Input Expected Results
Number

1 Call the ContextManager ContextManager, ContextManager, sessionIBMTest/ |First Name: Ben Constructor is initialized and it in turn
construc tor to access the SessionRetrieval SessionRetrieval input.jsp Last Name: Franklin |initializes the SessionRetrieval constructor
session retrieval type Age: 100

2 Bind the objects to the ContextManager, Constructor & sessionIBMTest/ [Information passed in |Bound objects are saved in the server
session, does not call SessionRetrieval setAttribute processinput.jsp [from previous conditiorjmemory cache and not the database since
writeAttributes (sync) is stored in the session|write was not called. Attributes entered in

variables condition 1 should be displayed

3 Retrieve and display the ContextManager, Constructor, sessionIBMTest/ [Information passed in [Obtain a list of all name and values bound to
objects bound to the session |SessionRetrieval getNames, & display.jsp from condition 1 the session. The list should match data

getAttribute entered in condition 1 plus display the
Session ID. The attributes entered from
condition 1 will be displayed even though
writeAttributes was not called because it is
stored in the server's memory cache

4 Delete object bound to the ContextManager, Constructor & session|BMTest/ [Delete: Age Delete the age object bound to the session
session, does not call SessionRetrieval deleteAttribute deleteForm.jsp
writeAttributes (sync)

5 Introduce a second session |ContextManager, Constructor, sessionIBMTest/ [No information should [The Session ID displayed should be different
(new IE browser) to ensure |SessionRetrieval getNames, & input.jsp be persisted here from [then the Session ID from test condition 1
session information is not getAttribute test condition 1 and all other values should be null
maintained across new
browsers and also to ensure
that the first session is no
longer held in the memory
cache to ensure that the data
retrieved has to come from the
database

6 Access the original session byjnone none session|BMTest/ [Session ID: 0001 plus |Pressing Submit will post the form to itself.
entering its session id in a newForm.jsp the Session ID saved |[If a value has been entered, a Hyperlink for
new browser from test condition 1 [next will appear. The current browser

Session ID will be set to the Session ID
created by the very first browser from test
condition 1

Version 2.0 69-69.1.5 138

EIDERAL

ITA Release 3.0
Build & Test Report

STUDENT AL
Condition | Detailed Condition Class Name Method Name JSP Name | Form Data Input Expected Results
Number
7 Display objects bound to the |ContextManager, Constructor, sessionIBMTest/ [No information should |The values should be blank since
original session SessionRetrieval getNames & newDisplay.jsp be persisted here from |writeAttributes (sync) was never called to
getAttribute test condition 1 persist the information to the database.
55.45 Test Cycle 5

Tests the storage and retrieval of user session information stored in the IBMSession object in the application server’s database
(persistent) with manually calling the method to persist the information to the database.

Condition | Detailed Condition Class Name Method Name JSP Name | Form Data Input Expected Results
Number
1 Call the ContextManager ContextManager, ContextManager, sessionIBMTest/ |First Name: Ben Constructor is initialized and it in turn

constructor to access the
appropriate retrieval type

SessionRetrieval

SessionRetrieval

inputW.jsp

Last Name: Franklin
Age: 100

initializes the SessionRetrieval constructor

2 Bind the objects to the ContextManager, Constructor & sessionIBMTest/ |Information passed in |Session objects are saved in the server
session, call writeAttributes |SessionRetrieval setAttribute processinputW.jsp|from previous memory and to the sessions table; attributes
(sync) condition is stored in [entered in condition 1 should be displayed

the session variables

3 Retrieve and display the ContextManager, Constructor, sessionIBMTest/ [Information passed in |Obtain a list of all name and values bound to
objects bound to the session |SessionRetrieval getNames, & display.jsp from condition 1 the session. The list should match data

getAttribute entered in condition 1 plus display the
Session ID.

4 Delete object bound to the ContextManager, Constructor & sessionIBMTest/ |Delete: Age Delete the age object bound to the session
session, call writeAttributes |SessionRetrieval deleteAttribute deleteFormW.jsp
(sync)

5 Introduce a second session |ContextManager, Constructor, sessionIBMTest/ |No information should |The Session ID displayed should be different
(new browser window) to SessionRetrieval getNames, & inputW.jsp be persisted here from |then the Session ID from test condition 1 and
ensure session information is getAttribute test condition 1 all other values should be null
not maintained across new
browsers; also ensures the
first session is no longer held
in the memory cache so that
the data retrieved has to come
from the database

Version 2.0 69-69.1.5 139

EIDERAL

ITA Release 3.0
Build & Test Report

STUDENT AL
Condition | Detailed Condition Class Name Method Name JSP Name | Form Data Input Expected Results
Number
6 Access the original session by|none none sessionIBMTest/ |Session ID: 0001 plus |Pressing Submit will post the form to itself. I
entering its session id in a newForm.jsp the Session ID saved |a value has been entered, a Hyperlink for
new browser from test condition 1 [next will appear. The current browser
Session ID will be set to the Session ID
created by the very first browser from test
condition 1
7 Display objects bound to the [ContextManager, Constructor, sessionIBMTest/ |Information passed in |The values entered form test condition 1 will
original session SessionRetrieval getNames & newDisplay.jsp [from condition 1 be displayed here since writeAttributes
getAttribute (sync) was called to persist the information
to the database.
5.5.4.6 Test Cycle 6

Tests the exception handling of the User Session framework to ensure that appropriate exceptions are thrown when an invalid
session has been detected while storing user session information on the server.

Condition | Detailed Condition Class Name Method Name JSP Name | Form Data Input Expected Results
Number
1 Test setAttribute will throw an |[ContextManager, setAttribute sessionIBMTest/ |First Name: Ben IAn exception will be caught stating that the
exception SessionRetrieval processInputW.jsp [Last Name: Franklin [session is invalid.
lAge: 100
2 Test getNames and ContextManager, getNames, & sessionIBMTest/ |First Name: Ben IAn exception will be caught stating that the
getAttribute will throw SessionRetrieval getAttribute display.jsp Last Name: Franklin |session is invalid.
exceptions IAge: 100
3 Test deleteAttribute will throw [ContextManager, deleteAttribute sessionlBMTest/ [First Name: Ben IAn exception will be caught stating that the
an exception SessionRetrieval deleteFormW.jsp [Last Name: Franklin |session is invalid.
lAge: 100
Version 2.0 69-69.1.5 140

ITA Release 3.0
Build & Test Report

5.6 Performance Analysis

5.6.1 Purpose

This Performance Analysis Report documents the results of utilizing JProbe to test the ITA R3.0
Reusable Common Services (RCS) User Session framework. This report provides an in-depth
analysis of the results gathered from the JProbe application profiling and documents any
performance issues and suggests resolutions. The Detailed Design, User Guide, Unit Test
Report, and the Performance Analysis documents for the User Session framework
documentation will enable developers to quickly build applications using the User Session
framework within the ITA environment architecture.

5.6.2 Approach

To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to analyze the
User Session framework. JProbe is a performance-profiling tool and it was used to detect
performance issues such as loitering objects, unexpected references, and over-use of objects in
Java based programming. In order to profile this framework, portions of the unit test scripts
were used to conduct this test. The performance analysis of this framework is documented in
this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow gathering detailed information on individual methods and
the interaction between them.

5.6.3 Summary

This report contains the background information, performance test harness design, performance
analyses, and resulting performance metrics for the framework. Profiling the User Session
framework using the test scripts will test the code performance of the framework. The actual
results will be compared against the results of how this framework is expected to function.
Overall, this framework does not produce any loitering objects or create an excessive amount of
objects. This framework is a robust API that should not cause any performance issues for
calling applications.

Version 2.0 69 -69.1.5 141

ITA Release 3.0
Build & Test Report

5.6.4 Test Harness Design
56.4.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance test is to identify loitering objects and time spent on each method relative to
each other in the User Session framework.

5.6.4.1.1 Testing Criteria

The two main components of the User Session framework will be tested: accessing session
information stored in cookies and in the HTTP session object. Accessing information from the
session object can be further divided into accessing the information from a variable or database,
and the use of an IBMSession versus an HttpSession to store session objects. Since the User
Session framework is an API, the JavaServer Pages developed for the unit test will serve as a
test harness to profile and analyze the performance of the various methods.

5.6.4.2 Testing Configuration

In order to profile the User Session framework test applications for use with JProbe, the JPROBE
Application Server configured in WebSphere was used and some of the configurations were
changed. In the command line reference of the Application Server, there is a reference to the
JProbe configuration file. The file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/06052002_test_sessions.jpl. The action, database, and Helloworld
servlets were all disabled. The Session Manager configurations were modified according to the
settings required by the test scripts.

5.6.42.1 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the settings that
JProbe requires to profile an application, applet, or server side component (such as JavaServer
Pages and Servlets). The configuration file will determine which JVM is used to run JProbe and
the monitoring options. The user will be able to specify the activity of the Profiler. For
example, the file can be configured to cause JProbe Profiler to take a heap snapshot before it
exits and the directory to save the snapshots in.

The example application test will be conducted on the Solaris machine with the output being
sent to a remote Windows NT workstation. The configuration in the actual file used to conduct
the test can be found in Appendix A. A filter for the main package, gov.ed.fsa.ita.session, was
added to narrow the scope of the test to this package.

5.6.4.2.2 UNIX Server Settings

The usage of the User Session framework is closely tied to how the WebSphere Session Manager
is configured. The WebSphere properties files have not been updated to run the test cycles.

Version 2.0 69 -69.1.5 142

ITA Release 3.0
Build & Test Report

The following sections list the properties related to the Web Application created to unit test the
User Session framework. The configuration settings used in the Administration Console is
defined in the next topic.

5.6.4.2.2.1 rules.properties:

default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/serviet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

5.6.4.2.2.2 queues.properties:

ose.srvgrp.ibmoselink4.clonel.port=8241
ose.srvgrp.ibmoselink4.clonel.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK
ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

5.6.4.2.2.3 vhosts.properties:

stg.jprobe.fsa.ed.gov=default_host

5.6.4.2.3 WebSphere Application Server Configuration

The WebSphere Command Line will identify the JProbe configuration file to use and ensure
that the correct JVM is used. Two Environment Variables will be added to the Application
Server and two servlets will be added to the Web Application. The Session Manager
configurations have to be updated, more information on how to update the settings can be
found in the User Session Framework User Guide document.

5.6.4.23.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/06052002_test_sessions.jpl —Xnoclassgc —
Djava.compiler=NONE -ms128m —mx128m

5.6.4.2.3.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

5.6.4.24 Directory Structure

Version 2.0 69 -69.1.5 143

[C
ATUDEMNT A

ITA Release 3.0
Build & Test Report

Su35e5

stg35

www

util

WebSphere

stg

JProbe

AppServer

jprobe

jpl_files

snapshots

bi lopt/stg35/WebSphere/AppServer/bin: includes startup and shutdown scripts for
in WAS and JProbe Application Server

lopt/stg35/WebSphere/AppServer/temp: contains the rules.properties,
queues.properties, and vhosts.properties files.

Also contains ./default_host/JProbeWebApp directory where compiled class files
for the JavaServer Pages are located

temp

logs lopt/stg35/WebSphere/AppServer/logs: includes log files that are useful in
9 tracking errors: tracefile, activity.log, and JPROBEstderr.log, JPROBEstdout.log

lopt/util/JProbe/jpl_files: directory for JProbe Configuration (*.jpl) files used to
profile the performance of applications

lopt/util/JProbe/snapshots: directory containing performance and heap snapshots
saved from JProbe tests; the files have to be sent via FTP to the developer's
workstation console in order to be viewed

Iwww/stgl/jprobef/lib: contains the various ITA - RCS jar files needed to run the
Session framework unit test cycles

session

Iwww/stg/jprobe/web/sesssion/cookieTest: Contains the *.jsp files used to
cookieTest test the storage and retrieval of user session information from Cookies
stored on the client’s browser

g/jprok ion/sessionTest: Contains the *.jsp files used to
test the storage and retrieval of user session information from HttpSession

sessionTest
object stored on the server

Iwwwi/stg/jprobe/web/sesssion/cookieTest: Contains the *.jsp files used
ITest to test the storage and retrieval of user session information from
1 objects stored on the server and to test manual update

Version 2.0

69-69.1.5 144

ITA Release 3.0
Build & Test Report

5.6.5 Testing Scenario

Test applications created for the unit test will be used to execute the performance analysis.
Portions of Test Cycles: 1, 2, 3, and 5 will be executed to test the performance of the User Session
framework in different scenarios.

Test Cycle 1 will be executed to profile the performance of methods used to access and store
data from cookies. Test Cycle 2 and 3 will test the use of storing user data in HttpSession
objects in either the application server memory or in a persistent database. Test Cycle 5 will be
used to test how the API functions when using an IBMSession object instead of an HttpSession

object.

The results gathered from the application that are external to the User Session Framework APIls
will not be included in the performance profiling results. These results will be excluded since
the purpose of profiling is to determine the performance of the application under normal
conditions. The performance of the methods used to test the APIs has to be excluded to test just
the behavior of the framework.

Version 2.0 69 -69.1.5 145

ITA Release 3.0
Build & Test Report

5.6.6 Results and Analysis

The JProbe Profiler with Memory Debugger application is used to trace both the memory usage
and performance measurement of the User Session framework API. Two snapshots are taken: a
heap snapshot and a performance Snapshot. Each snapshot provides different information
regarding our test.

5.6.6.1 Heap Snapshot (Memory Usage)

The heap snapshot can be used to visualize how memory is being used in the heap, obtain
information on objects allocated in the heap, and determine if there are any loitering objects at
the end of the test.

5.6.6.1.1 Heap Graph Analysis

The screenshot below is obtained from executing test cycle 3. It is the only heap graph
screenshot depicted in this report since the heap graphs from executing other test cycle exhibit
the same pattern.

Q Runtime Heap Summary: com.ibm.ejs.sm.server.ManagedServe

Refresh:| every second w | Show History:| &ll b g

Memory (KB}
140000

120000

100000

20000 Ran garbage collection &

set Checkpoint
Menory usage during
WAS initialization

60000

40000

Test execution

ection
shots

Garbage coll
and take sn

20000

0
00:00 01:40 03:20 05:00

In the graph above, it is possible to see that when the Application Server is initialized, a great
deal of memory is consumed. Once the App Server has finished initializing, the memory usage
levels off to a flat line. JProbe will call the Garbage Collector to remove objects that are no
longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance analysis.
The object count will be measured against the count at the checkpoint. By reading the graph, it

Version 2.0 69 -69.1.5 146

ITA Release 3.0
Build & Test Report

can be determined that the overall memory usage for the User Session framework is very low
and will not result in huge increase to the overhead of calling applications.

5.6.6.1.2 Instance Summary

The table below is a section of the Instance Summary result associated with conducting test
cycle 3. The Count column displays how many instances of the class currently exist in the heap
and the Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the
checkpoint was set. The checkpoint tells JProbe to tag all subsequently created objects as
“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Package Class Count Count Memory | Memory
Change Change
com.ibm.servlet.personalization.tracking HashtableEntry 5 +5 0.08 +0.08
(14.7%) (5.9%)
com.ibm.servlet.personalization.tracking | SessionDatalList 4 +4 0.048 +0.048
(11.8%) (3.5%)
com.ibm.servlet.personalization.tracking SessionSimpleHashtable 4 +4 0.048 +0.012
(11.8%) (3.5%)
com.ibm.servlet.personalization.tracking DatabaseSessionData 2 +2 0.36 +0.36
(5.9%) (26.5%)
com.ibm.servlet.personalization.tracking SimpleHashtableEnumerator 2 +2 0.04 +0.04
(5.9%) (2.9%)
com.ibm.servlet.personalization.tracking BackedHastable 1 +1 0.036 +0.036
(2.9%) (2.6%)
com.ibm.servlet.personalization.tracking DatabaseSessionContext 1 +1 0.124 +0.124
(2.9%) (9.1%)
com.ibm.servlet.personalization.tracking | SessionApplicationParameters | 1 +1 0.028 +0.028
(2.9%) (2.1%)
com.ibm.servlet.personalization.tracking | SessionTrackignEPMApplicati 1 +1 0.028 +0.028
onData (2.9%) (2.1%)

These results were gathered after the test scenario has finished executing and garbage collection
has occurred. We then filtered for “*session*” since those are the only results we are interested
in. The Count Change column was used to sort the data to determine which objects remain
loitering in the heap after the scenario has been completed.

None of the User Session framework objects remain in the memory heap after garbage
collection has been called. This includes all calls to the ContextManager class, which in turn
calls the CookieRetrieval or SessionRetrieval classes. From this we can determine that the User
Session framework does not create any loitering objects once the browser has been exited or the
session invalidated.

Version 2.0 69 -69.1.5 147

ITA Release 3.0
Build & Test Report

5.6.6.2 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe — five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The compound
metrics are averages per number of calls, including: average method time, average cumulative time, average method object count,
and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance assessment of
the User Session framework. These metrics are basic indicators of process resource utilization. The detailed graphs associated with
each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by *FSA* to obtain only the classes within the User Session framework which is
what the test is looking for. Then for each section, the results were sorted by the metric under investigation to obtain the top ten
results for each metric.

Only the test results from test cycle 1 and test cycle 5 are reported in this document. These two cycles were chosen since they
represented two of the broadest uses of the ITA User Session framework.

5.6.6.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Cycle 1:
Name Calls Source
ContextManager.getAttribute(String) 15 | ContextManager.java
CookieRetrieval.getAttribute(String) 15 | CookieRetrieval
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 4 | ContextManager.java

CookieRetrieval
ContextManager.java
ContextManager.java
ContextManager.java
CookieRetrieval

CookieRetrieval.<init>(HttpServletRequest, HttpServletResponse, String)
ContextManager.getHttpRequest()

ContextManager.getHttpResponse()

ContextManager.setAttribute(String, Object)
CookieRetrieval.getHttpRequest()

W[~

Version 2.0 69 -69.1.5 149

ITA Release 3.0
Build & Test Report

Name Calls Source
CookieRetrieval.getHttpResponse() 3 | CookieRetrieval
CookieRetrieval.setAttribute(String, Object 3 | CookieRetrieval
Cycle5:
Name Calls Source
ContextManager.getAttribute(String) 11 | SessionRetrieval.java

ContextManager.java
SessionRetrieval.java
SessionRetrieval.java
ContextManager.java
ContextManager.java
SessionRetrieval.java
SessionRetrieval.java
ContextManager.java
SessionRetrieval.java

SessionRetrieval.getAttribute(String)

ContextManager.getHttpRequest()

ContextManager.getHttpResponse()

SessionRetrieval.getHttpRequest()

SessionRetrieval.getHttpResponse()

ContextManager.<init>(HttpServetRequest, HttpServletResponse, boolean, boolean)
ContextManager.writeAttributes()

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)
SessionRetrieval.writeAttributes()

[N
Hlh(A[d|lO|O|O|O|F

From the results above, it is possible to see that method calls to the User Session framework APIs were behaving as expected. For
every call to the ContextManager, there is a call to the CookieRetrieval or SessionRetrieval method to access user session information
from the chosen storage context. There were no excessive calls since the framework is designed to provide a single set of APIs that
developers could call which will then interact with the chosen storage context. The number of calls to the ContextManager could be
reduced based on how the calling application chooses to utilize the framework. Since the test application is a series of JSP, an
ContextManager object was created in each page.

Version 2.0 69 -69.1.5 150

ITA Release 3.0
Build & Test Report

5.6.6.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants (sub-
methods).

Cycle 1:

Name

Method Time

Source

CookieRetrieval.getNames()

2.89 (40.0%)

CookieRetrieval.java

ContextManager.<init>(HttpServletRequest, HttpServletResponse)

2.37 (32.9%)

ContextManager.java

CookieRetrieval.getAttribute(String)

0.67 (9.3%)

CookieRetrieval.java

CookieRetrieval.setAttribute(String, Object)

0.50 (6.9%)

CookieRetrieval.java

CookieRetrieval.class$(String)

0.16 (2.2%)

CookieRetrieval.java

ContextManager.getAttribute(String)

0.13 (1.8%)

ContextManager.java

CookieRetrieval.deleteAttribute(String)

0.12 (1.6%)

CookieRetrieval.java

CookieRetrieval.<init>(HttpServletRequest, HttpServletResponse, String)

0.08 (1.2%)

CookieRetrieval.java

ContextManager.setAttribute(String, Object)

0.05 (0.7%)

ContextManager.java

ContextManager.getNames()

0.05 (0.6%)

ContextManager.java

Cycle 5:

Name

Method Time

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

5.08 (55.6%)

ContextManager.java

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

2.74 (29.9%)

SessionRetrieval.java

SessionRetrieval.writeAttributes()

0.26 (2.8%)

SessionRetrieval.java

SessionRetrieval.class$(String)

0.17 (1.8%)

SessionRetrieval.java

SessionRetrieval.getAttribute(String)

0.13 (1.5%)

SessionRetrieval.java

ContextManager.getAttribute(String)

0.10 (1.1%)

ContextManager.java

SessionRetrieval.setAttribute(String, Object)

0.09 (1.0%)

SessionRetrieval.java

ContextManager.getHttpRequest()

0.07 (0.8%)

ContextManager.java

ContextManager.setAttribute(String, Object)

0.07 (0.8%)

ContextManager.java

SessionRetrieval.getNames()

0.07 (0.7%)

SessionRetrieval.java

The results above show that the longest running methods are the initialization methods. The CookieRetrieval and SessionRetrieval
methods have longer times compared to the ContextManager methods. This is due to the ContextManager methods calling an
CookieRetrieval or SessionRetrieval method and the time spent executing the children methods are not being counted.

Version 2.0 69 -69.1.5 151

ITA Release 3.0
Build & Test Report

SessionRetrieval’s writeAttributes() method has a longer execution time compared to other methods, which is expected since it has to

access a database to perform a write to it. CookieRetrieval’s getNames() method takes longer to execute compared to
SessionRetrieval’s getNames() method. This is an expected condition as it is more complicated to cycle through and obtain the

names of all cookies then it is to retrieve all names from a session object.

5.6.6.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but excludes

the time spent in recursive calls to its descendants.

Cycle 1:

Name

Cumulative

Time

Source

ContextManager.getNames()

3.10 (42.9%)

ContextManager.java

CookieRetrieval.getNames()

3.05 (42.3%)

CookieRetrieval.java

ContextManager.<init>(HttpServletRequest, HttpServletResponse)

2.46 (34.0%)

ContextManager.java

ContextManager.getAttribute(String)

0.81 (11.2%)

ContextManager.java

CookieRetrieval.getAttribute(String)

0.67 (9.3%)

CookieRetrieval.java

ContextManager.setAttribute(String, Object)

0.55 (7.6%)

ContextManager.java

CookieRetrieval.setAttribute(String, Object)

0.50 (6.9%)

CookieRetrieval.java

CookieRetrieval.class$(String)

0.16 (2.2%)

CookieRetrieval.java

ContextManager.deleteAttribute(String)

0.15 (2.1%)

ContextManager.java

CookieRetrieval.deleteAttribute(String)

0.12 (1.6%)

CookieRetrieval.java

Cycle 5:

Name

Cumulative

Time

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

7.99 (87.3%)

ContextManager.java

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

2.90 (31.7%)

SessionRetrieval.java

ContextManager.writeAttributes()

0.32 (3.5%)

ContextManager.java

SessionRetrieval.writeAttributes()

0.26 (2.8%)

SessionRetrieval.java

ContextManager.getAttribute(String)

0.24 (2.6%)

ContextManager.java

SessionRetrieval.class$(String)

0.17 (1.8%)

SessionRetrieval.java

ContextManager.setAttribute(String, Object)

0.16 (1.8%)

ContextManager.java

SessionRetrieval.getAttribute(String)

0.13 (1.5%)

SessionRetrieval.java

Version 2.0 69 -69.1.5

152

ITA Release 3.0
Build & Test Report

Name Cumulative Source
Time
ContextManager.getNames() 0.11 (1.2%) | ContextManager.java
ContextManager.getHttpRequest() 0.10 (1.1%) | ContextManager.java

In the results above, it is possible to see that ContextManager methods have a longer cumulative time since it includes in the count
the time it takes for the ContextManager methods to call a sub-method to retrieve the data. Again, it takes considerably longer to
execute the getNames() method in CookieRetrieval then it does in SessionRetrieval due to the complexity of the logic in that
particular method.

5.6.6.24 Method Object Count
Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Cycle 1:
Name Method Source
Objects
CookieRetrieval.getNames() 23 (51.1%) | CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 10 (22.2%) | ContextManager.java
CookieRetrieval.setAttribute(String, Object) 9 (20.0%) | CookieRetrieval.java
CookieRetrieval.class$(String) 2 (4.4%) | CookieRetrieval.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) | CookieRetrieval.java
ContextManager.<clinit>() 0 (0.0%) | ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) | ContextManager.java
ContextManager.getHttpResponse() 0 (0.0%) | ContextManager.java
Cycle5:
Name Method Source
Objects
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 20 (45.5%) | SessionRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 18 (40.9%) | ContextManager.java
SessionRetrieval.writeAttributes() 4 (9.1%) | SessionRetrieval.java

Version 2.0 69 -69.1.5 153

ITA Release 3.0
Build & Test Report

Name Method Source
Objects
SessionRetrieval.class$(String) 2 (4.5%) | SessionRetrieval.java
ContextManager.writeAttributes() 0 (0.0%) | ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.setAttribute(String, Object) 0 (0.0%) | ContextManager.java
SessionRetrieval.getAttribute(String) 0 (0.0%) | SessionRetrieval.java
ContextManager.getNames() 0 (0.0%) | ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) | ContextManager.java

The method getNames() from the CookieRetrieval class created several objects compared to the same method in SessionRetrieval.
This is due to the design of the method, and which requires it to obtain all cookies from the request first, create a vector for the cookie
name, iterate through all cookies, and then add the names to the vector. In future uses, if there is not enough memory to execute this
framework then this method could be examined to see if less objects can be created. Presently, the getNames() method does not

produce any significant performance problems that would require it to be redeveloped.

The method setAttributes() from the CookieRetrieval class compared to the same method in the SessionRetrieval class also created
more objects. This is expected since a new Cookie object has to be created for each cookie to be added to the response object and set
on the client browser. There is no alternative to the implementation of this method and developers will need to be aware that this

method will create a new Cookie object for each cookie that has to be set.

5.6.6.25 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Cycle 1:

Name

Cumulative
Objects

Source

CookieRetrieval.getNames()

25 (55.6%)

CookieRetrieval.java

ContextManager.getNames()

25 (55.6%)

ContextManager.java

ContextManager.<init>(HttpServletRequest, HttpServletResponse)

10 (22.2%)

ContextManager.java

CookieRetrieval.setAttribute(String, Object) 9 (20.0%) | CookieRetrieval.java
ContextManager.setAttribute(String, Object) 9 (20.0%) | ContextManager.java
CookieRetrieval.class$(String) 2 (4.4%) | CookieRetrieval.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) | CookieRetrieval.java

Version 2.0 69 -69.1.5

154

ITA Release 3.0
Build & Test Report

Name Cumulative Source
Objects
ContextManager.deleteAttribute(String) 1 (2.2%) | ContextManager.java
ContextManager.<clinit>() 0 (0.0%) | ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) | ContextManager.java
Cycle5:
Name Cumulative Source
Objects

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

40 (90.9%)

ContextManager.java

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

22 (50.0%)

SessionRetrieval.java

ContextManager.writeAttributes() 4 (9.1%) | ContextManager.java
SessionRetrieval.writeAttributes() 4 (9.1%) | SessionRetrieval.java
SessionRetrieval.class$(String) 2 (4.5%) | SessionRetrieval.java
ContextManager.<clinit>() 0 (0.0%) | ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) | ContextManager.java
ContextManager.getHttpResponse() 0 (0.0%) | ContextManager.java

The findings from this metric are similar to the previous results for Method Object Count. The count for objects created by methods

in the ContextManager class increased since it now includes the count of objects created by sub-methods.

56.6.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on average,

take a long time to execute.

Cycle 1:

Name

Avg. Method
Time

Source

CookieRetrieval.getNames()

1.44 (20.0%)

CookieRetrieval.java

ContextManager.<init>(HttpServletRequest, HttpServletResponse)

0.59 (8.2%)

ContextManager.java

CookieRetrieval.setAttribute(String, Object)

0.17 (2.3%)

CookieRetrieval.java

CookieRetrieval.class$(String)

0.16 (2.2%)

CookieRetrieval.java

Version 2.0 69 -69.1.5

155

ITA Release 3.0
Build & Test Report

Avg. Method

Time

Source

CookieRetrieval.deleteAttribute(String)

0.12 (1.6%)

CookieRetrieval.java

CookieRetrieval.getAttribute(String)

0.04 (0.6%)

CookieRetrieval.java

ContextManager.deleteAttribute(String)

0.04 (0.5%)

ContextManager.java

ContextManager.<clinit>()

0.03 (0.4%)

ContextManager.java

ContextManager.getNames()

0.02 (0.3%)

ContextManager.java

CookieRetrieval.<init>(HttpServletRequest, HttpServletResponse, String)

0.02 (0.3%)

CookieRetrieval.java

Cycle 5:

Avg. Method

Time

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

1.27 (13.9%)

ContextManager.java

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

0.68 (7.5%)

SessionRetrieval.java

SessionRetrieval.class$(String)

0.17 (1.8%)

SessionRetrieval.java

SessionRetrieval.writeAttributes ()

0.06 (0.7%)

SessionRetrieval.java

SessionRetrieval.deleteAttribute(String)

0.05 (0.5%)

SessionRetrieval.java

SessionRetrieval.getNames()

0.03 (0.4%)

SessionRetrieval.java

ContextManager.deleteAttribute(String)

0.03 (0.3%)

ContextManager.java

ContextManager.<clinit>()

0.03 (0.3%)

ContextManager.java

SessionRetrieval.setAttribute(String, Object)

0.03 (0.3%)

SessionRetrieval.java

ContextManager.getHttpSession()

0.03 (0.3%)

ContextManager.java

The above results demonstrate that on average, the initialization methods, CookieRetrieval.getNames(), and

FSASessionRetreival.write Attributes() takes longer to execute. These findings are expected and previously explored in the Method

Time metric.

5.6.6.2.7

Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their

descendants, take a long time (on average) to execute.

Cycle 1:

Version 2.0

69 -69.1.5

156

ITA Release 3.0
Build & Test Report

Name

Average

Cumulative

Time

Source

ContextManager.getNames()

1.55 (21.5%)

ContextManager.java

CookieRetrieval.getNames()

1.53 (21.1%)

CookieRetrieval.java

ContextManager.<init>(HttpServletRequest, HttpServletResponse)

0.61 (8.5%)

ContextManager.java

ContextManager.setAttribute(String, Object)

0.18 (2.5%)

ContextManager.java

CookieRetrieval.setAttribute(String, Object)

0.17 (2.3%)

CookieRetrieval.java

CookieRetrieval.class$(String)

0.16 (2.2%)

CookieRetrieval.java

ContextManager.deleteAttribute(String)

0.15 (2.1%)

ContextManager.java

CookieRetrieval.deleteAttribute(String)

0.12 (1.6%)

CookieRetrieval.java

ContextManager.getAttribute(String)

0.05 (0.7%)

ContextManager.java

CookieRetrieval.getAttribute(String)

0.04 (0.6%)

CookieRetrieval.java

Cycle5:

Name

Average

Cumulative

Time

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

2.00 (21.8%)

ContextManager.java

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean)

0.73 (7.9%)

SessionRetrieval.java

SessionRetrieval.class$(String)

0.17 (1.8%)

SessionRetrieval.java

ContextManager.deleteAttribute(String)

0.08 (0.9%)

ContextManager.java

ContextManager.writeAttributes()

0.08 (0.9%)

ContextManager.java

SessionRetrieval.writeAttributes()

0.06 (0.7%)

SessionRetrieval.java

ContextManager.getNames()

0.05 (0.6%)

ContextManager.java

ContextManager.setAttribute(String, Object)

0.05 (0.6%)

ContextManager.java

SessionRetrieval.deleteAttribute(String)

0.05 (0.5%)

SessionRetrieval.java

ContextManager.getHttpSession()

0.04 (0.4%)

ContextManager.java

The results above do not present any surprises and are consistent with the expected results based on evaluation of the previous
performance metrics.

5.6.6.2.8 Average Method Object

Version 2.0 69 -69.1.5 157

ITA Release 3.0
Build & Test Report

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per number
of calls.

Cycle 1:
Name Avg. Method Source
Object
CookieRetrieval.getNames() 11 (24.4%) | CookieRetrieval.java
CookieRetrieval.setAttribute(String, Object) 3 (6.7%) | CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 2 (4.4%) | ContextManager.java
CookieRetrieval.class$(String) 2 (4.4%) | CookieRetrieval.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) | CookieRetrieval.java
ContextManager.getNames() 0 (0.0%) | ContextManager.java
ContextManager.setAttribute(String, Object) 0 (0.0%) | ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.<clinit>() 0 (0.0%) | ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) | ContextManager.java
Cycle5:
Name Avg. Method Source
Object
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 5 11.4%) | SessionRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 4 (9.1%) | ContextManager.java
SessionRetrieval.class$(String) 2 (4.5%) | SessionRetrieval.java
SessionRetrieval.writeAttributes() 1 (2.3%) | SessionRetrieval.java
ContextManager.<clinit>() 0 (0.0%) | ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.getAttribut e(String) 0 (0.0%) | ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) | ContextManager.java
ContextManager.getHttpResponse() 0 (0.0%) | ContextManager.java
ContextManager.getHttpSession() 0 (0.0%) | ContextManager.java

These results serve to demonstrate that the methods that produce the most objects are called the most times. Designing the test
application differently can eliminate some of the number of calls and objects created.

Version 2.0 69 -69.1.5 158

ITA Release 3.0
Build & Test Report

5.6.6.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object count per
number of calls.

Cycle 1:
Name Average Source
Cumulative
Object
ContextManager.getNames() 12 (26.7%) | ContextManager.java
CookieRetrieval.getNames() 12 (26.7%) | CookieRetrieval.java
ContextManager.setAttribute(String, Object) 3 (6.7%) | ContextManager.java
CookieRetrieval.setAttribute(String, Object) 3 (6.7%) | CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 2 (4.4%) | ContextManager.java
CookieRetrieval.class$(String) 2 (4.4%) | CookieRetrieval.java
ContextManager.deleteAttribute(String) 1 (2.2%) | ContextManager.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) | CookieRetrieval.java
ContextManager.<clinit>() 0 (0.0%) | ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) | ContextManager.java
Cycle 5:
Name Average Source
Cumulative
Object
ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 10 (22.7%) | ContextManager.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 5 (11.4%) | SessionRetrieval.java
SessionRetrieval.class$(String) 2 (4.5%) | SessionRetrieval.java
ContextManager.deleteAttribute(String) 0 (0.0%) | ContextManager.java
ContextManager.writeAttributes() 1 (2.3%) | ContextManager.java
SessionRetrieval.writeAttributes() 1 (2.3%) | SessionRetrieval.java
ContextManager.getNames() 0 (0.0%) | ContextManager.java
ContextManager.setAttribute(String, Object) 0 (0.0%) | ContextManager.java
SessionRetrieval.deleteAttribute(String) 0 (0.0%) | SessionRetrieval.java
ContextManager.getHttpSession() 0 (0.0%) | ContextManager.java

Version 2.0 69 -69.1.5 159

ITA Release 3.0
Build & Test Report

The average cumulative object is a reflection of the Average Method Object Count metric but includes information for methods from
the ContextManager class and calls to its children.

5.6.6.3 General Performance Metrics

The RCS User Session framework is tested on a Solaris 2.6 platform running JDK1.2.2 Reference Implementation. The test harness
tested the major operations of the User Session framework independently and the system as a whole.

No memory leaks were found in the Session framework using the different test cycles as a test harness. No loitering objects were
found in the heap at the end of the each test cycle.

Version 2.0 69 -69.1.5 160

ITARelease 3.0
Build & Test Report

5.6.7 Appendix A
56.7.1 JProbe Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
<program type="application">

<application
args=
working_dir=
source_dir=""
classname="">
<classpath/>

</application>

<applet

working_dir=""
source_dir=""
htmlfile=""
main_package="">
<classpath>
<classpath.path location="%CLASSPATH%"/>
</classpath>
</applet>
<serverside
suggested_filters=
id="Other server"
server_dir="/opt/stg35/WebSphere/AppServer"
prepend_to_vm_args=""
source_dir=""
classname="com.ibm.ejs.sm.util.process.Nanny"
main_package="gov.ed.fsa.ita.session"
exclude_server_classes="true"
args=""

working_dir="/opt/stg35/WebSphere/AppServer/servlets"

prepend_to_classpath="">
<classpath>
<classpath.path location="%CLASSPATH%"/>
</classpath>
</serverside>
</program>
<vm
snapshot_dir="/opt/util/JProbe/snapshots"
location="/opt/util/jdk1.2.2/bin/java"
args=""
type="java2"
use_jit="true"/>
<viewer
socket="170.248.222.74:4444"
type="remote"/>
<analysis type="profile">
<performance
record_from_start="true"
timing="elapsed"
track_natives="true"

Version 2.0 69 -69.1.5

161

ITA Release 3.0
Build & Test Report

final_snapshot="true"
granularity="method">
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="*"
time="ignore"
granularity="method"/>
<performance.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask=" gov.ed.fsa.ita.session.*"
time="track"
granularity="method"/>

</performance>

<heap

record_from_start="true"
no_stack_trace_limit="false"
final_snapshot="true"
max_stack_trace="4"
track_dead_objects="true"/>

<threadalyzer

record_from_start="true"
write_to_console="false">
<deadlock_detection
enabled="true"
deadlock_and_exit="true"
report_stalls="false"
track_system_threads="false"
block_can_stall="false"
deadlock_threshold="2"/>
<deadlock_prediction
enable_hold_and_wait="false"
enable_lock_order="false"
lock_order_maintains_covers="true"/>
<data_race
ignore_volatile="false"
enable_happens_before="false"
no_stack trace_limit="false"
enable_lock_covers="false"
max_stack_trace="1"
instrument_elements="false"/>
<visualizer
enabled="true"
visualization_level="1"/>
<threadalyzer filter
visibility="invisible"
enabled="true"
classmask="*"/>
<threadalyzer filter
visibility="visible"
enabled="true"
classmask=".*"/>

</threadalyzer>
<coverage

record_from_start="true"

Version 2.0

69 - 69.1.5 162

ITA Release 3.0
Build & Test Report

final_snapshot="true"

granularity="line">

<coverage.filter
visibility="invisible"
methodmask="*"
enabled="true"
classmask="*"/>

<coverage.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask=".*"/>

</coverage>
</analysis>

</jpl>

Version 2.0 69 - 69.1.5 163

ITA Release 3.0
Build & Test Report

5.6.8 Resources

Best Practices for Session Programming: WebSphere Application Server

- http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/040401
0108.html

Building Business Solutions with WebSphere

- http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/060611
00.html

Maintaining Session Data with the WebSphere Session Manager —
- http://wwweé.software.ibm.com/devtools/news0801/art26.htm

Session Manager Properties

- http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/060611
00.html

WebSphere Application Server Best Practices using HTTP Sessions
- http://www.106.ibm.com/developerworks/patterns/quidelines/HTTP Session
Best Practice.pdf

6 RCS —Web Services (SOAP) Framework

6.1 Purpose

This section of the Performance Analysis Report documents the results of utilizing
JProbe to analyze the ITA R3.0 Reusable Common Services (RCS) SOAP framework.
This section provides an in-depth analysis of the results gathered from the JProbe and
documents performance issues. The Detailed Design, User Guide, and the Performance
Analysis documents for the SOAP framework will enable developers to quickly build
applications using the SOAP framework within the ITA environment architecture.

Version 2.0 69 -69.1.5 164

ITARelease 3.0
Build & Test Report

6.2 Approach

To ensure program efficiency and to detect possible bottlenecks, ITA used JProbe to
analyze the SOAP framework. JProbe is a performance-profiling tool and it was utilized
to detect performance issues such as loitering objects, unexpected references, and over-
use of objects in Java based programming.

Two key groups of statistics are collected from the JProbe Profiler: The memory (heap)
usage and the time spent on each method within the program (performance detail). This
tool can be used to identify loitering objects and inefficiencies in code more easily.
JProbe also contains the capabilities to drill-down and allow detailed information to be
gathered on individual methods and define the calling relationship between methods.

6.3 Summary

This section of the report contains the performance test harness design, performance
analysis, and resulting performance metrics for the SOAP framework. The example
SOAP messaging application provided with the framework distribution was used as the
test harness. The test was executed with one message and also with three messages.
The actual results were compared against the results of how this framework is expected
to function. Overall, this framework does not produce any loitering objects that remain
in the heap after its useful life.

Version 2.0 69 - 69.1.5 165

ITARelease 3.0
Build & Test Report

6.4 Test Harness Design

6.4.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The
focus of this performance analysis is to identify loitering objects and time spent on each
method relative to other methods within the SOAP Framework.

6.4.1.1 Testing Criteria

The Messaging portion of the Apache SOAP Framework is what needed to be
performance tested. Since the SOAP Framework is an API, the example messaging
application packaged with the framework distribution was used as a test harness to
profile and analyse the performance of the various methods.

6.4.1.2 JProbe Configuration File

The JProbe Configuration file has a file extenstion of .jpl. This file contains all of the
settings that JProbe requires to profile an application, applet, or serverside component
(such as JavaServer Pages and Servlets). The configuration file will determine which
JVM is used to run JProbe and the monitoring options.

The example application test was conducted on the Solaris machine with the output
directed to a remote Windows NT workstation. Performance and heap snapshots were
taken before the Application Server was stopped. The following is the actual file used to
conduct the test.

<?xm version="1.0" encodi ng="UTF-8" ?>
<I DOCTYPE j pl SYSTEM "jpl.dtd" >

<jpl version="1.5">
<program type="application">
<application
args=""
wor ki ng_dir=""
source_dir=""
cl assnane="">
<cl asspat h/ >
</ application>
<appl et
wor ki ng_dir=""
source_dir=""
htm file=""
mai n_package="">
<cl asspat h>
<cl asspat h. path | ocati on=" %CLASSPATHY / >
</ cl asspat h>
</ appl et >

Version 2.0 69 - 69.1.5 166

ITARelease 3.0
Build & Test Report

<serverside
suggested _filters=
i d="Ct her server"
server _di r="/opt/ st g35/ WebSpher e/ AppSer ver"
prepend_to_vm args=""
source_dir=""
cl assnane="comibmejs.smutil.process. Nanny"
mai n_package="or g. apache. soap"
excl ude_server _cl asses="true"
args=""

wor ki ng_di r="/opt/ st g35/ WebSpher e/ AppServer/servl ets”

prepend_to_cl asspath="">
<cl asspat h>
<cl asspat h. path

| ocat i on="%UCLASSPATHY / >

</ cl asspat h>
</ serversi de>

</ progr ane

<vm
snapshot _dir="/opt/util/JProbe/ snapshots”
| ocation="/opt/util/jdkl.2.2/bin/java"
args=""
type="j ava2"
use_jit="true"/>

<vi ewer

socket ="170. 248. 222. 80: 4444"
type="renote"/>

<anal ysis type="profile">

<per f ormance
record fromstart="true"
ti mng="el apsed"
track_natives="true"
final _snapshot="fal se"
granul arity="net hod">
<performance.filter
visibility="visible"
met hodmask="*"
enabl ed="t rue"
cl assmask="*"
ti me="ignore"
granul arity="net hod"/ >
<performance.filter
vi sibility="visible"
met hodmask="*"
enabl ed="true"
cl assmask="or g. apache. soap. *"
time="track"
granul arity="met hod"/ >
<performance.filter
visibility="visible"
met hodmask="*"
enabl ed="true"
cl assmask="sanpl es. nessagi ng. *"

Version 2.0

69 - 69.1.5

167

ITARelease 3.0
Build & Test Report

time="track"
granul arity="net hod"/ >
</ per f or mance>
<heap
record _fromstart="true"
no_stack trace_linmt="fal se"
final _snapshot="fal se"
max_stack trace="4"
track_dead_obj ects="true"/>
<t hr eadal yzer
record _fromstart="true"
write to_consol e="fal se">
<deadl| ock_det ection
enabl ed="true"
deadl ock_and_exit="true"
report_stalls="fal se"
track_systemthreads="fal se”
bl ock_can_stal | ="fal se"
deadl ock_t hreshol d="2"/>
<deadl ock_prediction
enabl e_hol d_and_wai t="f al se"
enabl e_| ock_order="fal se"
| ock_order _nmmintains_covers="true"/>
<data_race
i gnore_vol atile="fal se"
enabl e_happens_bef ore="f al se"
no_stack trace_linmt="fal se"
enabl e_| ock_covers="fal se"
max_stack_trace="1"
i nstrument el enents="fal se"/>
<vi sual i zer
enabl ed="true"
vi suali zation_|l evel ="1"/>
<t hreadal yzer.filter
visibility="invisible"
enabl ed="true"
cl assmask="*"/>
<t hreadal yzer.filter
visibility="visible"
enabl ed="true"
cl assmask=".*"/>
</t hreadal yzer >
<cover age
record fromstart="true"
final _snapshot="fal se"
granularity="line">
<coverage.filter
visibility="invisible"
met hodmask="*"
enabl ed="true"
cl assmask="*"/>
<coverage.filter
vi sibility="visible"

Version 2.0 69 - 69.1.5 168

ITARelease 3.0
Build & Test Report

met hodmask="*"
enabl ed="true"
cl assmask=".*"/>
</ cover age>
</ anal ysi s>
</jpl>

6.4.1.3 WebSphere Application Server Configuration

The WebSphere Command Line was configured with the JProbe configuration file used
to ensure that the correct JVM was used. One servlet was added to the Web Application
to listen for SOAP messages coming in.

6.4.1.3.1 Command line arguements:

-jp_input=/opt/util/JProbe/jpl_files/09232002_test soap.jpl —Xnoclassgc —
Djava.compiler=NONE -ms128m —-mx128m

6.4.1.3.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

6.4.1.3.3 Message Servlet:

Servlet: messageRouter

Description: SOAP Message Servlet

Servlet Class Name: org.apache.soap.servet.http.MessageRouterServlet
Servlet Web Path List: default_host/JPROBEWebApp/

Init Parameters:

Init Param Name | Value

detail 2

debug 2

validate true

config /struts-config.xml
application Resource

Debug Mode: False
Load at Startup: True

6.4.1.4 Additional Required Components

The following java archive files are required to run the example application:
soap.jar

Version 2.0 69 - 69.1.5 169

ITARelease 3.0
Build & Test Report

mail.jar
activation.jar
xerces.jar
bsf.jar

js.jar

6.5 Testing Scenario
The example messaging application provided with the framework distribution was used
as the test harness.

6.5.1 Test Preparation

Refer to the JProbe Quick Start Guide for the test execution preparation information.
This guide identifies the steps required to profile an application using JProbe.

6.5.2 Test Scenario
Run the following test script from the soap2_2/samples/messaging directory:

@echo off

echo This test assumes server URLSs of http://stg.jprobe.fsa.ed.gov /IPROBEWebApp/servlet/rpcrouter

echo and http://stg.jprobe.fsa.ed.gov/JPROBEWebApp/serviet/messagerouter

java samples.messaging.SendMessage http://stg.jprobe.fsa.ed.gov/IJPROBEWebApp/servlet/messagerouter msgl.xml
echo . after sent message

java samples.messaging.SendMessage http://stg.jprobe.fsa.ed.gov/IJPROBEWebApp/servlet/messagerouter msgl.xml
echo . after sent message

java samples.messaging.SendMessage http://stg.jprobe.fsa.ed.gov/IJPROBEWebApp/servlet/messagerouter msgl.xml
echo . after sent message

6.6 Results and Analysis

6.6.1 Heap Snapshot (Memory Usage)

The heap snapshot was used to visualize how memory was used, obtain information on
objects allocated in the heap, and determine if there are any loitering objects at the end
of the test.

6.6.1.1 Heap Graph Analysis

The screenshot below is obtained from sending three messages to the Message Servlet.

Version 2.0 69 -69.1.5 170

ITARelease 3.0
Build & Test Report

&, Euntree Hesp Surimar y; combime s serreraragedS erver =13 =]
Fie Edt Program Tools . Cisplsy Windew Help

Felneshc | Sy sacai * | Srwldstons Smimes. v W Tx (Y P

MeEmong (158}
(B S

RN 1

Fa LR

T+

Sent Messaae 1

122200 -

Sent Messade 2

. Ran garbage
M- collection & set
s | | Checkpoint

AL 4
SO0 | 1

{5 8 EE

Sent Message 3

300Cn

b LE

pL i

DIk 180 W
Timi

laes

| Free: 123707 Biemery (KEL Adncmed: 7708 Memory (195

The spike is expected since a new message is being created to be sent back. You will
notice that as the second and third messages are sent, the heap graph stays the same
height. This tells us that no extra objects are being created as each message comes
through the Messaging Servlet.

6.6.1.2 Instance Summary

The table below is a section of the Instance Summary results associated with running the
three messages through the Messaging Servlet. The Count column displays howmany
instances of the class currently exist in the heap and the Memory column shows how
much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where
the Checkpoint was set. The Checkpoint tells JProbe to tag all subsequently created
objects as “new.” The Count Change and Memory Change columns show data
regarding new instances (created after the checkpoint) that are currently in the heap.

Version 2.0 69 -69.1.5 171

ITA Release 3.0
Build & Test Report

FELDE RAL
ATUDENT LD

2, Funtime Hesp Summer i comibme s server SaragedS erver =181 =]
Fie Edi Program Tools . Cisplwy. Window Help

i'.ll:'enll:lmmdllﬂ "'] ‘illm‘1m.1|:m25nﬂ'l.las "": ¥ J:.\. CHIE T] Wi

[e crames: | | Vit Classes: B2w s
| EmuAt iRt i
Fackaga Cliss Caunt / Fidn i Nrmorp &
Tatal L5, 6T0 (100, ey P, 9ET T, 304 (106 FR 5, ER, P (100 F) L,
char] 31,085 !;__:.j_z._é-.;._ 46,342 213,999 [29.5%) 2,862,540 (4z,3%) -rf
I lang Siing 0,907 (Z2.4%) 5 1TE072 0 EA.BR) M4 0 6a3R) P
hjezl]] 13,670 ¢ 10.1%) +S.LSL 53370 0 To6k) RST.ARE O 16.4%) H
cornibm.servRE L] HashiatiaEnry B3R (6. 2% #8389 1.) 1870 2.0y
com.bmels uilcsche Buckel B 120 B.Dk) +4,.0M8 & LA [1-&hy b e v | R O - T R
javm. util HoshWap§Enlry Fa57E (Balb) w1l TE50 [1.1%) 13RCEE0 0 E.d)
ELERGIIEEEERTE L SN 0 A Q%) 41,147 10,287 (0 1.d%) 11400 2.0%)
Il jor RribitesHame 0LF [3. TE) HAF 5030 [DaTR) G0.220 [L.0%)
lwwalang Objest 4,180 (- 3.1k Hl0 4,070 ¢ DoERY 1E,E78 ¢ Do3E)
|zealang Claz= B,EL9 { 1.9%) +6l2 2,519 f D.4%) EEEEE0 [6.1%)
com it ejm il Buciel 257§ Lagh) #3072 LET f DLEM 25,004 ¢ Do)
javE il HasnWap 1,700 L.3%) +Z08 2,000 [BLRA) TEEIE 0 L.aE)
(AN L= T Lot 0 1.2%) +20L L A04 © 0.3 ETEE O D.1%)
I 188 o 0.0y) 41,189 LL,SED ¢ 1.E%Y &7.E28 1Sk
Izealang EfngETer 59 [0.6t) 864 TH,OL8 [11.1%) 10,488 (Do)
|avm.util ‘ackor e (06N +LEE L,LEE [DuEMY 17360 0 D.EW)
o] B3 0.6%) FHI W T0L 0 SO a0 0 T.0E)
fwwalang Inbager G0 0.5E) 204 3L 0.9 730 0.0%)
Jaua ey namect Fladdd A5 (0 0.3%) #2100 L9739 ¢ D.ZRY 13000 ¢ D-2E)
|avm.util Hashisble 435 0.3t +35 900 ¢ 0.1%) 15,644 © Do 3)
jam bend FieddPoemition A3 (0 0.0%) A1 L33 (0 DLEND AR R R L
java.ull SimpleTimedons I 0 0.2k - 14 0 DL I5,.000 f 0.4%)
Twsain Dbjez1RmamFied ALz i +53 94 0 0.1%) CIEe LR IR L

a

e
|

[Frees 12

These results were gathered after the test scenario has finished executing and garbage

collection has occured. The results were filtered for ‘org.apache.soap.*’ since those are
the classes this report is concerned with. The Count Change column was used to sort

the data to determine which class had the most objects remaining in the heap after the
scenario has been completed.

None of the SOAP Framework objects remain in the memory heap after garbage
collection has been called. All the message objects are destroyed as are the objects
created by the servlet to process the messages. From this we can determine that the
SOAP framework does not create any loitering objects once the messages have been
processed.

6.7 Test Conclusions

A formal unit test was not conducted on the SOAP Framework. It is leveraged from an
established framework created by the Jakarta Group as part of the Apache project.

ITA performed an analysis of the example messaging application packaged with the
SOAP distribution. Analysis of the results led to the conclusion that the SOAP
Framework does not produce any loitering objects.

Version 2.0 69 -69.1.5 172

ITA Release 3.0
Build & Test Report

6.8 Resources
Apache SOAP Toolkit Website
http://xml.apache.org/soap/index.htmi
JavaMail Website
http://java.sun.com/products/javamail/

6.9 JavaBeans Activation Framework Website
http://java.sun.com/products/beans/glasgow/jaf.html
6.10 Apache Xerces Website
http://xml.apache.org/xerces-j

6.11 Bean Scripting Framework Website
http://oss.software.ibm.com/developerworks/projects/bsf
6.12 Rhino Website

6.13 http://www.mozilla.org/rhino/

Version 2.0 69 -69.1.5 173

ITARelease 3.0
Build & Test Report

7 RCS - Configuration Framework
7.1 Purpose

This Unit Test Report documents the test conditions and test script of the ITA R3.0
Reusable Common Services (RCS) Configuration framework. This report also provides
the expected results and actual results from running the test script.

7.2 Approach
To ensure quality of the RCS, the Configuration framework went through extensive unit
testing. ITA conducted automatic unit testing of this framework.

Benefits to the unit test approach are:

Standardize test conditions and cycles
Increase code quality

Increase consistency in the approach to testing
Increase productivity

Reduce time for regression testing

More time available to spend on enhancements as less time is required for fixes

7.3 Background

The purpose of the ITA configuration framework is to provide a standard for application
configuration input. The framework will allow configuration information to be loaded
from properties files, xml files, or database tables.

The ITA configuration framework is implemented using the Accenture’s GRNDS
(General and Reusable Netcentric Delivery Solution) configuration framework. The
GRNDS code has been extended to meet FSA application development requirements.
Specifically, the framework has been extended to:

Use a static initializer to load the configuration files, instead of using the GRNDS
bootstrap framework.

Support configuration input from database tables.

7.4 Testing Environment

The unit test for the Configuration framework was automated by using JUnit. JUnit is a
set of Java packages that allows developers to readily create Java test cases for Java

Version 2.0 69 -69.1.5 174

ITARelease 3.0
Build & Test Report

classes, and to then run these unit tests interactively or in batch mode. The unit test was
conducted on a Sun SPARC machine running Solaris 2.6 interacting with a client
browser running on a Windows 2000 machine. The focus of this unit test is to identify
that the Configuration framework is functioning as designed.

errorMessages.properties

RCS Exception Handling Messages
This file contains mapping information from error codes to error messages

#601-700 Errors in the ConfigurationFramework:

msg601=Could not initialize {0}

msg602=Error occurred during {0} finalization

msg603=Error while reading properties file

msg604=Error accessing {0} class

msg605=Error instantiating {0} objects

msg606=1/0 error occurred parsing configuration documents
msg607=Runtime exception occurred. Be sure xml resources are in classpath

masterBasic_app?2.properties

app2_key=application2_text
name=firstName

7.4.1 XML Files

One xml file was used in the Configuration Framework. The file masterBasic_appl.xml
was used to test the xml file portion of the Configuration Framework.

MasterBasic_appl.xml

<?xml version="1.0"?>
<Appl>
<name>Applicationl</name>
<appl_key>Applicationl key</appl_key>
</Appl>

7.4.2 Database tables

Three database tables were used in the Configuration Framework. They were used to
test the database table portion of the Configuration Framework.

CONFIG

PROPERTY_ID | DOMAIN_ID

1 1

[o2R NS | [FN NS V) 1)
AWl |WIFL[N

Version 2.0 69 -69.1.5 175

ITARelease 3.0
Build & Test Report

[CoR NSz} Hool EoNE Kol N BN

=

0

gjojojo|o|o|ol b

PROPERTY_DOMAIN

DOMAIN_ID | DOMAIN_NAME | PARENT_ID
1 Resource 0
2 fr 1
3 Master 0
4 appl 3
5 MasterBasic 0
6 app3 5
PROPERTY
PROPERTY_ID | PROPERTY_KEY | PROPERTY_VALUE
1 button.ok OK
2 button.ok Yessir
3 test.try Crazy
4 Name Test db name
5 appDomain.Appl MasterBasic_appl.xml
6 appl_key applicationldb_text
7 name appl db name
8 app3_key application3_text
9 appDomain.App2 | masterBasic_app?2.properties
10 appDomain.App3 masterBasic_app3

7.4.3 WebSphere Application Server — Configuration Framework
Configuration

The name of the master domain needs to be placed on the command line of the
WebSphere console. The following is an example:

Version 2.0

69 - 69.1.5

176

EIDERAL
ATUDENT LD

ITA Release 3.0
Build & Test Report

Console View Help

® > s vga|ED ~

= B su3aes
S JDBC Driver
+ R Default Server
5} Remote Serviet Redirec

B FOTW

H FE IFAP

[+ B CBS

H FE EAl

+ B EIP

H R ITA

B TEST2

1 5, FOTWS0

[+ B INTRANET

[B FOTWSX

=, oMB

B EXIT

i 5 PoLIcY

E=JCONY
[+ (g Default Container

[+ (5 CONVServietEngine
1 P STUGOV

FY

‘Application Server:CONY
[General |[Advanced |Debug |

Application Server Hame:

Current State:
Desired State:
Start Time:
Executable in use:

Command line arguments:

Environment:

Process ID:

Working directory:
Standard input:
Standard input in use:

[cony

Running

Runnirg

Aug 6, 2002 1:09:46 PM
foptidev3anWehSpherefAppServerjavalrefinfjava

|'.ut0numy.xm| - DmasterCnnﬁg=master.pmperlies|

| Environment.... |

4894

|rdevmun |

fdevinull

Console Messages

G808 5:26 FM : Loading ...
G870 5:29 PM : Console Beady.

7.5 Automated Testing Conditions

Component Name Configuration Framework Version # 1
File Name FSADatabaseSource.java
Version 2.0 69 -69.1.5 177

FEDERAL
ATUDENT LD

ITARelease 3.0
Build & Test Report

Prepared By Kirsten Metzler Date Prepared 4/30/2002

Tested By Kirsten Metzler Date Testing Finished 5/10/2002

Reviewed By Wayne Chang Date Reviewed 4/31/2002
Detailed Condition Test Class Name Test Class Method Class Name Method Name |Results Database Table
Valid domain, no subdomains TestDatabaseSource testValidDomainNoSubdomain | FSADatabaseSource | getEnvironment |database domain data is loaded into the environment cache pcgggt;rggﬁgh
Valid domain, valid subdomain TestDatabaseSource |testValidDomainValidSubdomain| FSADatabaseSource | getEnvironment datgbase domain data and subdomain data is loaded into the config, property,

environment cache property_domain
Invalid domain TestDatabaseSource testinvalidDomain FSADatabaseSource | getEnvironment databasg domain data is not [oaded. A message is writien o the logs config, propeny,
that the file could not be found. property_domain
" - database domain data is loaded into the environment cache, '

Valid dO”?a'"' invalid TestDatabaseSource testinvalidSubDomain FSADatabaseSource | getEnvironment |database subdomain data is not loaded and a message is written to config, propert){,
subdomain the logs property_domain
Coud ngt get database TestDatabaseSource testDatabaseConnection FSADatabaseSource | getEnvironment (Error is written to the log, no data is loaded. An exception is thrown. config, propeny,
connection property_domain
Database tables do not exist TestDatabaseSource testNoDatabaseTables FSADatabaseSource | getEnvironment (Error is written to the log, no data is loaded. An exception is thrown. ;&g&%};rggemgh

Component Name Configuration Framework Version # 1

File Name FSAXmIFileSource java

Prepared By Kirsten Metzler Date Prepared 4/30/2002

Tested By Kirsten Metzler Date Testing Finished 5/10/2002

Reviewed By Wayne Chang Date Reviewed 4/31/2002

Version 2.0 69 -69.1.5 178

FEDERAL
ATUDENT LD

ITARelease 3.0
Build & Test Report

[Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name
Valid domain, no , A . . ') properties domain file is loaded into the
1 subdomains TestXmlFileSource testValidDomainNoSubdomain FSAXmIFileSource getEnvironment environment cache master.xml
Valid domain, valid , . N . ' ’ properties domain file and subdomain file is master.xml,
2 subdomain TestXmlFileSource testValidDomainValidSubdomain FSAXmIFileSource getEnvironment loaded info the environment cache master_appLxml
properties domain file is not loaded. A
3 [Invalid domain TestXmlFileSource testinvalidDomain FSAXmIFileSource getEnvironment [message is written to the logs that the file none.
could not be found.
properties domain file is loaded into the
Valid domain, invalid environment cache, properties subdomain
4 |subdomain TestXmiFileSource testinvalidSubDomain FSAXmIFileSource getEnvironment g not loaded and a message is written master.xml
to the logs.
. ’ . : ’ properties domain file is loaded into the
5 |Relative path TestXmlFileSource testRelativePath FSAXmIFileSource getEnvironment environment cache. master.xml
, ' ’ properties domain file is loaded into the
6 |Absolute path TestXmlFileSource testAbsolutePath FSAXm IFileSource getEnvironment environment cache. master.xml
Component Name Configuration Framework Version # 1
File Name FSAConfigurationSl.java
Prepared By Kirsten Metzler Date Prepared 4/30/2002
Tested By Kirsten Metzler Date Testing Finished 5/10/2002
Reviewed By Wayne Chang Date Reviewed 4/31/2002
Version 2.0 69 -69.1.5 179

EIDERAL
VIENT AD

ITARelease 3.0
Build & Test Report

Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name Database Table
Master config is a) !))) - master properties file is loaded into the !
properties file TestFSAConfigurationSIProp TestMasterProperties FSAConfigurationSlI init environment cache. master.properties
)’\(Arﬁﬁﬁ; config is an TestFSAConfigurationSIXml TestMasterXml FSAConfigurationSI init gishtgr xml fle is loaded into the environment master.xml|
Master config is the ' !) . - master data is loaded from the database into the config, property,
database. TestFSAConfigurationSIDb TestMasterDatabase FSAConfigurationSl| init environment cache None. property_domain
Master config
properties file N . - . master properties file and subdomain xml file data master.properties,
contains xml TestFSAConfigurationSIProp TestMasterPropertiesSubXml FSAConfigurationSI init is loaded into the environment cache. master_appLxm
subdomain
Master config
properties file)) . .) . - master properties file and subdomain properties file master.properties,
contains properties TestFSAConfigurationSIProp TestMasterPropertiesSubProperties | FSAConfigurationS| init data is loaded into the environment cache master_appL properties
subdomain
Master config
properties file) .)) . - master properties file and subdomain database ' config, property,
contains database TestFSAConfigurationSIProp TestMasterPropertisSubDatabase | FSAConfigurationSI init data is loaded intothe environment cache. master.properties property_domain
subdomain
Master config xml file . . ’ .

-))) . . master xml file and subdomain xml file data is
contains >_<m| TestFSAConfigurationSIXml TestMasterXmISubXml FSAConfigurationSl| init loaded into the environment cache master.xml, master_appl.xml
subdomain
Master config xmi file master xml file and subdomain properties file data master.xml
gﬂgtda(l)ﬁa?rrfper‘ﬂes TestFSAConfigurationSIXml TestMasterXmlISubProperties FSAConfigurationSlI init is loaded into the env ironment cache master_appL properties
Version 2.0 69-69.1.5 180

FEDERAL
ATUDENT LD

Master coniig xml fle master xml file and subdomain database data is config, property
9 gﬂgt;lcl)r:s a(:;ltabase TestFSAConfigurationSIXml TestMasterXmISubDatabase FSAConfigurationSI init loaded into the environment cache. master.xml proper’ty_ domain
Master config . .)
h ' : ’ . - master database and subdomain xml data is loaded config, property,
10 gﬁtbadlze:zzirclontams Xm TestFSAConfigurationSIDb TestMasterDatabaseSubXml FSAConfigurationSlI init into the environment cache master_appl.xml property_domain
Master config master database and subdomain properties data is config, property
11 g?ct)?)g?t?:scggggfn i TestFSAConfigurationSIDb TestMasterDatabaseSubProperties - | FSAConfigurationSI init loaded info the environment cache master_appl.properties property_domain
Master config . .)
: — - . master database and subdomain database data is config, property,
12 g:gggzz Zﬁgﬁéﬁain TestFSAConfigurationSIDb TestMasterDatabaseSubDatabase | FSAConfigurationS| init loaded info the environment cache property.domain
Component Name Configuration Framework Version # 1
File Name FSAConfigurationSl.java
Prepared By Kirsten Metzler Date Prepared 4/30/2002
Tested By Kirsten Metzler Date Testing Finished 5/10/2002
Reviewed By Wayne Chang Date Reviewed 4/31/2002
Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name
Master configuration
1 |file/database does not TestMasterDoesNotEXxist TestNoMaster FSAConfigurationSI init Error is written to the log and no data is loaded. None.
exist

Version 2.0

69 - 69.1.5

ITARelease 3.0
Build & Test Report

ITA Release 3.0

Build & Test Report

Component Name Configuration Framework Version # 1
File Name FSAConfigurationSl.java
Prepared By Kirsten Metzler Date Prepared 4/30/2002
Tested By Kirsten Metzler Date Testing Finished 5/10/2002
Reviewed By Wayne Chang Date Reviewed 4/31/2002
| Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name
Configuration type not
1 |properties, xml or TestBadConfigType TestBadConfig FSAConfigurationSI init Error is written to the log and no data is loaded. None.
database
Version 2.0 69 - 69.1.5

182

ITA Release 3.0
Build & Test Report

7.6 Performance Testing

7.6.1 Approach

To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to analyze the
Configuration framework. JProbe is a performance-profiling tool and it was used to detect
performance issues such as loitering objects, unexpected references, and over-use of objects in
Java based programming. In order to profile this framework, portions of the unit test scripts
were used to conduct this test. The performance analysis of this framework is documented in
this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow gathering detailed information on individual methods and
the interaction between them.

7.6.2 Summary

This report contains the background information, performance test harness design, performance
analyses, and resulting performance metrics for the framework. Profiling the Configuration
framework using the test scripts will test the code performance of the framework. The actual
results will be compared against the results of how this framework is expected to function.

7.7 Test Harness Design

7.7.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance test is to identify loitering objects and time spent on each method relative to
each other in the Configuration framework.

7.7.2 Test Configuraton

There is very little configuration that needs to be done for the ITA Configuration framework
itself. There are two system level properties that need to be configured within the WebSphere
administartion console.
A system variable “masterConfig” must be added to command line with value
set to the master configuration domain
The Servletlnitializer system variable must be updated to contain a call run the
servlet initializer with the FSAConfigurationSI class
JProbe needs to be configured to be able to gather metrics from the framework as it ran in the
IBM Websphere environment. A .jpl file, which lists all the profiling parameters, must be
created. These parameters are normally set in the JProbe GUI, but since a server is being
monitored, they are set through a file interface. The text of the configuration file is provided
below:

Version 2.0 69 -69.1.5 183

ITA Release 3.0
Build & Test Report

E R AL

F i b
STUDEST AND

7.7.3 WebSphere Application Server Configuration

The WebSphere Command Line will identify the JProbe configuration file to use and ensure
that the correct JVM is used. Two Environment Variables will be added to the Application
Server and two servlets will be added to the Web Application. The Session Manager
configurations have to be updated, more information on how to update the settings can be
found in the User Session Framework User Guide document.

7.7.3.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/06052002_test_sessions.jpl —Xnoclassgc —
Djava.compiler=NONE -ms128m —-mx128m
7.7.3.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

7.8 Testing Scenarios

The configuration performance test focused on one usage scenario for its analysis: The creation
of the configuration information in memory.

The test did a Class.forName(“gov.ed.fsa.ita.config.FSAConfigurationSI’’) which runs the static
initializer within the FSAConfigurationSl class. This static initializer loads all the configuration
data within the application into a storage object.

7.9 Analysis
The analysis consists of three parts:

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code
to identify loitering object and over-allocation of objects.

2. Garbage Collection: The garbage collector is a process that runs on a low priority
thread. When the JVM attempts to allocate an object but the Java heap is full, the JVM
calls the garbage collector. The garbage collector frees memory using some algorithm to
remove unused objects. Examining the activities of the garbage collection will give a
good indication of the performance impact of the garbage collector on the application.

3. Code Efficiency: To identify any performance bottlenecks due to inefficient code
algorithms

7.9.1 Memory (Heap) Usage

The heap snapshot can be used to visualize how memory is being used in the heap, obtain
information on objects allocated in the heap, and determine if there are any loitering objects at
the end of the test.

Version 2.0 69 -69.1.5 184

ITA Release 3.0
Build & Test Report

7.9.2 Heap Graph Analysis

When the Application Server is initialized, a great deal of memory is consumed. Once the App
Server has finished initializing, the memory usage levels off to a flat line. JProbe will call the
Garbage Collector to remove objects that are no longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance analysis.
The object count will be measured against the count at the checkpoint. The overall memory
usage for the Configuration framework is very low and will not result in huge increase to the
overhead of calling applications. The following graph displays this information.

&, Rumtime Heap Summarys comibesejsam serrerlonagedSeryer
File Edt Prmogram Toos Display Window Halp

=0l

Heslreslc BVETY saconl | Showe Histonc! 5 mibibes . ™ [] bl “ 0 i a1} 1

Maimnry (HR
140mnn

120006

AdERnn

Ran garbage collection &

set Checkpoint
il Menory usage during
WAS initialization

BLGOL

A0

Garbage collection

/ and take snapshots

o 1 17210
Timn 6,30

Test execution

o (ML +

Instance Sarereory | Garkage Manior

[Fran: 124423 Memany), Aincatne: G646 MAmDRY (5]

7.10 Instance Summary

The table below is a section of the Instance Summary result associated with conducting the test.
The Count column displays how many instances of the class currently exist in the heap and the
Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the
checkpoint was set. The checkpoint tells JProbe to tag all subsequently created objects as
“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Version 2.0 69 -69.1.5 185

ITARelease 3.0
Build & Test Report

FEDERAL
STUDEST AND

These results were gathered after the test scenario has finished executing and garbage collection
has occurred. The results were filtered for ‘gov.ed.fsa.ita.config.*” since those are the classes the
Configuration Framework is concerned with.

The count change for the String class is very high. This is expected because the Configuration
Framework must create a String object every time it loads a new configuration parameter. It
creates a String object to read in the parameter, then places this parameter into the main
PropertiesPlus object. When the static initializer has completed loading the configuration data,
this PropertiesPlus object holds all the data. This data is stored for the life of the web
application, so there should be String objects held in memory.

B, S bie Hess Sunsmaey oo o e oo £ e rver ManspedSer wer =10 =]
File Edf Pmgmam Tools Displsy Wandos Heln
Pt ey seeond | ;l...nrhmyi_i_r_-_i-!!ajr_u__-r_ v ~_|3 R | T
:ﬂ FiRRT Classas: F_:' Asible Classas: TEZ | TH2
Ptk . s | o ;‘:r"m '3":“'.‘“:'1“' | o :;
Taodal T2, 314 C1A0,. 0% +ER, TRE GTR,EE (100, 0w 09,50%, 79 (Laa, 0w
cam.ibive{s. bl cache Bucket B,10D f d&_d=z) 4,008 B I0O [L3k 230, a0 { 4.9%) 1E)
char]] 28,00 f 21.53) 43,ETT 201,455 [30.0%) 2,167,604 { 40.83%) E
jaralang Sing a%,6Ed i 33.3%) +3,015 166,2L4d [2d. bW B30, ERE [6. 3W)
|Fealang SrngRiuTar Edd 0,5%) 4672 TEMED [L1.4%) TTER L 0.1
i Haslta ki nny 5,410 o 4.43) +B2d FALT ¢ 1.4%) LOB, NG ¢ 2.0%)
jrealang Class 2,343 L.9%) 4435 Z,343 { 0.3k 3ZO,0E0 [6.2%)
rlef] TE: f 0.682) 440 ZEL.ZEE f S.TE) 44180 | 4.3%)
Jmwad=at FielPostion 356 { 0.3%) +306 1,349 { 0.2 4,272 [0.1%)
coariibm ss. bl Buchst 2,167 L.74) 4217 B,15F 0.3} ZE, 00 | 0,54
shanj| 24T § 0.2%) +I32 235 [0.0%) 8,113 1 0.2%)
inf1 ZBE 0.32%) 4187 BT 0 1.9%) AL, ITE 0.6%)
|vmlanp Indegaer EZD { 0.5%) +1E83 3,0l5 (D.5%) 2,518 o 0.0%)
s ull Vechor BAD ff 0.7%) +141 1,075 O.Z) 16, B0 | 0.3%)
comibmiserietull LisEniry 120 d.1%) =+100 145§ O.D%) 2,900 1 d.0%)
EWA Locaa 120 ¢ 0,1%) =2 120 ¢ 0.0%) Z.9M ¢ 0,0%)
comibmsanietull Regeanhode 112 § 0.1%) +75 I3 ¢ 0.0%) Q00T ¢ 0,1%)
camuibimafE. ms Thaees pmponst IBT [0.23) ~+T0 T [0.D0%) 17,300 [0.3%)
|sreamath - Baginieger TOOf d.l3) +70 70 [0.D%) 1,00 0.0%)
oracle|dbc.ull SQLEEkeRage 58 { 0.0%) +53 53 D.0%) TS [0.0%)
doubie] Bl 0,0%) +53 Bl D.D%) 1,000 ¢ a,0%)
oraciejabc ey TTCHem a5 [0.0%) +35 T3 ¢ 0.0%) 1,6z ¢ 0.0%)
Jarva.ufil Date a6 1 1.0%) +i1 173 0 0.0%) ST 0 0.0%) |
i o e = - SIS e = il
rF'i!JJDMlmHHI.ﬂH:MEﬂ: S Remery (RH)

7.11 Garbage Collections

The Garbage Monitor was used to identify the classes that are responsible for large allocations

of short-lived objects. It shows the cumulative results of successive garbage collections during
the session. The Garbage Monitor shows only the top ten classes, representing the classes with
the most instances garbage collected. During the session, the top ten classes will change as the
number of garbage collected objects accumulates.

There was not any unexpected activity shown, or activity that would indicate a performance
problem. Most of the objects created are either strings, string buffers, or character arrays. These

Version 2.0 69 —69.1.5 186

ITA Release 3.0
Build & Test Report

E R AL

F i b
STUDEST AND

numbers are in line with the framework requirements and expected behavior as it formats a
large number of messages.

7.12 Resources

7.12.1 GRNDS Framework
https://onesource.accenture.com

7.12.2 Sun Java website
http://java.sun.com

8 RCS -JSP Custom Tag Library Framework
8.1 JSP Custom Tag Library Unit Test Report

8.1.1
8.1.1.1 Purpose

This Unit Test Report documents the test conditions and test script of the ITA R3.0 Reusable
Common Services (RCS) JSP Custom Tag Library framework. This report also provides the
expected results and actual results from running the test applications.

8.1.1.2 Approach

To ensure quality of the RCS, the JSP Custom Tag Library framework went through extensive
unit testing. ITA conducted manual unit testing of this framework.

Benefits to the unit test approach are:
- Standardize test conditions and cycles

Increase code quality

Increase consistency in the approach to testing

Increase productivity

Reduce time for regression testing

More time available to spend on enhancements as less time is required for fixes
8.1.1.3 Background
The purpose of the ITA RCS JSP Custom Tag Library framework is to provide a set of custom

tags for developers to utilize to simplify, standardize, and extend the use of JSP tag libraries
within the J2EE standard.

Version 2.0 69 -69.1.5 187

ITA Release 3.0
Build & Test Report

E R AL

F i b
STUDEST AND

8.1.2 Test Design
8.1.2.1 Testing Environment

The unit test for the JSP Custom Tag Library framework was conducted manually. The unit test
was conducted on a Sun SPARC machine running Solaris 2.6 interacting with a client browser
running on a Windows 2000 machine. Both Microsoft Internet Explorer 5.0.1 and Netscape
Navigator 6.2 client browsers were used to conduct the tests scripts. The focus of this unit test
is to identify that the JSP Custom Tag Library framework is functioning as designed.

8.1.2.1.1 Testing Cycles

The RCS JSP Custom Tag Library framework is created using the Java programming language.
The tag library framework provides a collection of commonly used JSP custom tag libraries for
JSP developers to access. The JSP Tag Library framework is comprised of libraries leveraged
from the Jakarta Struts framework, Apache Taglibs project, and custom developed libraries.

Eleven tag libraries were tested as part of this framework:

Test Cycle 1 Jakarta Struts Bean Taglib
Test Cycle 2 Jakarta Struts HTML Taglib
Test Cycle 3 Jakarta Struts Logic Taglib
Test Cycle 4 Jakarta Struts Template Taglib
Test Cycle 5 Jakarta DateTime Taglib
Test Cycle 6 Jakarta 118N Taglib

Test Cycle 7 Jakarta Input Taglib

Test Cycle 8 Logging Taglib

Test Cycle 9 Jakarta Page Taglib

Test Cycle 10 Jakarta XSL Taglib

Test Cycle 11 Jakarta XTags Taglib

8.1.2.2 Testing Configuration

In order to test the JSP Custom Tag Library framework, several JavaServer Pages had to be
developed to utilize the different tags available within each library. An existing development
Application Server (CONV) was used to conduct the tests, with some modification to the
Session Manager settings and directory structure.

8.1.2.21 UNIX Server Settings

The WebSphere properties files have not been updated and the existing settings are used to run
the test cycles.

The following sections list the properties related to the Web Application created to unit test the
JSP Custom Tag Library framework. The configuration settings used in the Administration
Console is defined in the next topic.

Version 2.0 69 -69.1.5 188

ITA Release 3.0
Build & Test Report

812211 rulesproperties.

default_host/CONVWebApp/*.activity=ibmoselink15
default_host/CONVWebApp/*.jsp=ibmoselink15
default_host/CONVWebApp/ErrorReporter=ibmoselink15
default_host/CONVWebApp/servlet/=ibmoselink15
default_host/CONVWebApp/servlet/messagerouter=ibmoselink15
default_host/CONVWebApp/servlet/rpcrouter=ibmoselink15
default_host/CONVWebApp/serviet=ibmoselink15

8.1.2.2.1.2 queues.properties.

ose.srvgrp.ibmoselink15.clonel.port=8400
ose.srvgrp.ibmoselink15.clonel.type=remote
ose.srvgrp.ibmoselink15.clonescount=1
ose.srvgrp.ibmoselink15.type=FASTLINK

ose.srvgrp=ibmoselink,ibmoselink1,ibmoselink2,ibmoselink3,ibmoselink4,ibmoselink5,ibmoselink6,ibmoselink7,ibmos
elink9,ibmoselink8,ibmoselink10,ibmoselink12,ibmoselink13,ibmoselink14,ibmoselink15,ibmoselink16,ibmoselink17,i

bmoselink18

vhosts.properties:

dev.conv.sfa.ed.gow:8531=default_host

Version 2.0 69 - 69.1.5

189

ITARelease 3.0
Build & Test Report

FEDERAL
STUDEST AND

8.1.2.2.2 Directory Structure

Version 2.0 69 —69.1.5 190

ITA Release 3.0
Build & Test Report

8.1.3 Testing Conditions and Results

Eleven sets of applications have been created to test the different functionality available within
the JSP Custom Tag Library framework. The files associated with each set of the test
applications have been placed into separate directories: Bean, datetime, html, i18n, input,
logging, logic, page, template, xsl, and xtags. See the previous section for the complete path to
the directory.

Of the eleven tag libraries tested, two tag libraries were removed from this framework due to
incompatibilities found during testing. The versions of xerces.jar used by those tag libraries and
the version currently used for FSA development are different. All frameworks must be
regression tested in order to include these two tag libraries in this framework. The scope of
such an effort is beyond the current bandwidth available to perform the regression testing, so
these two tag libraries may be included in a future release.

The URLSs to access the different pages of the test applications are in the following format:
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/jsptags/<tag library>/*.jsp2.

An example URL is:
http://dev.conv.sfa.ed.qov:8531/CONVWebApp/jsptags/datetime/datetimeTest.jsp

All test cycles were conducted using Microsoft’s Internet Explorer (IE). Netscape Navigator
was used for testing a few of the applications to ensure that the framework will behave as
expected in another browser.

For each test cycle, there is a ‘Test Findings’ section, which contains the results gathered from
running the test JavaServer Pages. Any attributes from leveraged tag libraries that did not
working as documented by Jakarta will be noted. It is up to the developer to ensure that any
tags that are used are thoroughly tested with his/her application and servlet container.

2 Where *.jsp refers to the different JavaServer Pages within each directory as listed in the test conditions
and test scripts.

Version 2.0 69 -69.1.5 191

ITA Release 3.0
Build & Test Report

8.1.3.1

Test Cycle 1 - Jakarta Struts Bean Taglib

The "struts-bean” tag library contains JSP custom tags useful to defining new beans (in any
desired scope), from a variety of possible sources, as well as a tag to render a particular bean (or
bean property) to the output response.

Tags:

Class Test Page
CookieTag*® bean-cookie.jsp
Define Tag* bean-define.jsp, bean-define2.jsp

Header Tag*

bean-header.jsp, bean-header_multi.jsp

IncludeTag* bean-include.jsp

MessageTag bean-message.jsp

PageTag* bean-page.jsp

ParameterTag* bean-parameter-InputMulti.jsp, bean-parameter.jsp
ResourceTag* bean-resource.jsp

SizeTag* bean-size.jsp

StrutsTag* bean-struts.jsp

WriteTag bean-write.jsp, bean-write2.jsp

TEST FINDINGS:

CookieTag
Four JavaServer Pages were created to test the cookieTag in this tag library. The first JSP will

set cookies to be displayed by the second JSP. The third JSP will set a new cookie with the same
name as a cookie set in the first JSP but with a different path. The fourth JSP will be used to
display it to be sure the ‘multiple’ attribute is working.

DefineTag
Jakarta’s documentation does not note that to obtain the value for a bean originally defined

with a scope, the scope in the define tag must be defined; otherwise, a ‘null’ will be returned.

The code pertaining to the boolean and int in the second JSP have been commented out. To test
the scope of the <bean:define> tag, uncomment one and an error message will result saying that
the looked for bean is out of scope.

3 Note: * next to a tag indicates that the TagExtralnfo (TEI) implementation of the class is available (i.e..
CookieTag* means that there is a CookieTei. All TEI classes contain the method getVariablelnfo, which
returns information about the scripting variable to be created).

Version 2.0

69-69.1.5

193

ITA Release 3.0
Build & Test Report

HeaderTag
The second test JSP is a modified version of the first JSP to test the ‘multiple’ attribute. The

testing does not show that the result is displayed any differently between the two JSPs. This
could be attributed to how the application is designed or the servlet container being used since
as other tags have behaved differently when running different containers. It is the developer’s
responsibility to ensure the tag works appropriately for his/her application.

MessageTag
This jsp tests the use of the Resource.properties file located in the /7www/dev/conv/serviets

directory. The attributes: locale and bundle were not tested.

SizeTag
The test application used is an example application from the tag library distribution. The scope

attribute was not tested in this sample application.

WriteTag
The first JSP tests that bean:write can output a bean. The second JSP tests the scope attribute.
The JSP will display an error if it can’t find the bean in the scope regardless of if the bean exists.

Version 2.0 69 -69.1.5 194

ITA Release 3.0
Build & Test Report

8.1.3.2

Test Cycle 2 - Jakarta Struts HTML Taglib

The "struts-html" tag library contains JSP custom tags for creating dynamic HTML user
interfaces, including input forms.

Tags:
Class Test Page
BaseTag html-form.jsp, html-link.jsp
ButtonTag html-form.jsp
CancelTag html-form.jsp, html-select.jsp
CheckboxTag html-form.jsp, html-link.jsp
ErrorsTag html-form.jsp
FileTag html-form.jsp
FormTag html-form.jsp
HiddenTag html-form.jsp
HtmlTag html-form.jsp
ImageTag html-form.jsp
ImgTag html-form.jsp
LinkTag html-link.jsp
MultiboxTag html-form.jsp
OptionsTag html-select.jsp
OptionTag html-select.jsp
PasswordTag html-form.jsp
RadioTag html-form.jsp
ResetTag html-form.jsp, html-select.jsp
RewriteTag Not Tested
SelectTag html-select.jsp
SubmitTag html-form.jsp, html-select.jsp
TextareaTag html-form.jsp
TextTag html-form.jsp, html-link.jsp
Version 2.0 69-69.1.5 195

ITA Release 3.0
Build & Test Report

TEST FINDINGS:

ButtonTag

In testing, the ‘accesskey’ attribute did not work. This could be due to the design or servlet
container used. It is the developer’s responsibility to ensure that this tag works with his/her
application.

ImageTag
This tag did not work in testing until the WebSphere Session Manager - URL Rewriting option

was disabled. Otherwise, the session identifier was inserted at the end of the URL, which will
cause the image link to fail. The ‘border’ attribute for this tag was not working in the test
application.

ImgTag
The ‘page’ attribute does not work for this tag, either the ‘src’ or ‘srcKey’ attributes should be

used instead. This attribute does not work as it is a local reference and the images are stored on
the web server and not the application server, which causes it to not find the image and fails.

LinkTag
The ‘target’ and ‘transaction’ attributes were not tested.

Version 2.0 69 -69.1.5 196

ITA Release 3.0

Build & Test Report

8.1.3.3

Test Cycle 3 - Jakarta Struts Logic Taglib

The "struts-logic” tag library contains tags that for managing conditional generation of output
text, looping over object collections for repetitive generation of output text, and application flow

management.
Tags:
Class Test Page
EqualTag createCookie.jsp, enterName.jsp, logic-equal.jsp
ForwardTag logic-equal.jsp
GreaterEqualTag createCookie.jsp, logic-greaterEqual.jsp
GreaterThanTag logic-greaterEqual.jsp
IterateTag* see /bean/bean-header_multi.jsp
LessEqualTag logic-greaterEqual.jsp
LessThanTag logic-greaterEqual.jsp
MatchTag createCookie.jsp, enterAddress.jsp, logic-match.jsp
NotEqualTag logic-equal.jsp
NotMatchTag logic-match.jsp
NotPresentTag logic-equal.jsp
PresentTag logic-equal.jsp
RedirectTag createCookie.jsp, logic-match.jsp

TEST FINDINGS:
EqualTag & NotEqualTag
The ‘scope’ attribute was not tested for either tag.

RedirectTag
The redirect tag contains a bug: http://archive.covalent.net/jakarta/struts-

dev/2001/12/0064.xml. Developers should test this tag to ensure it works properly before

using it in a production environment.

InterateTag

The iterate tag was tested when testing the bean tag library and is not tested again here.

Version 2.0 69 - 69.1.5

197

ITA Release 3.0
Build & Test Report

8.1.34 Test Cycle 4 - Jakarta Struts Template Taglib

The "struts-template” tag library contains tags that are useful for creating dynamic JSP
templates for pages that share a common format.

Tags:
Class Test Page
GetTag chapterTemplate.jsp
InsertTag introduction.jsp
PutTag introduction.jsp

TEST FINDINGS:

The template tag library works as intended and no additional results are reported.

Version 2.0

69-69.1.5

198

ITA Release 3.0
Build & Test Report

8.1.35 Test Cycle 5 - Jakarta DateTime Taglib

The DateTime custom tag library contains tags, which can be used to handle date, and time
related functions. Tags are provided for formatting a Date for output, generating a Date from
HTML form input, using time zones, and localization.

Tags:
Class Test Page
AmPmsTag* datetimeTest.jsp
CurrentTimeTag setzone.jsp
ErasTag* datetimeTest.js
FormatTag datetimeTest.jsp, setzone.jsp
MonthsTag* datetimeTest.jsp
ParseTag datetimeTest.jsp, setzone.jspn
TimeZonesTag* datetimeTest.jsp
TimeZoneTag datetimeTest.jsp, setzone.jsp
WeekdaysTag* datetimeTest.jsp

TEST FINDINGS:

In the format tag, the ‘date’ attribute does not work when the JSP was tested in WebSphere, but
did work when tested using Jakarta Tomcat. Developers should test the any applications that
use this tag attribute thoroughly.

Version 2.0 69 -69.1.5 199

ITA Release 3.0
Build & Test Report

8.1.3.6 Test Cycle 6 - Jakarta 118N Taglib

The i18n custom tag library contains tags that help manage the complexity of creating multi-
lingual web applications. These tags provide similar (though not identical) functionality to the
internationalization available in the Struts framework, but do not require adopting the entire
Struts framework.

Tags:
Class Test Page
BundleTag* i18nTest.jsp
FormatCurrencyTag format-include.jsf
FormatDateTag* format-include.jsf, formatLocale.jsf
FormatDateTimeTag* format-include.jsf, formatLocale.jsf
FormatNumberTag* format-include.jsf, formatLocale.jsf
FormatPercentTag* format-include.jsf, formatLocale.jsf
FormatStringTag* format.jsp
FormatTimeTag* format-include.jsf, formatLocale.jsf
IfdefTag ifdef.jsf
IfndefTag ifndef.jsf
LocaleTag* format.jsp
MessageArgumentsTag message.jsf
MessageTag* message.jsf

TEST FINDINGS:

The bundle base tag is the location to the *.properties files starting form the
/www/dev/conv/servlets directory. The bundle:debug and message:debug attributes were
not tested. The id attribute for the formatXXX tags did not work properly in testing during
testing.

Version 2.0 69 -69.1.5 200

ITA Release 3.0
Build & Test Report

8.1.3.7 Test Cycle 7 - Jakarta Input Taglib

The input tag extension library features the presentment of HTML <form> elements that are
tied to the ServletRequest calling the JSP page. Forms elements can be pre-populated with prior
values that the user has chosen - or with default values for the first time user of a web page.
This is useful when the same page needs to be presented to the user several times. Server-side
validation is a good example of this process.

It is also possible to automatically build up <select> boxes, making it easier to build data-driven
forms. Even if the same page is presented multiple times, and the form elements that have
default values are desired, this library provides this functionality to free programmers from
writing extensive code.

Tags:
Class Test Page
Checkbox inputTest.jsp
Radio inputTest.jsp
Select inputTest.jsp
Text inputTest.jsp
TextArea inputTest.jsp

TEST FINDINGS:

In the inputTest.jsp file for the select attribute, the line map.put(“multiple”, null) is commented
out so the select display is a drop down list. If it is not commented out, the select display
becomes a list.

Version 2.0 69 -69.1.5 201

ITA Release 3.0
Build & Test Report

8.1.3.8 Test Cycle 8 - Logging Taglib

The Log library allows embedding logging calls in JSP using the ITA RCS logging framework.
This tag library is leveraged from the ITA RCSlogging framework. It has the ability to log
messages and test if a given level can be logged based on the current settings.

Tags:

Class Test Page

CanLogTag testlog.jsp

CanNotLogTag testlog.jsp

SyslogTag testlog.jsp

TEST FINDINGS:

The current logging level in the rcs.xml file was changed to different levels to test this tag
library. The testlog.jsp executed in the browser and the results displayed varied based on the
current logging level set.

Version 2.0 69 -69.1.5 203

ITA Release 3.0
Build & Test Report

8.1.3.9 Test Cycle 9 - Jakarta Page Taglib

Used to access all of the information about the PageContext of a JSP page.

Tags:

Class

Test Page

AttributeTag

pageTest.jsp

AttributesTag*

pageTest.jsp

EqualsAttributeTag pageTest.jsp
ExistsAttributeTag pageTest.jsp
RemoveAttributeTag pageTest.jsp
SetAttributeTag pageTest.jsp

TEST FINDINGS:

http://dev.conv.sfa.ed.gov:8531/CONVWebApp/jsptags/page/pageTest.jsp

Version 2.0

69-69.1.5

205

ITA Release 3.0
Build & Test Report

E R AL

F i b
STUDEST AND

8.1.4 Resources

Best Practices for Session Programming: WebSphere Application Server

- http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/0404010108.ht
ml

8.2 JSP Custom Tag Library Performance Analysis

8.2.1

8.2.2 Purpose

This Performance Analysis Report documents the results of utilizing JProbe to test the ITA R3.0
Reusable Common Services (RCS) JSP Custom Tag Library framework. This report provides an
in-depth analysis of the results gathered from the JProbe application profiling and documents
any performance issues and suggests resolutions. The series of JSP Custom Tag Library
framework documentation will enable developers to quickly build applications using the JSP
Custom Tag Library within the ITA environment architecture.

8.2.3 Approach

To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to analyze the
JSP Custom Tag Library framework. Only the Custom Logging Tag Library (which utilizes RCS
Logging framework) was profiled as it is built completely by the ITA team and not leveraged
from external sources.

JProbe is a performance-profiling tool and it was used to detect performance issues such as
loitering objects, unexpected references, and over-use of objects in Java based programming. In
order to profile this framework, the unit test application was used to conduct this test. The
performance analysis of this framework is documented in this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow gathering detailed information on individual methods and
the interaction between them.

8.24 Summary

This report contains the background information, performance test harness design, performance
analyses, and resulting performance metrics for the framework. Profiling the JSP Custom Tag
Library framework using the test JSP will test the code performance of the framework. The

Version 2.0 69 -69.1.5 207

ITA Release 3.0
Build & Test Report

FEDERAL
STUDEST AND

actual results will be compared against the results of how this framework is expected to
function.

Version 2.0 69 —69.1.5 208

ITA Release 3.0
Build & Test Report

8.2.5 Test Harness Design
8.25.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance test is to identify loitering objects and time spent on each method relative to
each other in the Logging Tag Library within the JSP Custom Tag Library framework.

8.25.1.1 Testing Criteria

The two main components of the Logging Tag Library will be tested: the ability to write data to
a log file and also check whether a given level can or cannot be logged. Since the Logging Tag
Library is an API, a JavaServer Page was developed for the unit test to serve as a test harness to
profile and analyze the performance of the various methods.

8.25.2 Testing Configuration

In order to profile the Logging Tag Library using the test application and JProbe, the JPROBE
Application Server was used and some of the configurations were changed. In the command
line reference of the Application Server, there is a reference to the JProbe configuration file. The
file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/08022002_test_jsptags.jpl. The action, database, and HelloWorld
servlets were all disabled.

8.25.2.1 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the settings that
JProbe requires to profile an application, applet, or server side component (such as JavaServer
Pages and Servlets). The configuration file will determine which JVM is used to run JProbe and
the monitoring options. The user will be able to specify the activity of the Profiler. For
example, the file can be configured to cause JProbe Profiler to take a heap snapshot before it
exits and the directory to save the snapshots in.

The example application test will be conducted on the Solaris machine with the output being
sent to a remote Windows NT workstation. Performance and heap snapshots will be taken
before the application is exited. The configuration in the actual file used to conduct the test can
be found in Appendix A. A filter for the main package, gov.ed.fsa.ita.jsptags, was added to
narrow the scope of the test to this package.

8.25.2.2 UNIX Server Settings

The usage of the User Session framework is closely tied to how the WebSphere Session Manager
is configured. The WebSphere properties files have not been updated to run the test cycles.

The following sections list the properties related to the Web Application created to unit test the
User Session framework. The configuration settings used in the Administration Console is
defined in the next topic.

Version 2.0 69 -69.1.5 209

ITA Release 3.0
Build & Test Report

825221 rulesproperties.

default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/serviet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

8.25.2.2.2 queues.properties:.

ose.srvgrp.ibmoselink4.clonel.port=8241
ose.srvgrp.ibmoselink4.clonel.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK

ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

8.25.2.2.3 vhosts.properties:.

stg.jprobe.fsa.ed.gov=default_host

8.25.2.3 WebSphere Application Server Configuration

The WebSphere Command Line will identify the JProbe configuration file to use and ensure
that the correct JVM is used. Two Environment Variables will be added to the Application

Server.

8.25.23.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/08022002_test_jsptags.jpl —Xnoclassgc —

Djava.compiler=NONE -ms128m -mx128m

8.25.2.3.2 Environment:
EXECUTE=YES

EXECUTABLE=/opt/util/JProbe/profiler/jprun

Version 2.0

69-69.1.5

210

EI3ER

AL

ITA Release 3.0
Build & Test Report

STUDENT AL

8.2.5.24 Directory Structure

Su35e5

opt
dev35
WebSphere
AppServer
bin lopt/dev35/WebSphere/AppServer/bin: includes restart scripts for WAS
:>_ Jopt/dev35/WebSphere/AppServer/temp: contains the rules.properties,
temp queues.properties, and vhosts.properties files.
Also contains ./default_host/CONVWebApp/session directory where compiled
class files for the JavaServer Pages are located
loas lopt/dev35/WebSphere/AppServer/logs: includes log files that are useful in
9 tracking errors: tracefile and activity.log
WwWw
dev
conv
:>__ vwwidev/convllib: contains the various ITA - RCS jar files needed to run the
lib Session framework unit test cycles
web
jsptags
wwidev/conviweb/sesssion/cookieTest: Contains the testlog.jsp used to
logging test the tag library
Version 2.0 69 -69.1.5 211

ITA Release 3.0
Build & Test Report

8.2.6 Testing Scenario

The test JSP created for the unit test was also used to execute the performance analysis. The
tags attempt to log different levels of messages to the log file. The test will also validate that an
error message is logged when the user uses an incorrect/non-existent logging level. The tag
will be used to test if the given logging level can be logged based on the current filtering
criteria.

The results gathered from the application that are external to the Custom Logging Tag Library
APIs will not be included in the performance profiling results. These results will be excluded
since the purpose of profiling is to determine the performance of the application under normal
conditions. The performance of the methods used to test the APIs has to be excluded to test just
the behavior of the framework.

Version 2.0 69 -69.1.5 212

ITA Release 3.0
Build & Test Report

8.2.7 Results and Analysis

The JProbe Profiler with Memory Debugger application is used to trace both the memory usage
and performance measurement of the Logging Tag Library APl. Two snapshots are taken: a
heap snapshot and a performance Snapshot. Each snapshot provides different information
regarding our test.

8.2.7.1 Heap Snapshot (Memory Usage)

The heap snapshot can be used to visualize how memory is being used in the heap, obtain
information on objects allocated in the heap, and determine if there are any loitering objects at
the end of the test.

8.2.7.1.1 Heap Graph Analysis
The screenshot below is obtained from executing the test JSP.

Q Runtime Heap Summary: com.ibm.ejs.sm.server.ManagedSenver

Refresh:| every second w | Show Histony:| All v

Ré

Memory (KB)
140000
120000
100000
80000 Ne Ran garbage collection
”_Dr y usage & set Checkpoint
60000 dur I ng _\AAS :
initialization
40000
20000

ference Line —

0
00:00 00;20 0o:40 01:00 01:20 01:40 02:00 02:20 02:40 03:00 03:20 03:40
Time

In the graph above, it is possible to see that when the Application Server is initialized, a great
deal of memory is consumed. Once the App Server has finished initializing, the memory usage
levels off to a flat line. JProbe asks the Garbage Collector to remove objects that are no longer
being referenced from the heap.

A Checkpoint is then set to mark the starting count point of this performance analysis. The
object count remaining in the heap at the end of the test is measured against the count at the
checkpoint. By reading the graph, it can be determined that the overall memory usage for the
JSP Custom Logging Tag Library is very low and will not result in huge increase to the
overhead of calling applications.

Version 2.0 69 -69.1.5 213

ITA Release 3.0
Build & Test Report

8.2.7.1.2 Instance Summary

The table below is a section of the Instance Summary result associated with conducting test
cycle 3. The Count column displays how many instances of the class currently exist in the heap
and the Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the
checkpoint was set. The checkpoint tells JProbe to tag all subsequently created objects as
“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Package Class Count Count Memory Memory
Change Change
gov.ed.fsa.ita.jsptags | SyslogTag 11 (0.0%) - 0.484 -
(0.0%)
gov.ed.fsa.ita.jsptags | CanNotLogTag 6 (0.0%) - 0.216 -
(0.0%)
gov.ed.fsa.ita.jsptags | CanLogTag 6 (0.0%) - 0.168 -
(0.0%)

The above results were gathered after the test scenario has finished executing and garbage
collection has occurred. We then filtered for “gov.ed.*” since those are the only results we are
interested in. The Count Change column was used to sort the data to determine which objects
remain loitering in the heap after the scenario has been completed.

None of the Logging Tag Library objects remain in the memory heap after garbage collection
has been called. From this we can determine that the Logging Tag Library does not create any
loitering objects.

Version 2.0 69 -69.1.5 214

ITA Release 3.0
Build & Test Report

8.2.7.2 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe — five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The compound
metrics are averages per number of calls, including: average method time, average cumulative time, average method object count,
and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance assessment of
the JSP Custom Logging Tag Library. These metrics are basic indicators of process resource utilization. The detailed graphs
associated with each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by gov.ed.* to obtain only the classes within the JSP Custom Logging Tag Library
which is what the test is looking for. Then for each section, the results were sorted by the metric under investigation to obtain the
top ten results for each metric.

Version 2.0 69 -69.1.5 215

ITA Release 3.0
Build & Test Report

8.2.7.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Package Name Calls Source
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 23 SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.<init>() 12 CanlLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 12 CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 12 CanlLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.setLevel(String) 12 CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doEndTag() 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setChannel(String) 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setClassname(String) 11 SyslogTag.java

From the results above, it is possible to see that the setCallLevel() method in the SyslogTag class was called almost twice as often as
other method calls for this test. This lead to the conclusion that the test application code and the library’s API code should be
examined to determine if the method is overused.

There were 23 calls made to the setCallLevel() method, and in the test application the tags from this tag library was used 23 times.
This lead to the conclusion that every call to the tags from this library resulted in a call to the setCallLevel() method. This analysis
was based on a complete understanding of the tag library’s design and code and the high number of calls to this method was
expected, as every tag in this library was designed to call this method to set the current logging level that the application developer
wants to use for that tag. The tag library design will not be changed as a fundamental part of the RCS Logging framework, which
this tag library implements, is the ability to have different messages be set to different levels in the same application.

The count of the number of calls to the remaining methods is also accurate based on the number of times the tags were called in the
test application.

Version 2.0 69 -69.1.5 216

ITA Release 3.0
Build & Test Report

8.2.7.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants (sub-

methods).
Package Name Method Time Source
gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) | Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 3.19 (16.3%) CanlLogTag.java

gov.ed.fsa.ita.jsptags

SyslogTag.setCallLevel(String)

0.73 (_3.7%)

SyslogTag.java

gov.ed.fsa.ita.jsptags

SyslogTag.doStartTag()

0.32 (_1.6%)

SyslogTag.java

gov.ed.fsa.ita.jsptags

SyslogTag.<init>()

0.22 (1.1%)

SyslogTag.java

gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0.21 (1.1%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.15 (0.8%) CanNotLogTag.java
gov.ed.sfa.ita.logging Syslog.log(Object, Object, Object, Object, int) 0.10 (0.5%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 0.09 (0.5%) CanlLogTag.java
gov.ed.sfa.ita.logging Syslog.canLog(int) 0.08 (0.4%) Syslog.java

The results above show that the longest running method was the call to initialize the Syslog object from the RCS Logging framework.
While the length of time seems excessive compared against the other methods, this method will only be called once during the life of

the test application.

The second highest method time is for the CanLogTag.condition() method which is called by both the CanLogTag and
CanNotLogTag classes. This method evaluates a given tag to see if the condition is equal to the current logging level and was
expected to require more time to execute along with the other initialization and Logging framework class, which had to write the

output to a file.

Version 2.0

69-69.1.5

217

ITA Release 3.0
Build & Test Report

8.2.7.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but excludes
the time spent in recursive calls to its descendants.

Package Name Cumulative Source
Time

gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 18.09 (92.4%) | CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 17.89 (191.4%) | CanLogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.condition() 17.75 (190.7%) | CanLogTag.java
gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) | Syslog.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0.73 (3.7%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0.59 (3.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0.25 (1.3%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0.22 (1.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0.21 (1.1%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.19 (1.0%) CanNotLogTag.java

The doStartTag() method for the various tags were expected to be in this list as all methods called for each tag was called as a result
of doStartTag() executing. Both CanLogTag.condition() and CanNotLogTag.condition() methods call the
CanLogTag.condition(boolean) method, which explains why the cumulative time for the condition(boolean) method is more than the
other two methods when listed separately. The results do not contain any surprises to what the design specified.

It is also important to keep in mind while reviewing this analysis that the syslog class’ initialization method in the RCS Logging
framework is only called once and in this instance, the time for that method has been added to the CanLogTag methods’ times since
that is the first tag the JSP accessed. If the JSP accessed the SyslogTag first then the cumulative time displayed would be different.

Version 2.0 69 -69.1.5 218

ITA Release 3.0
Build & Test Report

8.2.7.24 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Package Name Method Source
Objects

gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 10 (29.4%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.condition(boolean) 2 (5.9%) CanlLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 2 (5.9%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 2 (5.9%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.doStartTag() 0 (0.0%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 0 (0.0%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0 (0.0%) CanNotLogTag.java

The Syslog class from the RCS logging framework creates the largest number of objects in its initialization methods. This method

objects count refers to the number of objects created each time the method is called and is not reporting the total number of objects
created by the method during the execution of the entire application (i.e. SyslogTag.setCallLevel() creates 10 objects each time it is
called and it was called 23 times. The count reports 10 and not 230.)

Refer to the Performance Analysis Report for that framework for detail information regarding the Syslog class. The low number of
objects created by the other methods should not lead to any performance impacts.

Version 2.0

69-69.1.5

219

ITA Release 3.0
Build & Test Report

8.2.7.25 Cumulative Object Count
Measures the total number of objects created during the method’s execution, including those created by its descendants.

Package

Name

Cumulative

Objects

Source

gov.ed.fsa.ita.jsptags

CanlLogTag.condition(boolean)

26 (76.5%)

CanlLogTag.java

gov.ed.fsa.ita.jsptags CanLogTag.condition() 26 (76.5%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.doStartTag() 26 (76.5%) CanlLogTag.java
gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 10 (29.4%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.<init>() 2 (5.9%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 2 (5.9%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.setLevel(String) 0 (0.0%) CanlLogTag.java

The number of cumulative objects listed in the chart above show several methods with similar cumulative objects count. This is due
to the sequence of method calls, with one method calling on the next and all of their created objects being added into the cumulative
objects count. These results can be used to determine if the methods create an excessively high number of objects. Similar to the
Method Object Count, the Cumulative Object Count represents the count for each call of the method and not a running count of
objects created for all calls to the method.

When the RCS logging framework is initialized, 14 objects are created and those are objects are included in the count of 26. Taking
that out leaves us with 12 objects that can be directly attributed to the CanLogTag class, out of which 10 of these objects can be
attributed to the SyslogTag.setCallLevel() method. The number of objects created by this framework should not be considered

excessive.

Version 2.0

220

ITA Release 3.0
Build & Test Report

8.2.7.26 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on average,
take a long time to execute.

Package Name Avg. Method Source
Time

gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) | Syslog.java
gov.ed.fsa.ita.jsptags CanlLogTag.condition(boolean) 0.27 (1.4%) CanlLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0.03 (0.2%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0.03 (0.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.03 (0.1%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0.02 (0.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.<init>() 0.02 (0.1%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0.01 (0.0%) CanNotLogTag.java
gov.ed.sfa.ita.logging Syslog.log(Object, Object, Object, Object, int) 0.01 (0.0%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 0.01 (0.0%) CanLogTag.java

The RCS Logging framework’s initialization method takes the longest to execute on average. Just looking at these numbers alone
does not provide any useful information since this number makes the situation appear worse then it actually is. The execution time
on average does not automatically translate to a bad event here when taking into consideration that the method is only executed
once during the life of the application.

Version 2.0 69 -69.1.5 221

ITA Release 3.0
Build & Test Report

8.2.7.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Package Name Average Source
Cumulative
Time

gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) | Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 2.96 (15.1%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 1.51 (7.7%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 1.49 (7.6%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0.05 (0.3%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0.04 (0.2%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.03 (0.2%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0.03 (0.2%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0.02 (0.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.<init>() 0.02 (0.1%) CanlLogTag.java

The results above do not present any surprises and are consistent with the expected results based on evaluation of the previous
performance metrics.

Version 2.0

222

ITA Release 3.0
Build & Test Report

8.2.7.2.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per number
of calls.

Package Name Avg. Method Source
Object

gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags CanlLogTag.condition() 0 (0.0%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 0 (0.0%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.condition(boolean) 0 (0.0%) CanlLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.<init>() 0 (0.0%) CanlLogTag.java

The results of the average method object column displays mostly zeros, as the number is the results of the method object count
divided by number of calls rounded down. Only the RCS Logging framework’s initialization method resulted in a number greater
than zero as the method was only called once. CanLogTag.condition() created 10 objects but was called 23 times which leads to an
actual average method object count of 0.43478 which was rounded down to zero. These results highlight the fact that no classes from
the JSP Custom Logging Tag library contain any methods that create many objects.

Version 2.0 69 -69.1.5 223

ITA Release 3.0
Build & Test Report

8.2.7.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object count per
number of calls.

Package Name Average Source
Cumulative
Object

gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags CanlLogTag.condition() 4 (11.8%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 2 (5.9%) CanlLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 2 (. 5.9%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanlLogTag.<init>() 0 (0.0%) CanlLogTag.java

The average cumulative object count demonstrates that on average, these methods create the most number of objects. It should be
noted that the cumulative counts includes objects created by other methods in this table so the numbers from this table should not be
added. These results do not indicate that the tag library will create too many cumulative objects on average.

Version 2.0 69 -69.1.5 224

ITA Release 3.0
Build & Test Report

8.2.7.3 General Performance Metrics

The RCS JSP Custom Tag Library framework was tested on a Solaris 2.6 platform running JDK1.2.2 Reference Implementation. The
test harness tested the major operations of the JSP Custom Logging Tag Library independently and the system as a whole.

No memory leaks were found in the Logging Tag Library using the test JSP as a test harness. No loitering objects were found in the
heap at the end of the each test cycle.

Version 2.0 69 -69.1.5 225

ITARelease 3.0
Build & Test Report

8.2.8 Appendix A
8.2.8.1 JProbe Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
<program type="application">

<application
args=
working_dir=""
source_dir=""
classname="">
<classpath/>

</application>

<applet

working_dir=
source_dir=""
htmlfile=""
main_package="">
<classpath>
<classpath.path location="%CLASSPATH%"/>
</classpath>
</applet>
<serverside
suggested_filters=""
id="Other server"
server_dir="/opt/stg35/WebSphere/AppServer"
prepend_to_vm_args=""
source_dir=""
classname="com.ibm.ejs.sm.util.process.Nanny"
main_package="gov.ed.fsa.ita.jsptags"
exclude_server_classes="true"
args=""
working_dir="/opt/stg35/WebSphere/AppServer/serviets"
prepend_to_classpath="">
<classpath>
<classpath.path location="%CLASSPATH%"/>
<[classpath>
</serverside>
</program>
<vm
snapshot_dir="/opt/util/JProbe/snapshots"
location="/opt/util/jdk1.2.2/bin/java"
type="java2"
use_jit="true"/>
<viewer
socket="170.248.222.74:4444"
type="remote"/>
<analysis type="profile">
<performance
record_from_start="true"
timing="elapsed"
track natives="true"
final_snapshot="true"

Version 2.0 69 -69.1.5 227

ITA Release 3.0
Build & Test Report

granularity="method">
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="*"
time="ignore"
granularity="method"/>
<performance filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="gov.ed.fsa.ita.jsptags.*"
time="track"
granularity="method"/>
<performance.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask="gov.ed.sfa.ita.logging.*"
time="track"
granularity="method"/>

</performance>
<heap
record_from_start="true"
no_stack_trace_limit="false"
final_snapshot="true"
max_stack trace="4"
track_dead_objects="true"/>
<threadalyzer
record_from_start="true"
write_to_console="false">
<deadlock_detection
enabled="true"
deadlock _and_exit="true"
report_stalls="false"
track_system_threads="false"
block_can_stall="false"
deadlock_threshold="2"/>
<deadlock_prediction
enable_hold_and_wait="false"
enable_lock_order="false"
lock_order_maintains_covers="true"/>
<data_race
ignore_volatile="false"
enable_happens_before="false"
no_stack_trace_limit="false"
enable_lock_covers="false"
max_stack_trace="1"
instrument_elements ="false"/>
<visualizer
enabled="true"
visualization_level="1"/>
<threadalyzer filter
visibility="invisible"
enabled="true"
classmask="*"/>
<threadalyzer filter

Version 2.0 69 - 69.1.5

228

FELDE RAL

ITA Release 3.0
Build & Test Report

STUDENT AL
visibility="visible"
enabled="true"
classmask=".*"/>
</threadalyzer>
<coverage
record_from_start="true"
final_snapshot="true"
granularity="line">
<coverage filter
visibility="invisible"
methodmask="*"
enabled="true"
classmask="*"/>
<coverage.filter
visibility="visible"
methodmask="*"
enabled="true"
classmask=".*"/>
</coverage>
</analysis>
</jpl>
Version 2.0 69 -69.1.5

229

ITA Release 3.0
Build & Test Report

FEDERAL
STUDEST AND

8.2.9 Resources

The Jakarta Taglibs Project
- http://jakarta.apache.org/taglibs/

Core Servlets and JavaServer Pages — Chapter 14: Creating Custom Tag Libraries
- http://developer.java.sun.com/developer/Books/javaserverpages/cservietsisp/chapte

ri4.pdf

The Struts Framework Project
- http://jakarta.apache.org/struts

Struts Framework API (Version 1.04
- http://jakarta.apache.org/struts/api-1.0/index.html

XTags is built on DOM4]
- http://DOMA4J.org

4Version 1.0.1 is a patch release for version 1.0.

Version 2.0 69 —69.1.5 230

