

FSA Modernization Partner
United States Department of Education

Federal Student Aid

Integrated Technical Architecture Release 3.0
Build & Test Report

Appendix

Task Order #69

Deliverable # 69.1.5

Version 2.0

October 28, 2002

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 2

Table of Contents

1 RCS – Web Conversation Framework...12

1.1 PURPOSE ...12

1.2 APPROACH..12

1.3 SUMMARY ...12

1.4 TEST HARNESS DESIGN ...13

1.4.1 TESTING ENVIRONMENT...13

1.4.1.1 Testing Criteria.. 13
1.4.1.2 Testing Configuration... 14
1.4.1.3 JProbe Configuration File ... 14
1.4.1.4 UNIX Server Settings .. 15
1.4.1.5 WebSphere Application Server Configuration... 15
1.4.1.6 struts-config.xml File .. 16
1.4.1.7 Additional Required Components.. 16
1.4.1.8 Directory Structure.. 16

1.5 TESTING SCENARIO ...18

1.5.1 TEST PREPARATION ...18

1.5.2 TEST SCENARIO ..18

1.6 RESULTS AND ANALYSIS..19

1.6.1 HEAP SNAPSHOT (MEMORY USAGE) ..19

1.6.1.1 Heap Graph Analysis.. 19
1.6.1.2 Instance Summary... 20

1.6.2 PERFORMANCE SNAPSHOT (CODE EFFICIENCY)..23

1.6.2.1 Number of Calls.. 25
1.6.2.2 Method Time... 25
1.6.2.3 Cumulative Time .. 26
1.6.2.4 Method Object Count.. 27
1.6.2.5 Cumulative Object Count ... 28
1.6.2.6 Average Method Time.. 28
1.6.2.7 Average Cumulative Time.. 29

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 3

1.6.2.8 Average Method Object.. 30
1.6.2.9 Average Cumulative Object Count... 31

1.6.3 TEST CONCLUSIONS ..33

1.7 APPENDIX A..35

1.7.1 JPROBE CONFIGURATION FILE ...35

1.7.2 STRUTS-CONFIG.XML ..37

1.8 RESOURCES ...40

2 RCS – FTP Framework..41

2.1 PURPOSE ...41

2.2 APPROACH..41

2.2.1 UNIT TESTING ...41

2.2.2 PERFORMANCE PROFILING..41

2.3 BACKGROUND...41

2.4 42

2.5 UNIT TESTING ...42

2.5.1 SUMMARY...42

2.5.2 TEST HARNESS DESIGN ..42

2.5.2.1 Environment ... 42
2.5.3 CONFIGURATION...44

2.5.3.1 struts-config.xml ... 44
2.5.3.2 properties files... 45
2.5.3.3 Test Scenario ... 45

2.5.4 AUTOMATED TESTING CONDITIONS..48

2.5.5 MANUAL TESTING CONDITIONS ...48

2.5.5.1 Cycle 1 – Normal... 48
2.5.5.2 Cycle 2 – Connection Exception.. 51
2.5.5.3 Cycle 3 – Transfer Exception... 52

2.6 PERFORMANCE PROFILING ..55

2.6.1 SUMMARY...55

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 4

2.6.2 TEST HARNESS DESIGN ..55

2.6.2.1 Environment ... 55
2.6.2.2 Configuration.. 57
2.6.2.3 Scenario setup... 59

2.6.3 HEAP ANALYSIS ...59

2.6.3.1 Instance Summary... 60
2.6.4 PERFORMANCE ANALYSIS..62

2.6.4.1 Top ten FTP Framework related cumulative method time................................ 64
3 RCS – XML Helper Framework ..65

3.1 PURPOSE ...65

3.2 APPROACH..65

3.3 SUMMARY ...65

3.4 TEST HARNESS DESIGN ...66

3.4.1 TESTING ENVIRONMENT...66

3.4.2 TESTING CRITERIA ..66

3.4.3 TESTING CONFIGURATION...66

3.4.4 JPROBE CONFIGURATION FILE ...66

3.4.5 UNIX SERVER SETTINGS ..67

3.4.5.1 rules.properties: .. 67
3.4.5.2 queues.properties:... 67
3.4.5.3 vhosts.properties:.. 67

3.4.6 WEBSPHERE APPLICATION SERVER CONFIGURATION..68

3.4.6.1 Command line arguments: ... 68
3.4.6.2 Environment:... 68

3.4.7 DIRECTORY STRUCTURE ...69

3.5 TESTING SCENARIO ...71

3.6 RESULTS AND ANALYSIS..72

3.7 HEAP SNAPSHOT (MEMORY USAGE) ...72

3.7.1.1 Heap Graph Analysis.. 72

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 5

3.7.2 INSTANCE SUMMARY ...73

3.7.2.1 DomTest.jsp... 73
3.7.2.2 SaxTest.jsp... 73
3.7.2.3 BindTest.jsp... 73

3.8 PERFORMANCE SNAPSHOT (CODE EFFICIENCY)...75

3.8.1 DOMTEST.JSP SCENAR IO ...75

3.8.1.1 Number of Calls.. 75
3.8.1.2 Method Time... 76
3.8.1.3 Cumulative Time .. 77
3.8.1.4 Method Object Count.. 78
3.8.1.5 Cumulative Object Count ... 78
3.8.1.6 Average Method Time.. 79
3.8.1.7 Average Cumulative Time.. 80
3.8.1.8 Average Method Object.. 81
3.8.1.9 Average Cumulative Object Count... 81

3.8.2 SAXTEST.JSP SCENARIO ...82

3.8.2.1 Number of Calls.. 82
3.8.2.2 Method Time... 83
3.8.2.3 Cumulative Time .. 84
3.8.2.4 Method Object Count.. 84
3.8.2.5 Cumulative Object Count ... 85
3.8.2.6 Average Method Time.. 86
3.8.2.7 Average Cumulative Time.. 87
3.8.2.8 Average Method Object.. 87
3.8.2.9 Average Cumulative Object Count... 88

3.8.3 BINDTEST.JSP SCENARIO ...88

3.8.3.1 Number of Calls.. 89
3.8.3.2 Method Time... 89
3.8.3.3 Cumulative Time .. 91
3.8.3.4 Method Object Count.. 91
3.8.3.5 Cumulative Object Count ... 92
3.8.3.6 Average Method Time.. 92
3.8.3.7 Average Cumulative Time.. 93
3.8.3.8 Average Method Object.. 94
3.8.3.9 Average Cumulative Object Count... 94

3.9 GENERAL PERFORMANCE TEST SUMMARY ..95

3.10 APPENDIX A..96

3.10.1 JPROBE CONFIGURATION FILE ..96

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 6

3.11 RESOURCES ...99

4 RCS – Scheduler Framework..100

4.1 TEST HARNESS DESIGN ...100

4.1.1 TESTING ENVIRONMENT.. 100

4.1.1.1 Testing Criteria...100
4.1.2 TESTING CONFIGURATION.. 100

4.1.2.1 JProbe Configuration File ..100
4.1.2.2 UNIX Server Settings ...101

4.1.3 WEBSPHERE APPLICATION SERVER CONFIGURATION... 101

4.1.3.1 Command line arguments: ..102
4.1.3.2 Environment:..102

4.1.4 DIRECTORY STRUCTURE .. 103

4.2 TESTING SCENARIO ...105

4.3 RESULTS AND ANALYSIS..106

4.4 HEAP SNAPSHOT (MEMORY USAGE) ...106

4.4.1 HEAP GRAPH ANALYSIS.. 106

4.4.2 INSTANCE SUMMARY .. 107

4.4.2.1 onetime.jsp...107
4.4.2.2 recurs.jsp ..107

4.5 PERFORMANCE SNAPSHOT (CODE EFFICIENCY)...108

4.5.1 ONETIME.JSP SCENARIO ... 108

4.5.1.1 Number of Calls...108
4.5.1.2 Method Time..109
4.5.1.3 Cumulative Time ...110
4.5.1.4 Method Object Count...110
4.5.1.5 Cumulative Object Count ..111
4.5.1.6 Average Method Time...112
4.5.1.7 Average Cumulative Time...112
4.5.1.8 Average Method Object...113
4.5.1.9 Average Cumulative Object Count..114

4.5.2 RECURS.JSP SCENARIO.. 115

4.5.2.1 Number of Calls...115

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 7

4.5.2.2 Method Time..115
4.5.2.3 Cumulative Time ...116
4.5.2.4 Method Object Count...117
4.5.2.5 Cumulative Object Count ..117
4.5.2.6 Average Method Time...118
4.5.2.7 Average Cumulative Time...119
4.5.2.8 Average Method Object...119
4.5.2.9 Average Cumulative Object Count..120

4.6 GENERAL PERFORMANCE TEST SUMMARY ..121

4.7 APPENDIX A..123

4.7.1 JPROBE CONFIGURATION FILE .. 123

4.8 RESOURCES ...125

5 RCS – Session Framework...125

5.1 UNIT TEST REPORT ..125

5.2 PURPOSE ...125

5.3 APPROACH..125

5.4 BACKGROUND...126

5.5 TEST DESIGN ...126

5.5.1 TESTING ENVIRONMENT.. 126

5.5.2 TESTING CYCLES ... 126

5.5.3 TESTING CONFIGURATION.. 127

5.5.3.1 UNIX Server Settings ...127
5.5.3.2 WebSphere Application Server – Session Manager Configuration...................127
5.5.3.3 Directory Structure...131

5.5.4 TESTING CONDITIONS AND RESULTS ... 133

5.5.4.1 Test Cycle 1 ..135
5.5.4.2 Test Cycle 2 ..136
5.5.4.3 Test Cycle 3 ..137
5.5.4.4 Test Cycle 4 ..138
5.5.4.5 Test Cycle 5 ..139
5.5.4.6 Test Cycle 6 ..140

5.6 PERFORMANCE ANALYSIS ...141

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 8

5.6.1 PURPOSE... 141

5.6.2 APPROACH... 141

5.6.3 SUMMARY.. 141

5.6.4 TEST HARNESS DESIGN ... 142

5.6.4.1 Testing Environment..142
5.6.4.2 Testing Configuration..142

5.6.5 TESTING SCENARIO... 145

5.6.6 RESULTS AND ANALYSIS .. 146

5.6.6.1 Heap Snapshot (Memory Usage)...146
5.6.6.2 Performance Snapshot (Code Efficiency) ..149
5.6.6.3 General Performance Metrics..160

5.6.7 APPENDIX A.. 161

5.6.7.1 JProbe Configuration File ..161
5.6.8 RESOURCES... 164

6 RCS – Web Services (SOAP) Framework..164

6.1 PURPOSE ...164

6.2 APPROACH..165

6.3 SUMMARY ...165

6.4 TEST HARNESS DESIGN ...166

6.4.1 TESTING ENVIRONMENT.. 166

6.4.1.1 Testing Criteria...166
6.4.1.2 JProbe Configuration File ..166
6.4.1.3 WebSphere Application Server Configuration..169
6.4.1.4 Additional Required Components...169

6.5 TESTING SCENARIO ...170

6.5.1 TEST PREPARATION .. 170

6.5.2 TEST SCENARIO ... 170

6.6 RESULTS AND ANALYSIS..170

6.6.1 HEAP SNAPSHOT (MEMORY USAGE) ... 170

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 9

6.6.1.1 Heap Graph Analysis...170
6.6.1.2 Instance Summary..171

6.7 TEST CONCLUSIONS ..172

6.8 RESOURCES ...173

6.9 JAVABEANS ACTIVATION FRAMEWORK WEBSITE ..173

6.10 APACHE XERCES WEBSITE...173

6.11 BEAN SCRIPTING FRAMEWORK WEBSITE..173

6.12 RHINO WEBSITE ..173

6.13 HTTP://WWW.MOZILLA.ORG/RHINO/..173

7 RCS – Configuration Framework ...174

7.1 PURPOSE ...174

7.2 APPROACH..174

7.3 BACKGROUND...174

7.4 TESTING ENVIRONMENT..174

7.4.1 XML FILES... 175

7.4.2 DATABASE TABLES .. 175

7.4.3 WEBSPHERE APPLICATION SERVER – CONFIGURATION FRAMEWORK
CONFIGURATION ... 176

7.5 AUTOMATED TESTING CONDITIONS ..177

7.6 PERFORMANCE TESTING..183

7.6.1 APPROACH... 183

7.6.2 SUMMARY.. 183

7.7 TEST HARNESS DESIGN ...183

7.7.1 TESTING ENVIRONMENT.. 183

7.7.2 TEST CONFIGURATON ... 183

7.7.3 WEBSPHERE APPLICATION SERVER CONFIGURATION... 184

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 10

7.7.3.1 Command line arguments: ..184
7.7.3.2 Environment:..184

7.8 TESTING SCENARIOS..184

7.9 ANALYSIS..184

7.9.1 MEMORY (HEAP) USAGE .. 184

7.9.2 HEAP GRAPH ANALYSIS.. 185

7.10 INSTANCE SUMMARY ..185

7.11 GARBAGE COLLECTIONS ...186

7.12 RESOURCES ...187

7.12.1 GRNDS FRAMEWORK... 187

7.12.2 SUN JAVA WEBSITE... 187

8 RCS - JSP Custom Tag Library Framework ...187

8.1 JSP CUSTOM TAG LIBRARY UNIT TEST REPORT ...187

8.1.1 187

8.1.1.1 Purpose ..187
8.1.1.2 Approach..187
8.1.1.3 Background..187

8.1.2 TEST DESIGN... 188

8.1.2.1 Testing Environment..188
8.1.2.2 Testing Configuration..188

8.1.3 TESTING CONDITIONS AND RESULTS ... 191

8.1.3.1 Test Cycle 1 – Jakarta Struts Bean Taglib...193
8.1.3.2 Test Cycle 2 - Jakarta Struts HTML Taglib ..195
8.1.3.3 Test Cycle 3 - Jakarta Struts Logic Taglib ..197
8.1.3.4 Test Cycle 4 - Jakarta Struts Template Taglib..198
8.1.3.5 Test Cycle 5 - Jakarta DateTime Taglib..199
8.1.3.6 Test Cycle 6 - Jakarta I18N Taglib..200
8.1.3.7 Test Cycle 7 - Jakarta Input Taglib...201
8.1.3.8 Test Cycle 8 - Logging Taglib..203
8.1.3.9 Test Cycle 9 - Jakarta Page Taglib..205

8.1.4 RESOURCES... 207

8.2 JSP CUSTOM TAG LIBRARY PERFORMANCE ANALYSIS ...207

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 11

8.2.1 207

8.2.2 PURPOSE... 207

8.2.3 APPROACH... 207

8.2.4 SUMMARY.. 207

8.2.5 TEST HARNESS DESIGN ... 209

8.2.5.1 Testing Environment..209
8.2.5.2 Testing Configuration..209

8.2.6 TESTING SCENARIO... 212

8.2.7 RESULTS AND ANALYSIS .. 213

8.2.7.1 Heap Snapshot (Memory Usage)...213
8.2.7.2 Performance Snapshot (Code Efficiency) ..215
8.2.7.3 General Performance Metrics..225

8.2.8 APPENDIX A.. 227

8.2.8.1 JProbe Configuration File ..227
8.2.9 RESOURCES... 230

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 12

1 RCS – Web Conversation Framework

1.1 Purpose
This section of the Performance Analysis Report documents the results of utilizing JProbe to
analyze the ITA R3.0 Reusable Common Services (RCS) Web Conversation framework. This
section provides an in-depth analysis of the results gathered from the JProbe and documents
performance issues. The Detailed Design, User Guide, and the Performance Analysis
documents for the Web Conversation framework will enable developers to quickly build
applications using the Web Conversation framework within the ITA environment architecture.

1.2 Approach
To ensure program efficiency and to detect possible bottlenecks, ITA used JProbe to analyze the
Web Conversation framework. JProbe is a performance-profiling tool and it was utilized to
detect performance issues such as loitering objects, unexpected references, and over-use of
objects in Java based programming.

Two key groups of statistics are collected from the JProbe Profiler: The memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow detailed information to be gathered on individual methods
and define the calling relationship between methods.

1.3 Summary
This section of the report contains the performance test harness design, performance analysis,
and resulting performance metrics for the Web Conversation framework. The example
application used for testing maintains user registration and subscription information. The most
commonly used Web Conversation classes and tag library methods (e.g. perform(),
findForward(), and html: FormTag) were profiled using the example application. The actual
results were compared against the results of how this framework is expected to function.
Overall, this framework does not produce any loitering objects that remain in the heap after its
useful life.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 13

1.4 Test Harness Design

1.4.1 Testing Environment
The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance analysis is to identify loitering objects and time spent on each method
relative to other methods within the Web Conversation Framework. The diagram below is
representative of the environment configuration used for the performance analysis.

Figure 1: JProbe Application Analysis Environment

1.4.1.1 Testing Criteria

The ITA team has identified the most commonly used and most complicated Web Conversation
framework classes where potential for code bottlenecks exist. Since the Web Conversation
framework is an API, the example application packaged with the framework distribution was
used as a test harness to profile and analyze the performance of the various methods.

The most commonly used methods identified by the ITA team that were tested as part of the
example application included methods within:

Package Class

org.apache.struts.action Action
org.apache.struts.action ActionError
org.apache.struts.action ActionForm
org.apache.struts.action ActionForward

Server (su35e5) Developer
Workstation

JProbe
Console

JVM

Java
Application

WAS 3.5.3

JProbe’s
JVM

Snapshot
Files

ftp

TCP/IP - port 4444

ITA VDC

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 14

Package Class
org.apache.struts.action ActionMapping
org.apache.struts.action ActionServlet
org.apache.struts.util MessageResources

Package Tag
org.apache.struts.taglib.bean MessageTag
org.apache.struts.taglib.bean WriteTag
org.apache.struts.taglib.html BaseTag
org.apache.struts.taglib.html ButtonTag
org.apache.struts.taglib.html CancelTag
org.apache.struts.taglib.html CheckboxTag
org.apache.struts.taglib.html ErrorsTag
org.apache.struts.taglib.html FormTag
org.apache.struts.taglib.html HiddenTag
org.apache.struts.taglib.html HtmlTag
org.apache.struts.taglib.html ImgTag
org.apache.struts.taglib.html LinkTag
org.apache.struts.taglib.html OptionsTag
org.apache.struts.taglib.html PasswordTag
org.apache.struts.taglib.html RadioTag
org.apache.struts.taglib.html ResetTag
org.apache.struts.taglib.html SubmitTag
org.apache.struts.taglib.html TextareaTag
org.apache.struts.taglib.html TextTag
org.apache.struts.taglib.logic EqualTag
org.apache.struts.taglib.logic IterateTag
org.apache.struts.taglib.logic NotEqualTag

1.4.1.2 Testing Configuration

A new Web Sphere Application Server instance (JPROBE) was created to profile the Web
Conversation example application using JProbe. The command line in the new Application
Server references a JProbe configuration file specially created for this test. Additional settings
and configurations were updated on the server and a struts-config.xml file was added to assist
the Controller in determining where to direct an incoming request.

1.4.1.3 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the settings that
JProbe requires to profile an application, applet, or serverside component (such as JavaServer
Pages and Servlets). The configuration file will determine which JVM is used to run JProbe and
the monitoring options.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 15

The example application test was conducted on the Solaris machine with the output directed to
a remote Windows NT workstation. Performance and heap snapshots were taken before the
Application Server was stopped. The configuration in the actual file used to conduct the test
can be found in Appendix A.

1.4.1.4 UNIX Server Settings

The Web Conversation framework is closely tied to the configuration of the WebSphere
Application Server. Implementing this framework within a WebSphere environment removes
the need to use a web.xml file that is read when the JSP container starts. The web.xml file
would typically define which requests should be mapped to the ActionServlet. In a WebSphere
environment, these resources and paths that would typically be defined in the web.xml file are
spread across multiple Application Server and Web Application settings. Several WebSphere
ApplicationServer *.properties files had to be updated to profile the example application. Refer
to the Web Conversation Framework User Guide document for the *.properties files definition.

1.4.1.5 WebSphere Application Server Configuration

The WebSphere Command Line was configured with the JProbe configuration file used to
ensure that the correct JVM was used. Two Environment Variables were added to the
Application Server and two servlets were added to the Web Application.

1.4.1.5.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/06102002_test_struts.jpl –Xnoclassgc –
Djava.compiler=NONE –ms128m –mx128m

1.4.1.5.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

1.4.1.5.3 Action Servlet:

Servlet: action
Description: Struts Action Servlet
Servlet Class Name: org.apache.struts.action.ActionServlet
Servlet Web Path List: default_host/JPROBEWebApp/*.do

Init Parameters:
Init Param Name Value
detail 2
debug 2
validate true
config /struts-config.xml
application Resource

Debug Mode: False
Load at Startup: True

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 16

1.4.1.5.4 Database Servlet:

Servlet: database
Description: refers to database.xml
Servlet Class Name: org.apache.struts.webapp.example.DatabaseServlet

1.4.1.6 struts-config.xml File

In the Web Conversation framework, the struts-config.xml file is used to determine how to
process incoming requests. A struts-config.xml file is required for each instance of the
Application Server and can contain definitions for more than one Web Application. This
analysis was conducted with the struts-config.xml file packaged with the example application.
The struts-config.xml file was modified to look for the Document Type Definition (.dtd) file on
the local server instead of on the Internet. The contents of the struts-config.xml file used in the
test can be found in Appendix A.

1.4.1.7 Additional Required Components

The following java archive files are required to run the example application:
• struts.jar
• jaxp.jar
• parser.jar

The following Document Type Definition files are required:

• struts-config_1_0.dtd
• web-app_2_2.dtd
• web-app_2_3.dtd

The following Tag Library Descriptors are required:

• struts.tld
• struts-bean.tld
• struts-form.tld
• struts-logic.tld
• struts-template.tld

1.4.1.8 Directory Structure

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 17

opt

Su35e5

www

stg35

WebSphere

AppServer

util

JProbe

bin

temp

logs

jpl_files

snapshots

stg

jprobe

lib

WEB-INF

servlets

web

org...

/opt/stg35/WebSphere/AppServer/bin: includes startup and shutdown scripts for
WAS and JProbe Application Server

/opt/stg35/WebSphere/AppServer/temp: contains the rules.properties,
queues.properties, and vhosts.properties files.
Also contains ./default_host/JProbeWebApp directory where compiled class files
for the JavaServer Pages are located

/opt/stg35/WebSphere/AppServer/logs: includes log files that are useful in
tracking errors: tracefile, activity.log, and JPROBEstderr.log, JPROBEstdout.log

/opt/util/JProbe/jpl_files: directory for JProbe Configuration (*.jpl) files used to
profile the performance of applications

/opt/util/JProbe/snapshots: directory containing performance and heap snapshots
saved from JProbe tests; the files have to be sent via FTP to the developer’s
workstation console in order to be viewed

/www/stg/JProbe/lib: contains the various jar files needed to run the Struts
example application

/www/stg/JProbe/servlets: contains ApplicationResources.properties, and various
Document Type Definition (*.dtd) files needed

/www/stg/JProbe/servlets/org/apache/struts/webapp/example: Full path to the
Struts example class files

/www/stg/JProbe/web: Contains the *.jsp files used to test the Struts example
application

/www/stg/JProbe/web/WEB-INF: Contains the various Tag Library Descriptor
(*.tld) files, struts-config.xml, and database.xml file needed by the Struts example
application

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 18

1.5 Testing Scenario
The example application provided with the framework distribution was used as the test
harness. LoadRunner was used to execute the scenario twenty-five times to obtain an accurate
measurement of the test results on average.

1.5.1 Test Preparation
Refer to the JProbe Quick Start Guide for the test execution preparation information. This guide
identifies the steps required to profile an application using JProbe.

1.5.2 Test Scenario
1. Open a web browser and connect to the site

http://stg.jprobe.fsa.ed.gov/JPROBEWebApp/index.jsp
2. On index page, select Register with the MailReader Demonstration Application link

3. Create a new user:
 a. User: test
 b. Password: testing
 c. Full Name: testy tester
 d. From Address: test@test.com
 e. Reply-to: info@test.com
4. Save
5. Select "Edit your user registration profile"
6. Modify the From Address and Reply To Address to anything.
7. Press Reset
8. Select "Add"
9. Create a new subscription:
 a. Mail Server: mail.yahoo.com
 b. Mail Username: tt33
 c. ttt
10. Save
11. Edit the newly created subscription
12. Press reset
13. Edit Mail Server: smtp.yahoo.com
14. Save
15. Delete the subscription from the list
16. Confirm
17. Save
18. Select "Log off MailReader Demonstration Application"
19. Select "Log on to the MailReader Demonstration Application"
20. Username: amy
21. Submit
22. Error message - Password: pass
23. Select "Log off MailReader Demonstration Application"

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 19

1.6 Results and Analysis
The JProbe Profiler with Memory Debugger application was used to trace both the memory
usage and performance measurement of the example application. Two snapshots were taken:
A heap snapshot and a performance snapshot.

1.6.1 Heap Snapshot (Memory Usage)
The heap snapshot was used to visualize how memory was used, obtain information on objects
allocated in the heap, and determine if there are any loitering objects at the end of the test.

1.6.1.1 Heap Graph Analysis

The screenshot below is obtained from executing Scenario 2 twenty-five times. The spiked lines
demonstrate that temporary objects are being allocated and garbage collected. The yellow
horizontal line has been added to assist the reader in better gauging the depth of the trough.
The yellow line, was used to determine that the level of the trough is getting higher over time
meaning that not all temporary objects are being garbage collected.

The spikes are expected since Scenario 2 is creating new user and subscription objects in the
scenario. The level change of the troughs is unexpected since the test was conducted with the

yellow line

Ran garbage
collection & set
Checkpoint

End of test execution

Garbage collection
and take snapshots

Memory usage for JPROBE
Application Server startup

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 20

assumption that all temporary objects will be removed from the heap. The next section will
examine instance summary to determine if these are loitering objects.
1.6.1.2 Instance Summary

The table below is a section of the Instance Summary result associated with running Scenario 2.
The Count column displays how many instances of the class currently exist in the heap and the
Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the
Checkpoint was set. The Checkpoint tells JProbe to tag all subsequently created objects as
“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Package Class Count Count
Change

Memory Memory
Change

org.apache.struts.webapp.example User 27
(18.1%)

+25 0.756
(18.3%)

+0.7

org.apache.struts.util PropertyMessageResources 23
(15.4%)

+21 0.644
(15.6%)

+0.588

org.apache.struts.webapp.example EditRegistrationAction 1
(0.7%)

+1 0.004
(0.1%)

+0.004

org.apache.struts.webapp.example EditSubscriptionAction 1
(0.7%)

+1 0.004
(0.1%)

+0.004

org.apache.struts.webapp.example LogoffAction 1
(0.7%)

+1 0.004
(0.1%)

+0.004

org.apache.struts.webapp.example LogonAction 1
(0.7%)

+1 0.004
(0.1%)

+0.004

org.apache.struts.webapp.example SaveRegistrationAction 1
(0.7%)

+1 0.004
(0.1%)

+0.004

org.apache.struts.webapp.example SaveSubscriptionAction 1
 (0.7%)

+1 0.004
(0.1%)

+0.004

These results were gathered after the test scenario has finished executing and garbage collection
has occurred. The results were filtered for ‘org.apache.struts.*’ since those are the classes this
report is concerned with. The Count Change column was used to sort the data to determine
which class had the most objects remaining in the heap after the scenario has been completed.

In the first row, the count change for the User class is +25; this number coincides with the
number of times the scenario was executed. From the Package name column, it is possible to
see that this class is part of the Struts example application and not actually part of the Struts
framework. A new User object was created in each cycle during the execution of the scenario
but the objects were never removed from the heap. These loitering objects are attributed to the
design of the example application and not to the Web Conversation framework.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 21

The next class, PropertyMessageResources, is a class from the Web Conversation API. The
PropertyMessageResources class is used to read message keys and their strings from the
property resources file. It was possible to determine where this class was allocated (initiated)
and any referrer objects by drilling down to the Instance Detail View.

The ActionServlet class, which is loaded upon startup of the Web Application, initiates this
PropertyMessageResources instance. Since ActionServlet stores the PropertyMessages in the
form of a HashMap, it will not release these messages from this cache during the life of this
ActionServlet. Because the ActionServlet was loaded on startup of the Application Server, it
will not be unloaded until the Web Application is stopped. This release will not show up in the
profile of the example application as JProbe stops collecting data prior to the shutdown of the
Application Server.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 22

Analyzing the remaining six classes that extend the Action class, it is possible to see that each
has an extra instance remaining in the heap after the end of the performance analysis. Using the
Instance Detail View for LogonAction below it is possible to trace the instance back to the
ActionServlet class.

Even though the different Action classes were called multiple times, only one instance was ever
created. This leads to the conclusion that these objects are reachable and not loitering; therefore,
these objects can still be reused.

By examining the source code, it is determined that once the Action instance is created, it is
placed in a HashMap, which will not removed from the heap until the Web Application has
stopped. This means that any Action class defined by a mapping will be loaded into a
FastHashMap when it is used. The Action object is not removed from the HashMap until the
ActionServlet.destroy() or ActionServlet.reload() method is called. Since WebSphere loaded the
ActionServlet, the destroy() and reload() methods are will never be called within the scope of

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 23

the JProbe performance analysis. Although this is not a memory leak, it is necessary to keep in
mind that overall system performance could be impacted if a tremendous number of Actions
are defined per Application Server.

1.6.2 Performance Snapshot (Code Efficiency)
There are nine efficiency metrics that can be collected using JProbe – five basic metrics and four
compound metrics. The basic metrics include: Number of calls, method time, cumulative time,
method object count, and cumulative object count. The compound metrics are averages per
number of calls, including: average method time, average cumulative time, average method
object count, and average cumulative object count. Time is measured as elapsed time in
milliseconds.

The following sections will describe each metric and display the top results for each
measurement for the performance assessment of the Web Conversation framework. These
metrics are basic indicators of process resource utilization. The detailed graphs associated with
each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by org.apache.struts.* to obtain only the classes
within the Web Conversation framework which is what the test is looking for. Then for each
section, the results were sorted by the metric under investigation to obtain the top ten results for
each metric.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 25

1.6.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Package Name Calls Source
org.apache.struts.util FastHashMap.get(Object) 14,961 FastHashMap.java
org.apache.struts.util PropertyUtils.getPropertyDescriptors(Object) 12,705 PropertyUtils.java
org.apache.struts.util PropertyUtils.getPropertyDescriptor(Object, String) 12,630 PropertyUtils.java
org.apache.struts.util ResponseUtils.write(PageContext, String) 8,325 ResponseUtils.java
org.apache.struts.util PropertyUtils.getAccessibleMethod(Method) 8,240 PropertyUtils.java
org.apache.struts.util PropertyUtils.getSimpleProperty(Object, String) 5,375 PropertyUtils.java
org.apache.struts.util PropertyUtils.getReadMethod(PropertyDescriptor) 5,175 PropertyUtils.java
org.apache.struts.util MessageResources.localeKey(Locale) 3,771 MessageResources.java
org.apache.struts.util RequestUtils.message(PageContext, String, String, String, Object[]) 3,675 RequestUtils.java
org.apache.struts.util MessageResources.getMessage(Locale, String, Object[]) 3,627 MessageResources.java

The chart above lists the top ten most frequently called methods. The classes from the org.apache.struts.util package were used the
most. This is a part of the Web Conversation framework design in the separation of logic and presentation. The example JavaServer
Pages used to analyze this framework heavily utilized resource files to obtain the strings to display to the end users.

1.6.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants (sub-
methods).

Package Name Method Time Source
org.apache.struts.util PropertyUtils.getPropertyDescriptor(Object, String) 785.63 (12.8%) PropertyUtils.java
org.apache.struts.util PropertyUtils.getSimpleProperty(Object, String) 378.39 (6.2%) PropertyUtils.java
org.apache.struts.util MessageResources.messageKey(Locale, String) 267.11 (4.4%) MessageResources.java
org.apache.struts.util ResponseUtils.filter(String) 261.27 (4.3%) ResponseUtils.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 26

Package Name Method Time Source
org.apache.struts.util PropertyUtils.setSimpleProperty(Object, String, Object) 220.33 (3.6%) PropertyUtils.java

org.apache.struts.taglib.html BaseFieldTag.doStartTag() 199.35 (3.3%) BaseFieldTag.java
org.apache.struts.taglib.bean MessageTag.doStartTag() 197.44 (3.2%) MessageTag.java
org.apache.struts.util PropertyUtils.getAccessibleMethod(Method) 175.19 (2.9%) PropertyUtils.java
org.apache.struts.util PropertyUtils.getPropertyDescriptors(Object) 171.29 (2.8%) PropertyUtils.java
org.apache.struts.taglib.html BaseHandlerTag.prepareEventHandlers() 170.40 (2.8%) BaseHandlerTag.java

From the results of the top ten methods with the highest method times, it is possible to see that methods from the PropertyUtils class
have the largest impact on the overall program execution time. Since this is a class that is intrinsic to the Web Conversation
framework and should not be changed by the ITA team, developers should be aware of the amount of time it takes to execute
methods from this class and be prepared for any impact that it may have to their program.

1.6.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but excludes
the time spent in recursive calls to its descendants.

Package Name Cumulative
Time

Source

org.apache.struts.action ActionServlet.process(HttpServletRequest,
HttpServletResponse)

2,225.03
(36.3%)

ActionServlet.java

org.apache.struts.action ActionServlet.doPost(HttpServletRequest,
HttpServletResponse)

1,561.41
(25.5%)

ActionServlet.java

org.apache.struts.action ActionServlet.processActionPerform(Action, ActionMapping,
ActionForm, HttpServletRequest, HttpServletResponse)

1,096.33
(17.9%)

ActionServlet.java

org.apache.struts.util PropertyUtils.getPropertyDescriptor(Object, String) 1,080.64
(17.6%)

PropertyUtils.java

org.apache.struts.util PropertyUtils.getSimpleProperty(Object, String) 993.60 (16.2%) PropertyUtils.java
org.apache.struts.util PropertyUtils.copyProperties(Object, Object) 854.67 (13.9%) PropertyUtils.java
org.apache.struts.taglib.html BaseFieldTag.doStartTag() 790.89 (12.9%) BaseFieldTag.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 27

Package Name Cumulative
Time

Source

org.apache.struts.taglib.bean MessageTag.doStartTag() 726.13 (11.9%) MessageTag.java
org.apache.struts.action ActionServlet.processPopulate(ActionForm, ActionMapping,

HttpServletRequest)
720.24 (11.8%) ActionServlet.java

org.apache.struts.util PropertyUtils.getProperty(Object, String) 719.52 (11.7%) PropertyUtils.java

The example application spent the most time executing methods from the org.apache.struts.action.ActionServlet class and the
org.apache.struts.util.PropertyUtils class. The results indicate that these classes lie in the critical path and have an impact on the
system performance.

1.6.2.4 Method Object Count

Measures the number of objects created during the method’s execution, excluding those created by its descendants.

Package Name Method
Objects

Source

org.apache.struts.util PropertyUtils.getSimpleProperty(Object, String) 5,829 (14.8%) PropertyUtils.java
org.apache.struts.util ResponseUtils.filter(String) 3,900 (9.9%) ResponseUtils.java
org.apache.struts.util MessageResources.messageKey(Locale, String) 3,629 (9.2%) MessageResources.java
org.apache.struts.taglib.bean MessageTag.doStartTag() 3,602 (9.1%) MessageTag.java
org.apache.struts.util PropertyUtils.setSimpleProperty(Object, String, Object) 3,344 (8.5%) PropertyUtils.java
org.apache.struts.taglib.html BaseHandlerTag.prepareEventHandlers() 2,650 (6.7%) BaseHandlerTag.java
org.apache.struts.taglib.html BaseHandlerTag.prepareStyles() 2,650 (6.7%) BaseHandlerTag.java
org.apache.struts.util BeanUtils.populate(Object, Map) 1,423 (3.6%) BeanUtils.java
org.apache.struts.taglib.html BaseFieldTag.doStartTag() 1,218 (3.1%) BaseFieldTag.ja va
org.apache.struts.action ActionServlet.processActionForm(ActionMapping,

HttpServletRequest)
1,135 (2.9%) ActionServlet.java

The above results indicate that the methods from the org.apache.struts.util package allocate the greatest number of objects. The main
culprits are the methods responsible for obtaining the messages located in the properties file. Since the properties files are integral
to the operation of the framework, developers need to be aware that loading the properties file utilizes system resources.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 28

1.6.2.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Package Name Cumulative
Objects

Source

org.apache.struts.action ActionServlet.process(HttpServletRequest, HttpServletResponse) 10,968 (27.8%) ActionServlet.java
org.apache.struts.action ActionServlet.doPost(HttpServletRequest, HttpServletResponse) 7,623 (19.3%) ActionServlet.java
org.apache.struts.taglib.bean MessageTag.doStartTag() 7,434 (18.8%) MessageTag.java
org.apache.struts.taglib.html BaseFieldTag.doStartTag() 7,070 (17.9%) BaseFieldTag.java
org.apache.struts.util PropertyUtils.getSimpleProperty(Object, String) 5,931 (15.0%) PropertyUtils.java
org.apache.struts.action ActionServlet.processActionPerform(Action, ActionMapping,

ActionForm, HttpServletRequest, HttpServletResponse)
5,117 (13.0%) ActionServlet.java

org.apache.struts.util RequestUtils.message(PageContext, String, String, String, Object[]) 3,955 (10.0%) RequestUtils.java
org.apache.struts.util ResponseUtils.filter(String) 3,900 (9.9%) ResponseUtils.java
org.apache.struts.util MessageResources.getMessage(Locale, String, Object[]) 3,898 (9.9%) MessageResources.java
org.apache.struts.util PropertyUtils.getNestedProperty(Object, String) 3,752 (9.5%) PropertyUtils.java

The ActionServlet.process() and ActionServlet.doPost() methods create the most objects themselves or through their descendants.
These are expected since doPost() calls the process() method, which processes an HTTP request and performs the bulk of the
operations.

1.6.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls.

Package Name Average
Method Time

Source

org.apache.struts.action ActionServlet.initDigester(int) 20.16 (0.3%) ActionServlet.java
org.apache.struts.action ActionServlet.<init>() 9.78 (0.2%) ActionServlet.java
org.apache.struts.action ActionServlet.initInternal() 3.80 (0.1%) ActionServlet.java
org.apache.struts.digester Digester.getParser() 3.07 (0.1%) Digester.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 29

Package Name Average
Method Time

Source

org.apache.struts.action ActionServlet.initDataSources() 2.93 (0.0%) ActionServlet.java
org.apache.struts.digester Digester.addCallMethod(String, String, int) 2.85 (0.0%) Digester.java
org.apache.struts.util ConvertUtils.<clinit>() 2.81 (0.0%) ConvertUtils.java
org.apache.struts.taglib.html SubmitTag.<clinit>() 2.36 (0.0%) SubmitTag.java
org.apache.struts.digester Digester.addSetTop(String, String) 1.61 (0.0%) Digester.java
org.apache.struts.taglib.html LinkTag.<clinit>() 1.55 (0.0%) LinkTag.java

The above result shows that the ActionServlet initialization methods take the longest time to execute on average. This will not
interfere with the overall performance of the Web Conversation framework as the ActionServlet initialization is performed only once
on startup of the Application Server.

1.6.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls.

Package Name Average
Cumulative

Time

Source

org.apache.struts.action ActionServlet.init() 189.90 (3.1%) ActionServlet.java
org.apache.struts.action ActionServlet.initMapping() 163.34 (2.7%) ActionServlet.java
org.apache.struts.digester Digester.parse(InputStream) 49.40 (0.8%) Digester.java
org.apache.struts.action ActionServlet.initDigester(int) 30.60 (0.5%) ActionServlet.java
org.apache.struts.webapp.example DatabaseServlet.init() 21.92 (0.4%) DatabaseServlet.java
org.apache.struts.webapp.example DatabaseServlet.load() 21.29 (0.3%) DatabaseServlet.java
org.apache.struts.action ActionServlet.<init>() 10.37 (0.2%) ActionServlet.java
org.apache.struts.action ActionServlet.initInternal() 8.45 (0.1%) ActionServlet.java
org.apache.struts.action ActionServlet.initServlet() 6.74 (0.1%) ActionServlet.java
org.apache.struts.action ActionServlet.initApplication() 6.64 (0.1%) ActionServlet.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 30

Again, the ActionServlet initialization methods, together with their descendants, took the longest time to execute on average. These
results will not impact the system performance once the ActionServlet has been started.

1.6.2.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Identifies the highest number of objects created for the least number of
calls.

Package Name Avg. Method
Object

Source

org.apache.struts.action ActionServlet.initDigester(int) 56 (0.1%) ActionServlet.java
org.apache.struts.action ActionServlet.<init>() 44 (0.1%) ActionServlet.java
org.apache.struts.action ActionServlet.initServlet() 20 (0.1%) ActionServlet.java
org.apache.struts.util ConvertUtils.<clinit>() 17 (0.0%) ConvertUtils.java
org.apache.struts.action ActionServlet.initMapping() 16 (0.0%) ActionServlet.java
org.apache.struts.webapp.example DatabaseServlet.load() 15 (0.0%) DatabaseServlet.java
org.apache.struts.action ActionServlet.initApplication() 12 (0.0%) ActionServlet.java
org.apache.struts.action ActionServlet.initOther() 12 (0.0%) ActionServlet.java
org.apache.struts.action ActionServlet.initUpload() 8 (0.0%) ActionServlet.java
org.apache.struts.digester Digester.resolveEntity(String, String) 7 (0.0%) Digester.java

The ActionServlet initialization methods all created the most objects for only one call to that ActionServlet method. These findings
will not affect the overall performance of the Web Conversation framework as it only creates these objects on initialization of the
ActionServlet when the Application Server or Web Application is first started.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 31

1.6.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls.

Package Name Average
Method
Object

Source

org.apache.struts.action ActionServlet.init() 809 (2.0%) ActionServlet.java
org.apache.struts.action ActionServlet.initMapping() 676 (1.7%) ActionServlet.java
org.apache.struts.digester Digester.parse(InputStream) 208 (0.5%) Digester.java
org.apache.struts.webapp.example DatabaseServlet.init() 112 (0.3%) DatabaseServlet.java
org.apache.struts.webapp.example DatabaseServlet.load() 106 (0.3%) DatabaseServlet.java
org.apache.struts.action ActionServlet.initDigester(int) 105 (0.3%) ActionServlet.java
org.apache.struts.action ActionServlet.initApplication() 55 (0.1%) ActionServlet.java
org.apache.struts.action ActionServlet.<init>() 52 (0.1%) ActionServlet.java
org.apache.struts.action ActionServlet.initServlet() 45 (0.1%) ActionServlet.java
org.apache.struts.action ActionServlet.doPost(HttpServletRequest,

HttpServletResponse)
30 (0.1%) ActionServlet.java

Again, the ActionServlet initialization methods created the greatest number of cumulative objects per number of calls. These objects
will not affect the overall performance of the Web Conversation framework.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 33

1.6.3 Test Conclusions
From analyzing the results of the performance analysis of the example application packaged
with the Struts distribution, it is concluded that the Web Conversation framework does not
produce any loitering objects. Developers will need to keep in mind that Action objects are
loaded into a Hash Map that stays in memory once an ActionMapping has used it. Only one
object is created for each action and it is reusable. These objects still remain in reachable
memory during the life of the Web Application. This could impact the performance of the
system if numerous Action objects are defined for that application. Developers will also have
to be cautious about the use of Message Resources as those consume the most memory while
utilizing this framework.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 35

1.7 Appendix A

1.7.1 JProbe Configuration File
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
 <program type="application">
 <application
 args=""
 working_dir=""
 source_dir=""
 classname="">
 <classpath/>
 </application>
 <applet
 working_dir=""
 source_dir=""
 htmlfile=""
 main_package="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </applet>
 <serverside
 suggested_filters=""
 id="Other server"
 server_dir="/opt/stg35/WebSphere/AppServer"
 prepend_to_vm_args=""
 source_dir=""
 classname="com.ibm.ejs.sm.util.process.Nanny"
 main_package="org.apache.struts"
 exclude_server_classes="true"
 args=""
 working_dir="/opt/stg35/WebSphere/AppServer/servlets"
 prepend_to_classpath="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </serverside>
 </program>
 <vm
 snapshot_dir="/opt/util/JProbe/snapshots"
 location="/opt/util/jdk1.2.2/bin/java"
 args=""
 type="java2"
 use_jit="true"/>
 <viewer
 socket="170.248.222.74:4444"
 type="remote"/>
 <analysis type="profile">
 <performance
 record_from_start="true"
 timing="elapsed"
 track_natives="true"
 final_snapshot="true"
 granularity="method">

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 36

 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="*"
 time="ignore"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="org.apache.struts.*"
 time="track"
 granularity="method"/>
 </performance>
 <heap
 record_from_start="true"
 no_stack_trace_limit="false"
 final_snapshot="true"
 max_stack_trace="4"
 track_dead_objects="true"/>
 <threadalyzer
 record_from_start="true"
 write_to_console="false">
 <deadlock_detection
 enabled="true"
 deadlock_and_exit="true"
 report_stalls="false"
 track_system_threads="false"
 block_can_stall="false"
 deadlock_threshold="2"/>
 <deadlock_prediction
 enable_hold_and_wait="false"
 enable_lock_order="false"
 lock_order_maintains_covers="true"/>
 <data_race
 ignore_volatile="false"
 enable_happens_before="false"
 no_stack_trace_limit="false"
 enable_lock_covers="false"
 max_stack_trace="1"
 instrument_elements="false"/>
 <visualizer
 enabled="true"
 visualization_level="1"/>
 <threadalyzer.filter
 visibility="invisible"
 enabled="true"
 classmask="*"/>
 <threadalyzer.filter
 visibility="visible"
 enabled="true"
 classmask=".*"/>
 </threadalyzer>
 <coverage
 record_from_start="true"
 final_snapshot="true"
 granularity="line">

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 37

 <coverage.filter
 visibility="invisible"
 methodmask="*"
 enabled="true"
 classmask="*"/>
 <coverage.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=".*"/>
 </coverage>
 </analysis>
</jpl>

1.7.2 struts-config.xml
<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config SYSTEM
 "/www/stg/jprobe/servlets/struts -config_1_0.dtd">

<!--
 This is the Struts configuration file for the example application,
 using the proposed new syntax.

 NOTE: You would only flesh out the details in the "form-bean"
 declarations if you had a generator tool that used them to create
 the corresponding Java classes for you. Otherwise, you would
 need only the "form-bean" element itself, with the corresponding
 "name" and "type" attributes.
-->

<struts -config>

 <!-- ========== Form Bean Definitions ================================= -->
 <form-beans>

 <!-- Logon form bean -->
 <form-bean name="logonForm"
 type="org.apache.struts.webapp.example.LogonForm"/>

 <!-- Registration form bean -->
 <form-bean name="registrationForm"
 type="org.apache.struts.webapp.example.RegistrationForm"/>

 <!-- Subscription form bean -->
 <form-bean name="subscriptionForm"
 type="org.apache.struts.webapp.example.SubscriptionForm"/>

 </form-beans>

 <!-- ========== Global Forward Definitions ============================== -->
 <global-forwards>
 <forward name="logoff" path="/logoff.do"/>
 <forward name="logon" path="/logon.jsp"/>

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 38

 <forward name="success" path="/mainMenu.jsp"/>
 </global-forwards>

 <!-- ========== Action Mapping Definitions ============================== -->
 <action-mappings>

 <!-- Edit user registration -->
 <action path="/editRegistration"
 type="org.apache.struts.webapp.example.EditRegistrationAction"
 name="registrationForm"
 scope="request"
 validate="false">
 <forward name="success" path="/registration.jsp"/>
 </action>

 <!-- Edit mail subscription -->
 <action path="/editSubscription"
 type="org.apache.struts.webapp.example.EditSubscriptionAction"
 name="subscriptionForm"
 scope="request"
 validate="false">
 <forward name="failure" path="/mainMenu.jsp"/>
 <forward name="success" path="/subscription.jsp"/>
 </action>

 <!-- Process a user logoff -->
 <action path="/logoff"
 type="org.apache.struts.webapp.example.LogoffAction">
 <forward name="success" path="/index.jsp"/>
 </action>

 <!-- Process a user logon -->
 <action path="/logon"
 type="org.apache.struts.webapp.example.LogonAction"
 name="logonForm"
 scope="request"
 input="/logon.jsp">
 </action>

 <!-- Save user registration -->
 <action path="/saveRegistration"
 type="org.apache.struts.webapp.example.SaveRegistrationAction"
 name="registrationForm"
 scope="request"
 input="/registration.jsp"/>

 <!-- Save mail subscription -->
 <action path="/saveSubscription"
 type="org.apache.struts.webapp.example.SaveSubscriptionAction"
 name="subscriptionForm"
 scope="request"
 input="/subscription.jsp">
 <forward name="success" path="/editRegistration.do?action=Edit"/>
 </action>

 <!-- Display the "walking tour" documentation -->

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 39

 <action path="/tour"
 forward="/tour.htm">
 </action>

 <!-- The standard administrative actions available with Struts -->
 <!-- These would be either omitted or protected by security -->
 <!-- in a real application deployment -->
 <action path="/admin/addFormBean"
 type="org.apache.struts.actions.AddFormBeanAction"/>
 <action path="/admin/addForward"
 type="org.apache.struts.actions.AddForwardAction"/>
 <action path="/admin/addMapping"
 type="org.apache.struts.actions.AddMappingAction"/>
 <action path="/admin/reload"
 type="org.apache.struts.actions.ReloadAction"/>
 <action path="/admin/removeFormBean"
 type="org.apache.struts.actions.RemoveFormBeanAction"/>
 <action path="/admin/removeForward"
 type="org.apache.struts.actions.RemoveForwardAction"/>
 <action path="/admin/removeMapping"
 type="org.apache.struts.actions.RemoveMappingAction"/>

 </action-mappings>

</struts-config>

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 40

1.8 Resources

• Struts Homepage

− http://jakarta.apache.org/struts

• Struts Documentation - Apache Struts Framework (Version 1.0)
− http://jakarta.apache.org/struts/api-1.0/index.html

• Struts, an open-source MVC implementation
− http://www-106.ibm.com/developerworks/ibm/library/j-struts/

• Strut Your Stuff with JSP Tags: Use and extend the open source Struts JSP tag library
− http://www.javaworld.com/javaworld/jw-12-2000/jw-1201-struts.html

• Introduction to Jakarta Struts Framework – Parts 1 – 3
− http://www.onjava.com/lpt/a//onjava/2001/09/11/jsp_servlets.html
− http://www.onjava.com/pub/a/onjava/2001/10/31/struts2.html
− http://www.onjava.com/pub/a/onjava/2001/11/14/jsp_servlets.html

• Building a Web Application: Strut by Strut
− http://husted.com/about/scaffolding/strutByStrut.htm

• Java Developer’s Journal
− http://www.sys-con.com/java/article.cfm?id=1175

Lennart Jörelid. J2EE FrontEnd Technologies: A Programmer’s Guide to Servlets,
JavaServer Pages, and Enterprise JavaBeans. New York. Apress, 2002.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 41

2 RCS – FTP Framework

2.1 Purpose
The RCS FTP Framework Build & Test Report documents testing configuration, unit
testing and performance profiling of Integrated Technical Architecture (ITA) Reusable
Common Services (RCS) FTP Framework. The report provides readers with detailed
information on ITA’s testing approach, testing conditions for unit testing and analysis
on performance profiling. The intended audience is developers and testers who have
interests in test conditions and profile of the framework. For applying the framework,
please refer to RCS FTP Framework User Guide.

2.2 Approach
The FTP Framework first went through unit testing to ensure proper functioning in both
API and web application aspects. The framework was then profiled to show its memory
usage and performance.

2.2.1 Unit Testing
Unit testing of the framework was done in two separate approaches since the framework
can be applied in two different ways. The unit testing of the API was done in an
automated fashion using JUnit automated testing tool. As for the web interface, the
framework was tested manually.

2.2.2 Performance Profiling
FTP Framework was performance profiled using JProbe. The profile captures heap
utilization and application efficiency. By profiling, loitering objects that cause memory
leak can be identified and performance bottleneck can be located. Profiling also offers
an overall look of an application and provides developer with performance matrixes as
references in his or hers development work.

2.3 Background
In the past, FSA applications had looked into a file transfer solution for batched files to
be transferred between systems. The need for an enterprise wide FTP service became
apparent during ITA Release 2 Strategic Assessment. The ITA responded to the need
and came up with a Java based FTP solution that can be run in a WebSphere application
Server (WAS) environment.

The FTP Framework provides developers with an API and a generic graphical user
interface. Developers can use FtpClient as the interface to the framework and custom
build a FTP client. The graphical user interface provides a working example of using

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 42

RCS Web Conversation Framework for building JSP and Servlets that uses FtpClient as
the back end.

In particular the FTP Framework offers the following features:

• API for building customized FTP client.
• JSP and Servlet based front-end graphical user interface.
• Secure Socket Layer data transfer option.
• Active and passive data transfer modes.

2.4 Unit Testing

2.4.1 Summary
Unit testing was done in both automated and manual fashions during the test session.
Both automated and manual tests went through with pass status.

2.4.2 Test Harness Design
2.4.2.1 Environment

For automated unit testing, the code
was tested on local development
machine. The main reason for this
setup was for testing SSL connection.
For SSL connection, SSL capable FTP
server needs to be installed. The
current FSA development servers do
not have this type of FTP server
available for development and
testing purposes. The development
environment is shared across FSA
application development teams.
Installing a SSL FTP server on the
shared environment might affect
other teams negatively. Further
more, software installation needs to
be reviewed by CSC and the testing
schedule could not afford the lengthy
process. Thus, A demo version of the
SSL FTP server software “Surge FTP”
was installed on the local
development machine and used
during the automated testing.

/www/dev/conv

lib

servlets

gov

fsa

ed

ita

ftp

web

ftp

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 43

FTP Framework application was placed under /www/dev/conv/ directory on su35e5
development application server. The file structure is shown on the right. Two major
branches were setup for housing JSP and Servlets. Under ./web/ftp directory, all the
front end user interface JSP pages were kept. As for FTP Framework classes, they were
served out of the ./servlets/gov/ed/fsa/ita/ftp directory. RCS Web Conversation
Framework configuration file, struts-config.xml was placed in the ../web/WEB-INF
directory. The application properties files were in the ./servlets directory.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 44

2.4.3 Configuration
2.4.3.1 struts-config.xml

The FTP Framework uses RCS Web Conversation Framework for its front end user
interface. Web Conversation Framework uses a configuration file that serves as the
switchboard for the application and directs HTTP request and response traffic
accordingly. The configuration file is shown below:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<!DOCTYPE struts-config SYSTEM
 "/www/stg/jprobe/servlets/struts-config_1_0.dtd">

<struts-config>

 <!-- ========== Form Bean Definitions =================================== -->
 <form-beans>

 <!-- FTP Connection Form Bean -->
 <form -bean name="connForm" type="gov.ed.fsa.ita.ftp.FTPConnectForm"/>

 <!-- FTP File Transfer Form Bean -->
 <form -bean name="fileForm" type="gov.ed.fsa.ita.ftp.FTPMoveFileForm"/>

 </form -beans>

 <!-- ========== Global Forward Definitions ============================== -->
 <global-forwards>

 </global-forwards>

 <!-- ========== Action Mapping Definitions ============================== -->
 <action-mappings>

 <!-- FTP -->
 <action
 path="/login"
 type="gov.ed.fsa.ita.ftp.FTPConnectAction"
 name="connForm"
 validate="true"
 input="/ftp/FTPConnection.jsp">
 <forward name="moveFiles" path="/ftp/FTPMoveFile.jsp"/>
 <forward name="fail" path="/ftp/fail.jsp"/>
 </action>

 <action
 path="/move"
 type="gov.ed.fsa.ita.ftp.FTPMoveFileAction"
 name="fileForm"
 validate="true"
 input="/ftp/FTPMoveFile.jsp">
 <forward name="fail" path="/ftp/fail.jsp"/>
 <forward name="movePage" path="/ftp/FTPMoveFile.jsp"/>

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 45

 <forward name="quitPage" path="/ftp/quit.jsp"/>
 </action>

 </action-mappings>

</struts-config>

2.4.3.2 properties files

Two properties files were used in the FTP Framework. Resource.properties file was for
RCS Web Conversation Framework error messages and errorMessages.properties was
for RCS Exception Handling Framework error messages. RCS Exception Handling
Framework was used in Servlets for error catching purpose.

Resource.properties
error.hostname.required=Host name is required
error.username.required=User name is required
error.password.required=Password is required
error.clientChangeDir.null=Directory location is required
error.client.notDir=Selection was not a valid Directory
error.serverChangeDir.null=Directory location is required
error.server.netDir=Selection was not a valid Directory
error.get.file.notSelected=Please select a server side file
error.put.file.notSelected=Please select a client side file

errorMessages.properties
RCS Exception Handling Messages
This file contains mapping information from error codes to error messages

1000-1100 Errors in the FTP Framework:
msg1001=Could not find host
msg1002=Could not create socket
msg1003=Could not create server socket
msg1004=Could not create input/output streams
msg1005=Could not set socket timeout
msg1006=Unexpected response from FTP server read
msg1007=Could not read response from input stream
msg1008=Could not close streams
msg1009=Could not close socket

2.4.3.3 Test Scenario

Two test scenarios were used for both automated and manual testing. Automated
testing was done in JUnit unit testing tool. In the automated scenario, a user establishes
connections in the combination of Active/Passive transfer modes and SSL/NonSSL
connect modes. By doing this test, the proper functioning of the FTP client can be
assured. The manual testing had a different goal. Besides running through a typical
FTP session, the scenario also tries to test the application’s exception handling ability.
The automated testing script is provided below:

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 46

package gov.ed.fsa.ita.ftp;

/**
 * <p>Title: RCS FTP Framework</p>
 * <p>Description: </p>
 * <p>Copyright: Copyright (c) 2002</p>
 * <p>Company: Accenture</p>
 * @author Chi-Yen Yang
 * @version 1.0
 */

import junit.framework.*;
import gov.ed.sfa.ita.exception.*;

public class TestFtpClient extends TestCase {

 public TestFtpClient(String name)
 {
 super(name);
 }

 public static Test suite() {
 TestSuite suite = new TestSuite();

 suite.addTest(new TestFtpClient("testNonSecureActiveFtpClient"));
 suite.addTest(new TestFtpClient("testNonSecurePassiveFtpClient"));
 suite.addTest(new TestFtpClient("testSecureActiveFtpClient"));
 suite.addTest(new TestFtpClient("testSecurePassiveFtpClient"));

 return suite;
 }

 public void testNonSecureActiveFtpClient() {
 try {
 FtpClient client = new FtpClient("170.248.222.113", 21, "active", false);
 client.login("chi-yen_yang", "123456");
 String currentPath = client.pwd();
 client.changeDirectory("/temp");
 String[] list = client.dir("/temp");
 client.setTransferMode("ASCII");
 client.getFile("test.log", "/home/Chi-Yen_Yang/");
 client.setTransferMode("BIN");
 client.putFile("test.mdb", "/temp/");
 client.quit();
 }
 catch (SFAException ex) {
 Assert.fail(ex.getAddlInfo());
 }
 }

 public void testNonSecurePassiveFtpClient() {
 try {
 FtpClient client = new FtpClient("170.248.222.113", 21, "passive", false);
 client.login("chi-yen_yang", "123456");
 String currentPath = client.pwd();
 client.changeDirectory("/temp");
 String[] list = client.dir("/temp");
 client.setTransferMode("ASCII");

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 47

 client.getFile("test.log", "/");
 client.setTransferMode("BIN");
 client.putFile("test.mdb", "/temp/");
 client.quit();
 }
 catch (SFAException ex) {
 Assert.fail(ex.getAddlInfo());
 }
 }

 public void testSecureActiveFtpClient() {
 try {
 FtpClient client = new FtpClient("170.248.222.113", 990, "active", true);
 client.login("chi-yen_yang", "123456");
 String currentPath = client.pwd();
 client.changeDirectory("/temp");
 String[] list = client.dir("/temp");
 client.setTransferMode("ASCII");
 client.getFile("test.log", "/");
 client.setTransferMode("BIN");
 client.putFile("test.mdb", "/temp/");
 client.quit();
 }
 catch (SFAException ex) {
 Assert.fail(ex.getAddlInfo());
 }
 }

 public void testSecurePassiveFtpClient() {
 try {
 FtpClient client = new FtpClient("170.248.222.113", 990, "passive", true);
 client.login("chi-yen_yang", "123456");
 String currentPath = client.pwd();
 client.changeDirectory("/temp");
 String[] list = client.dir("/temp");
 client.setTransferMode("ASCII");
 client.getFile("test.log", "/");
 client.setTransferMode("BIN");
 client.putFile("test.mdb", "/temp/");
 client.quit();
 }
 catch (SFAException ex) {
 Assert.fail(ex.getAddlInfo());
 }
 }
}

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 48

2.4.4 Automated Testing Conditions
Condition
Number

Detailed
Condition

Test Class Name Test Class Method Class Name Method Name Results Data File Name

1 The ftp client logs
user in and

navigates into
appropriate
directory for

downloading and
uploading test
files in Active

mode and non-
secure channel.

TestFtpClient TestNonSecureActiveF
tpClient()

FtpClient FtpClient()
Login()
Pwd()

ChangeDirectory()
Dir()

SetTransferMode()
GetFile()
PutFile()

Quit()

Get test.log
and put
test.mdb

files.

Test.log
Test.mdb

2 The ftp client logs
user in and

navigates into
appropriate
directory for

downloading and
uploading test
files in Passive
mode and non-
secure channel.

TestFtpClient TestNonSecurePassive
FtpClient()

FtpClient FtpClient()
Login()
Pwd()

ChangeDirectory()
Dir()

SetTransferMode()
GetFile()
PutFile()

Quit()

Get test.log
and put
test.mdb

files.

Test.log
Test.mdb

3 The ftp client logs
user in and

navigates into
appropriate
directory for

downloading and
uploading test
files in Active

mode and secure
channel.

TestFtpClient TestSecureActiveFtpCl
ient()

FtpClient FtpClient()
Login()
Pwd()

ChangeDirectory()
Dir()

SetTransferMode()
GetFile()
PutFile()

Quit()

Get test.log
and put
test.mdb

files.

Test.log
Test.mdb

4 The ftp client logs
user in and

navigates into
appropriate
directory for

downloading and
uploading test
files in Passive

mode and secure
channel.

TestFtpClient TestSecurePassiveFtpC
lient()

FtpClient FtpClient()
Login()
Pwd()

ChangeDirectory()
Dir()

SetTransferMode()
GetFile()
PutFile()

Quit()

Get test.log
and put
test.mdb

files.

Test.log
Test.mdb

2.4.5 Manual Testing Conditions
2.4.5.1 Cycle 1 – Normal

Component
Name

FTP
Framework

Version # 1

Prepared by Chi-Yen Yang Date Prepared 12-Jul-02
Tested by Chi-Yen Yang Date Tested 12-Jul-02
Reviewed by Date Reviewed

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 49

Step Number Detailed
Condition

Class Name Method Name JSP Name Expected
Results

1 Go to URL:
http://dev.conv.sfa.e
d.gov:8531/CONVW
ebApp/ftp/FTPCon
nection.jsp

Enter the following
information in form:
Host Name:
4.20.14.132
User Name: chyang
Password: ********

Press 'Reset'

FTPConnectForm reset(ActionMapping
, HttpServletRequest)
validate(ActionMapp
ing,
HttpServletRequest)

FTPConnection.jsp Form clears.

2 Enter the following
information in form:
Host Name:
4.20.14.132
User Name: chyang
Password: ********

Press 'Create
Connection'

FTPConnectForm
FTPConnectAction

validate(ActionMapp
ing,
HttpServletRequest)

perform(ActionMapp
ing, ActionForm,
HttpServletRequest,
HttpServletResponse
)

FTPConnection.jsp User logs in and
returned with
FTPMoveFiles.jsp
page.
Client directory
should show: / and
list of files and
directories under this
path.
Server directory
should show:
/opt/home/chyang
and list of files and
directories under this
path.

3 Click Change Client
Directory radio
button.
Type
/opt/home/chyang
/clientTest in
crosponding text
field.

Press 'Reset'

FTPMoveFilesForm reset(ActionMapping
, HttpServletRequest)
validate(ActionMapp
ing,
HttpServletRequest)

FTPMoveFiles.jsp Form clears.

4 Click Change Client
Directory radio
button.
Type
/opt/home/chyang
/clientTest in
crosponding text
field.

Press 'Just do it'

FTPMoveFilesForm
FTPMoveFilesAction

validate(ActionMapp
ing,
HttpServletRequest)

perform(ActionMapp
ing, ActionForm,
HttpServletRequest,
HttpServletResponse
)

FTPMoveFiles.jsp Client Directory
changes to
/opt/home/chyang
/clientTest and
selection box shows
test.log.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 50

5 Click Change Server
Directory radio
button.
Type
/opt/home/chyang
/serverTest in
crosponding text
field.

Press 'Just do it'

FTPMoveFilesForm
FTPMoveFilesAction

validate(ActionMapp
ing,
HttpServletRequest)

perform(ActionMapp
ing, ActionForm,
HttpServletRequest,
HttpServletResponse
)

FTPMoveFiles.jsp Server Directory
changes to
/opt/home/chyang
/serverTest and
selection box shows
test.log.

6 Click Get File radio
button.
Click BIN mode
radio button.
Select test.doc from
server selection box.

Press 'Just do it'

FTPMoveFilesForm
FTPMoveFilesAction

validate(ActionMapp
ing,
HttpServletRequest)

perform(ActionMapp
ing, ActionForm,
HttpServletRequest,
HttpServletResponse
)

FTPMoveFiles.jsp FTPMoveFiles.jsp
refreshes with
test.doc showing on
both selection boxes.

7 Click Put File radio
button.
Click ASCII mode
radio button.
Select test.log from
server selection box.

Press 'Just do it'

FTPMoveFilesForm
FTPMoveFilesAction

validate(ActionMapp
ing,
HttpServletRequest)

perform(ActionMapp
ing, ActionForm,
HttpServletRequest,
HttpServletResponse
)

FTPMoveFiles.jsp FTPMoveFiles.jsp
refreshes with
test.doc showing on
both selection boxes.

8 Click Quit radio
button.

Press 'Just do it'

FTPMoveFilesForm
FTPMoveFilesAction

validate(ActionMapp
ing,
HttpServletRequest)

perform(ActionMapp
ing, ActionForm,
HttpServletRequest,
HttpServletResponse
)

FTPMoveFiles.jsp quit.jsp appears.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 51

2.4.5.2 Cycle 2 – Connection Exception

Component Name FTP Framework Version # 1
Prepared by Chi-Yen Yang Date Prepared 12-Jul-02
Tested by Chi-Yen Yang Date Tested 12-Jul-02
Reviewed by Date Reviewed

Step Number Detailed
Condition

Class Name Method Name JSP Name Expected Results

1 Go to URL:
http://dev.conv.sf
a.ed.gov:8531/CO
NVWebApp/ftp/
FTPConnection.jsp

Enter the following
information in
form:
Host Name:
User Name:
Password:

Press 'Connect'

FTPConnectForm validate(ActionMa
pping,
HttpServletReques
t)

FTPConnection.jsp error messages
appear next to
each text field.
Prompting users to
enter required
information.

2 Hit Back button.

Enter the following
information in
form:
Host Name:
abcdefg
User Name:
chyang
Password: ********

Press 'Connect'

FTPConnectForm validate(ActionMa
pping,
HttpServletReques
t)

perform(ActionMa
pping,
ActionForm,
HttpServletReques
t,
HttpServletRespon
se)

FTPConnection.jsp error.jsp appears
and shows
unknown host
exception.

3 Hit Back button.

Enter the following
information in
form:
Host Name:
4.20.14.132
User Name: adf
Password: ********

FTPConnectForm reset(ActionMappi
ng,
HttpServletReques
t)
validate(ActionMa
pping,
HttpServletReques
t)

FTPConnection.jsp error.jsp appears
and shows User
not Log In messge.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 52

Press 'Connect'

4 Hit Back button.

Enter the following
information in
form:
Host Name:
4.20.14.132
User Name:
chyang
Password: *

Press 'Connect'

FTPConnectForm reset(ActionMappi
ng,
HttpServletReques
t)
validate(ActionMa
pping,
HttpServletReques
t)

FTPConnection.jsp error.jsp appears
and shows User
not Log In messge.

2.4.5.3 Cycle 3 – Transfer Exception

Component
Name FTP Framework Version # 1
Prepared by Chi-Yen Yang Date Prepared 12-Jul-02
Tested by Chi-Yen Yang Date Tested 12-Jul-02
Reviewed by Date Reviewed

Step Number Detailed
Condition

Class Name Method Name JSP Name Expected Results

1 Enter the
following
information in
form:
Host Name:
4.20.14.132
User Name:
chyang
Password: ********

Press 'Create
Connection'

FTPConnectForm
FTPConnectActio
n

validate(ActionM
apping,
HttpServletReque
st)

perform(ActionM
apping,
ActionForm,
HttpServletReque
st,
HttpServletRespo
nse)

FTPConnection.js
p

User logs in and
returned with
FTPMoveFiles.jsp
page.
Client directory
should show: /
and list of files
and directories
under this path.
Server directory
should show:
/opt/home/chya
ng and list of files
and directories

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 53

under this path.

2 Click Change
Client Directory
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServletReque
st)

perform(ActionM
apping,
ActionForm,
HttpServletReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp error message
appears indicating
no client directory
path typed in the
text field.

3 Click Change
Server Directory
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServletReque
st)

perform(ActionM
apping,
ActionForm,
HttpServletReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp error message
appears indicating
no server
directory path
typed in the text
field.

4 Click Put File
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServletReque
st)

perform(ActionM
apping,
ActionForm,
HttpServletReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp error message
appears indicating
no client file
selected.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 54

5 Click Gut File
radio button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServletReque
st)

perform(ActionM
apping,
ActionForm,
HttpServletReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp error message
appears indicating
no server file
selected.

8 Click Quit radio
button.

Press 'Just do it'

FTPMoveFilesFor
m
FTPMoveFilesActi
on

validate(ActionM
apping,
HttpServletReque
st)

perform(ActionM
apping,
ActionForm,
HttpServletReque
st,
HttpServletRespo
nse)

FTPMoveFiles.jsp quit.jsp appears.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 55

2.5 Performance Profiling

2.5.1 Summary
Performance profiling on RCS FTP Framework was done on JProbe profiling tool. Two
sets of statistics were taken, memory (heap) usage and application performance.
Analysis was done on these two sets of data; both heap analysis and performance
analysis are shown below.

During the heap analysis, one object was found loitering in the heap. One instance of
FtpControlSocket was not garbage collected at the end of the profiling session. Code
changes were applied and the problem was fiexed. Application performance did not
pose to be an issue. FtpClient.putFile() did appear to be high on execution time,
however, it was due to the file transfer time instead of actual execution time. A table of
the top ten method time is provided for developer to reference back when including the
framework in his or hers application.

2.5.2 Test Harness Design
2.5.2.1 Environment

The performance profiling was done in
an isolated environment on su35e5
application server. By running only
one application in the environment, it
can be made sure that the statistics
captured are from the application.

In the performance profiling
environment, the FTP Framework
application was placed under
/www/stg/jprobe/ directory on
su35e5 application server. The file
structure is shown on the right. Two
major branches were setup for housing
JSP and Servlets. Under ./web/ftp
directory, all the front end JSP pages
were kept. As for FTP Framework
Java classes, they were served out of
the ./servlets/gov/ed/fsa/ita/ftp
directory. RCS Web Conversation
Framework configuration file, struts-
config.xml was placed in the
../web/WEB-INF directory. The

/www/stg/jprobe

lib

servlets

gov

fsa

ed

ita

ftp

web

ftp

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 56

application properties files were in the ./servlets directory. Required jar files such as
jsse.jar, jnet.jar and jcert.jar were in the ./lib directory.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 57

2.5.2.2 Configuration

Configuration setting for FTP Framework was the same as it was in unit testing. As for
JProbe, it uses its own configuration file, “.jpl” file. The .jpl file lets JProbe know what
type of statistics to collect and what Java classes to monitor specifically. The following
.jpl file was used for the profiling session:

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
 <program type="application">
 <application
 args=""
 working_dir=""
 source_dir=""
 classname="">
 <classpath/>
 </application>
 <applet
 working_dir=""
 source_dir=""
 htmlfile=""
 main_package="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </applet>
 <serverside
 suggested_filters=""
 id="Other server"
 server_dir="/opt/stg35/WebSphere/AppServer"
 prepend_to_vm_args=""
 source_dir=""
 classname="com.ibm.ejs.sm.util.process.Nanny"
 main_package="gov.ed.fsa.ita.ftp"
 exclude_server_classes="true"
 args=""
 working_dir="/opt/stg35/WebSphere/AppServer/servlets"
 prepend_to_classpath="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </serverside>
 </program>
 <vm
 snapshot_dir="/opt/util/JProbe/snapshots"
 location="/opt/util/jdk1.2.2/bin/java"
 args=""
 type="java2"
 use_jit="true"/>
 <viewer
 socket="170.248.222.113:4444"
 type="remote"/>
 <analysis type="profile">
 <performance
 record_from_start="true"

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 58

 timing="elapsed"
 track_natives="true"
 final_snapshot="true"
 granularity="method">
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="*"
 time="ignore"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="gov.ed.fsa.ita.ftp.*"
 time="track"
 granularity="method"/>
 </performance>
 <heap
 record_from_start="true"
 no_stack_trace_limit="false"
 final_snapshot="true"
 max_stack_trace="4"
 track_dead_objects="true"/>
 <threadalyzer
 record_from_start="true"
 write_to_console="false">
 <deadlock_detection
 enabled="true"
 deadlock_and_exit="true"
 report_stalls="false"
 track_system_threads="false"
 block_can_stall="false"
 deadlock_threshold="2"/>
 <deadlock_prediction
 enable_hold_and_wait="false"
 enable_lock_order="false"
 lock_order_maintains_covers="true"/>
 <data_race
 ignore_volatile="false"
 enable_happens_before="false"
 no_stack_trace_limit="fals e"
 enable_lock_covers="false"
 max_stack_trace="1"
 instrument_elements="false"/>
 <visualizer
 enabled="true"
 visualization_level="1"/>
 <threadalyzer.filter
 visibility="invisible"
 enabled="true"
 classmask="*"/>
 <threadalyzer.filter
 visibility="visible"
 enabled="true"
 classmask=".*"/>
 </threadalyzer>
 <coverage

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 59

 record_from_start="true"
 final_snapshot="true"
 granularity="line">
 <coverage.filter
 visibility="invisible"
 methodmask="*"
 enabled="true"
 classmask="*"/>
 <coverage.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=".*"/>
 </coverage>
 </analysis>
</jpl>

To run FTP Framework in JProbe’s JVM, several configuration changes were made on
the application server.

• Under application command line arguments:
o Added –jp_input=/opt/util/JProbe/jpl_files/07152002_test_ftp.jpl
o Added –Djava.compiler=NONE

• Under Environment:
o Added EXECUTABLE=/opt/util/JProbe/profiler/jprun
o EXECUTE=YES

2.5.2.3 Scenario setup

To profile the FTP Framework, LoadRunner was used to simulate real users stepping
through the application. In the profiling scenario, the user logged onto a ftp server,
navigated to the desired location and uploaded/downloaded files in both ASCII and
BIN modes. The same process was repeated for 20 times. By running the same process
multiple times, better statistics could be collected.

2.5.3 Heap Analysis
The heap snapshot can be used to visualize how memory is being used in the heap,
obtain information on objects allocated in the heap, and determine if there are any
loitering objects at the end of the test.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 60

The above heap graph shows the memory usage throughout the profiling session. The
pink portion of the graph indicates the maximum allocated memory for the application
server. In this case, the maximum memory allocated for the application server is 128
MB. The blue region shows the memory used within the allocated amount. The green
line is a base for comparison (number of objects remain in the heap) at the end of the
profiling session.

As the graph indicates, three garbage collections were done during the profiling session.
The first garbage collection was manually requested to establish a base line for later
comparison. The second garbage collection was done by the JRE as the application
approached its allocated memory size. The third garbage collection was also requested
manually to identify remaining objects in the memory after the scenario finished its 20
iterations.

2.5.3.1 Instance Summary

The table below is a section of the Instance Summary. An instance summary shows
objects that are currently in the heap. The Count column displays the number of
instances of an object currently exist in the heap and the Memory column shows the
amount of memory those instances consume.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 61

The above matrix was sorted based on the Count Change column. Count Change
column was calculated based on the “base” (green vertical line) at the beginning of the
test scenarios. A positive number in this column means this number of objects is left in
heap after the final garbage collection. A positive number is significant because it is a
good indication, but not “THE” indication, that the associated class creates loitering
objects and causes memory leak.

As one can see, three FTP Framework classes, FTPConnectAction, FTPMoveFileAction
and FtpControlSocket, left one object each in the heap after the third garbage collection.
As shown in RCS Web Conversation Performance Profiling report, *Action classes are
reused through out the life of the application. Thus, it was normal for the framework to
leave one instance of FTPConnectAction and FTPMoveFileAction in its heap. However,
FtpControlSocket was not expected to remain in the heap after the last garbage
collection. This situation could potentially cause memory leak.

From the instance summary, it can be observed that the FtpControlSocket class was
called by FtpClient class. In the FtpClient class, the logout() method is supposed to close

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 62

input/output streams and control socket itself. However, the method does not set
FtpControlSocket to null after the end of the execution. Thus, one class object remains.

Code changes were made to include this new discovery. The graph below shows the
new heap snapshot after 40 iterations. The only classes that remained in the heap were
the two *Action classes.

2.5.4 Performance Analysis
The following tree graph shows a list of methods that were used during the profiling
session. The root of the graph is Javax.servlets.http.HttpServlet.service and from there
on, it is divided into JSP and Servlets services. The graph is color-coded based on
cumulative time. The darker the color, the more time spent in a class or method. Only
the top methods are shown in the graph.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 63

As indicated in the graph, most time was spent in the servlets branch. In particular, the
FtpClient.putFile() method took the most execution time. Thus, the path that led to
FtpClient.putFile() was the critical path of this framework. To improve performance, the
critical path should be looked at first.

The graph below shows the references of the put() method. As can be seen, the top
reference to the put() method was the createDataSocket() method with a cumulative
method time of 10 milliseconds. Further more, the total method time for the reference
methods did not add up to the put() method cumulative time. Also, the actual average
execution time for the method was 85 milliseconds. Thus, it can be concluded that the
majority time was spent in file transfer rather than method execution. The conclusion is
reasonable since the file used during the profiling session was a large binary file.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 64

2.5.4.1 Top ten FTP Framework related cumulative method time

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 65

The above table shows the top ten FTP Framework related cumulative method time.
The table should be used as reference in application development that includes the
framework.

3 RCS – XML Helper Framework

3.1 Purpose
This Performance Analysis Report documents the results of utilizing JProbe to test the
ITA R3.0 Reusable Common Services (RCS) XMLHelper framework. This report
provides an in-depth analysis of the results gathered from the JProbe application
profiling and documents any performance issues and suggests resolutions. The Detailed
Design, User Guide, Unit Test Report, and the Performance Analysis documents for the
XMLHelper framework documentation will enable developers to quickly build
applications using the XMLHelper framework within the ITA environment architecture.

3.2 Approach
To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to
analyze the XMLHelper framework. JProbe is a performance-profiling tool and it was
used to detect performance issues such as loitering objects, unexpected references, and
over-use of objects in Java based programming. In order to profile this framework,
portions of the unit test scripts were used to conduct this test. The performance analysis
of this framework is documented in this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap)
usage and performance detail usage which include detailed method times, average
method times, detailed object counts within methods and average method counts. This
tool can be used to identify loitering objects and inefficiencies in code more easily.
JProbe also contains the capabilities to drill-down and allow gathering detailed
information on individual methods and the interaction between them.

3.3 Summary
This report contains the background information, performance test harness design,
performance analyses, and resulting performance metrics for the framework. Profiling
the XMLHelper framework using the test scripts will test the code performance of the
framework. The actual results will be compared against the results of how this
framework is expected to function. Overall, this framework does not produce any
loitering objects or create an excessive amount of objects. Of course memory used is in
direct relationship to the size of the XML document but for most XML documents used
by FSA developers memory usage per document is tiny. This framework is a robust API
that should not cause any performance issues for calling applications.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 66

3.4 Test Harness Design

3.4.1 Testing Environment
The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The
focus of this performance test is to identify loitering objects and time spent on each
method relative to each other in the XMLHelper framework.

3.4.2 Testing Criteria
The three main components of the XMLHelper framework will be tested:

• Parsing XML documents using the DOM parser.
• Parsing XML documents using the SAX parser and a custom developed SAX parsing

class.
• Instantiating a Java object from an XML document using a Data-Bind parser.

Since the XMLHelper framework is an API, the JavaServer Pages developed for the unit
test will serve as a test harness to profile and analyze the performance of the various
methods.

3.4.3 Testing Configuration
In order to profile the XMLHelper framework with JProbe, the JPROBE Application
Server configured in WebSphere was used and some of the configurations were
changed. In the command line reference of the Application Server, there is a reference to
the JProbe configuration file. The file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/08282002_test_xmlhelper.jpl. Due to the fact that some of
the applications use STRUTS there are several servlets that are present in the
configuration that are not needed for this test. Thus the action, database, and
HelloWorld servlets were all disabled.

3.4.4 JProbe Configuration File
The JProbe configuration file has a file extension of .jpl. This file contains all of the
settings that JProbe requires to profile an application, applet, or server side component
(such as JavaServer Pages and Servlets). The configuration file will determine which
JVM is used to run JProbe and the monitoring options. The user will be able to specify
the activity of the Profiler. For example, the file can be configured to cause JProbe
Profiler to take a heap snapshot before it exits and the directory to save the snapshots in.

The example application test will be conducted on the Solaris machine with the output
being sent to a remote Windows NT workstation. The configuration in the actual file
used to conduct the test can be found in Appendix A. A filter for the main package,
gov.ed.sfa.ita.xmlhelper, was added to narrow the scope of the test to this package.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 67

3.4.5 UNIX Server Settings
The current methodology that ITA uses to do performance testing of RCS packages is to
run custom built test harnesses off a Application Server called JPROBE that is running in
the stage environment of the development Solaris server. The server URI that is
configured in the JPROBE Application server is stg.jprobe.fsa.ed.gov. The WebSphere
JSP servlet Web path to call the test harnesses is JPROBEWebApp. So the following
URL’s should execute the three performance tests.
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/xmlhelper/domTest.jsp
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/xmlhelper/saxTest.jsp
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/xmlhelper/databindTest.jsp

To accomplish the above URLs, the following WebSphere configuration files (located in
/opt/stg35/WebSphere/AppServer/temp) were configured as documented.

3.4.5.1 rules.properties:

default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/servlet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

3.4.5.2 queues.properties:

ose.srvgrp.ibmoselink4.clone1.port=8241
ose.srvgrp.ibmoselink4.clone1.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK
ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

3.4.5.3 vhosts.properties:

stg.jprobe.fsa.ed.gov=default_host

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 68

3.4.6 WebSphere Application Server Configuration
The WebSphere Command Line will identify the JProbe configuration file to use and
ensure that the correct JVM is used. Two Environment Variables will be added to the
Application Server to enable it to run with JPROBE.

3.4.6.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/08282002_test_xmlhelper.jpl –Xnoclassgc –
Djava.compiler=NONE –ms128m –mx128m

3.4.6.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 69

3.4.7 Directory Structure

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 70

opt

Su35e5

www

stg35

WebSphere

AppServer

util

JProbe

bin

temp

logs

jpl_files

snapshots

stg

jprobe

/opt/stg35/WebSphere/AppServer/bin: includes startup and shutdown scripts for
WAS and JProbe Application Server

/opt/stg35/WebSphere/AppServer/temp: contains the rules.properties,
queues.properties, and vhosts.properties files.
Also contains ./default_host/JProbeWebApp directory where compiled class files
for the JavaServer Pages are located

/opt/stg35/WebSphere/AppServer/logs: includes log files that are useful in
tracking errors: tracefile, activity.log, and JPROBEstderr.log, JPROBEstdout.log

/opt/util/JProbe/jpl_files: directory for JProbe Configuration (*.jpl) files used to
profile the performance of applications

/opt/util/JProbe/snapshots: directory containing performance and heap snapshots
saved from JProbe tests; the files have to be sent via FTP to the developer’s
workstation console in order to be viewed

lib
/www/stg/jprobe/lib: contains the various ITA - RCS jar files needed to run the
XMLHelper framework unit test cycles

/www/stg/jprobe/web/XMLHelper/domTest.jsp:
Java Server Page that enters a loop and parses a single XML document
mulitpe times.using the DOM protocal.

domTest.jsp

saxTest.jsp

bindTest.jsp

web

XMLHelper

/www/stg/jprobe/web/XMLHelper/bindTest.jsp:
Java Server Page that enters a loop and instatated a Java Object
multiple times using a mapping XML document and a data XML

/www/stg/jprobe/web/XMLHelper/saxTest.jsp:
Java Server Page that enters a loop and parses a single XML document
mulitpe times.using the SAX protocal.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 71

3.5 Testing Scenario
Test applications created for the unit test of the RCS framework will be used to execute
the performance analysis. These test applications are actually Java Server Pages that
access the XMLHelper framework to do work.

DomTest.jsp-Currently configured to build a DOM tree of an example XML document
located at /www/stg35/jprobe/properties/example.xml and then search for a specific
element, using the XMLHelper searchDom method, which returns the elements value.
Once the value is returned, the value is checked against what was configured and will
output whether the value matches or doesn’t. This JSP can be configured to loop
multiple times so that multiple DOM parses and multiple searches take place. In this test
the loop was configured to 10 passes.

SaxTest.jsp-Currently configured to use the SAX protocol to parse the example XML
document located at /www/stg35/jprobe/properties/example.xml and then using and
then search for a specific element, using the XMLHelper searchSAX method, which
returns the elements value. Once the value is returned, the value is checked against what
was configured and will output whether the value matches or doesn’t. This JSP can be
configured to loop multiple times so that multiple DOM parses and multiple searches
take place. In this test the loop was configured to 10 passes.

BindTest.jsp-Configured to instantiate a Java Object from two XML documents. The
first document located at /www/stg35/jprobe/properties/mapping.xml defines the
attributes of the Java object that the parser is trying to build. The second XML document
located at /www/stg35/jprobe/properties/schedule.xml holds the objects attribute values.
This Java Server Page will construct the Java object called ScheduleEntry from the
scheduler framework. This JSP can be configured to loop multiple times so that multiple
ScheduleEntry objects will be built. . In this test the loop was configured to 10 passes.

The results gathered from the application that are external to the XMLHelper
Framework APIs will not be included in the performance profiling results. These results
will be excluded since the purpose of profiling is to determine the performance of the
application under normal conditions. The performance of the methods used to test the
APIs has to be excluded to test just the behavior of the framework.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 72

3.6 Results and Analysis
The JProbe Profiler with Memory Debugger application is used to trace both the
memory usage and performance measurement of the XMLHelper framework API. Two
snapshots are taken for each test scenario: a heap snapshot and a performance snapshot.
Each snapshot provides different information regarding our test.

3.7 Heap Snapshot (Memory Usage)
The heap snapshot can be used to visualize how memory is being used in the heap,
obtain information on objects allocated in the heap, and determine if there are any
loitering objects at the end of the test.

3.7.1.1 Heap Graph Analysis

The screenshot below is obtained from executing domTest.jsp. It is the only heap graph
screenshot depicted in this report since the heap graphs from executing other test cycle
exhibit the same pattern.

Memory usage during
WAS initialization

Ran garbage collection &
set Checkpoint

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 73

In the graph above, it is possible to see that when the Application Server is initialized, a
great deal of memory is consumed. Once the App Server has finished initializing, the
memory usage levels off to a flat line. JProbe will call the Garbage Collector to remove
objects that are no longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance
analysis. The object count will be measured against the count at the checkpoint. By
reading the graph, it can be determined that the overall memory usage for the
XMLHelper framework is very low and will not result in huge increase to the overhead
of calling applications.

3.7.2 Instance Summary
The tables below represent Instance Summary result’s associated with conducting the
different test scenarios. The Count column displays how many instances of the class
currently exist in the heap and the Memory column shows how much memory (in bytes)
those instances consume.

3.7.2.1 DomTest.jsp

Package Class Count Memory
gov.ed.sfa.ita.xmlhelper DomXml 40 (0.0%) 1,760 (0.0%)
gov.ed.sfa.ita.xmlhelper PpKey 80 (0.0%) 960 (0.0%)
gov.ed.sfa.ita.xmlhelper PpValue 80 (0.0%) 960 (0.0%)
gov.ed.sfa.ita.xmlhelper DomXml$ 40 (0.0%) 480 (0.0%)
gov.ed.sfa.ita.xmlhelper DomXml$ 40 (0.0%) 480 (0.0%)
gov.ed.sfa.ita.xmlhelper DomXml$3 10 (0.0%) 120 (0.0%)
gov.ed.sfa.ita.xmlhelper XMLHelper 1 (0.0%) 44 (0.0%)

3.7.2.2 SaxTest.jsp

Package Class Count Memory
gov.ed.sfa.ita.xmlhelper SaxSearchHandler

10 (0.0%) 120 (0.0%)

gov.ed.sfa.ita.xmlhelper XMLHelper 1 (0.0%) 44 (0.0%)
gov.ed.sfa.ita.xmlhelper SaxXml 10 (0.0%) 40 (0.0%)

3.7.2.3 BindTest.jsp

Package Class Count Memory
org.exolab.castor.xml.util XMLFieldDescriptorImpl 551 (0.1%) 46,284 (0.4%)
org.exolab.castor.util List 941 (0.1%) 18,820 (0.2%)
org.exolab.castor.xm UnmarshalState 310 (0.0%) 13,640 (0.1%)

Test execution
Garbage collection
and take snapshots

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 74

Package Class Count Memory
org.exolab.castor.mapping.xml FieldMapping 110 (0.0%) 9,240 (0.1%)
org.exolab.castor.xml FieldValidator 420 (0.1%) 8,400 (0.1%)
org.exolab.castor.mapping.loader FieldHandlerImpl 110 (0.0%) 8,360 (0.1%)
org.exolab.castor.mapping.loader FieldDescriptorImpl 110 (0.0%) 4,840 (0.0%)
org.exolab.castor.xml.validators NameValidator 90 (0.0%) 3,960 (0.0%)
org.exolab.castor.mapping.loader TypeInfo 110 (0.0%) 3,960 (0.0%)
org.exolab.castor.xml.validator StringValidator 90 (0.0%) 3,240 (0.0%)

The DataBind API does take a bit more memory in comparison to the other XML API
parsing technologies but the functionality that the DataBind API adds is much more
complex then simply parsing the XML document. The DataBind API parses two XML
documents and then builds a Java Object that reflects the data that is in the XML
documents. The DataBind API also has the ability to build a XML document that reflects
an existing Java Object. The DataBind API uses a DataBinding Framework called
CASTOR to accomplish the marshalling and demarshalling activities.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 75

3.8 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe – five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The
compound metrics are averages per number of calls, including: average method time, average cumulative time, average
method object count, and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance
assessment of the XMLHelper framework. These metrics are basic indicators of process resource utilization. The detailed
graphs associated with each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by *xmlhelper* to obtain only the classes within the XMLHelper framework
which is what the test is looking for. For the DataBind API we also filtered for *exolab*. Then for each section, the results
were sorted by the metric under investigation to obtain the top ten results for each metric.

3.8.1 DomTest.jsp Scenario
3.8.1.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Name Calls Source
DomXml.getRootNamespaceURI() 728 DomXml.java
PpKey.hasDefaultNamespaceURI() 727 PpKey.java
PpValue.isSingleItem() 600 PpValue.java
PpKey.hashCode() 430 PpKey.java
PpValue.getSingleItem() 320 PpValue.java
PpKey.equals(Object) 297 PpKey.java
PpValue.isString() 240 PpValue.java
PpValue.isAttribute() 160 PpValue.java
DomXml.uncheckedPut(Object, Object) 110 DomXml.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 76

Name Calls Source
PpKey.setPropertiesPlus(DomXml) 110 PpKey.java

For every DOM element encounter, the XMLHelper framework must decide if there is a namespace associated with that
element and if the root namespace has changed. Thus the method getRootNamespaceURI() is the most called method.

3.8.1.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants
(sub-methods).

Name Method Time Source
DomXml.elementToObject(Element) 18 (18.3%) DomXml.java
PpKey.hashCode() 11 (11.1%) PpKey.java
DomXml.privPut(PpKey, Object, boolean) 6 (5.7%) DomXml.java
DomXml.elementKeys() 5 (5.5%) DomXml.java
DomXml.attributeKeys() 5 (5.3%) DomXml.java
PpKey.hasDefaultNamespaceURI() 5 (5.1%) PpKey.java
DomXml.fromXML(InputStream) 4 (4.1%) DomXml.java
PpKey.equals(Object) 4 (4.0%) PpKey.java
PpValue.isString() 2 (2.3%) PpValue.java
XMLHelper.searchDom(String, DomXml) 2 (2.2%) XMLHelper.java

The results above show the longest running method is elementToObject(Element). This is the method that builds the DOM tree
and places elements within a hash table for quick retrieval. Method times are below 50 milliseconds and no one method is
dominating the times.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 77

3.8.1.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name Cumulative
Time

Source

XMLHelper.parse(String) 49 (50.3%) XMLHelper.java
DomXml.loadXML(InputStream) 48 (48.4%) DomXml.java
DomXml.fromXML(InputStream) 41 (41.8%) DomXml.java
DomXml.elementToObject(Element) 37 (37.6%) DomXml.java
XMLHelper.searchDom(String, DomXml) 34 (34.4%) XMLHelper.java
XMLHelper.<init>() 15 (15.3%) XMLHelper.java
PpKey.hashCode() 15 (15.3%) PpKey.java
DomXml.privPut(PpKey, Object, boolean) 13 (13.6%) DomXml.java
DomXml.privAdd(PpKey, Object) 13 (13.4%) DomXml.java
DomXml.attributeKeys() 12 (12.6%) DomXml.java

The framework entry point is the parse(String) method. It would be expected that parse(String) would be the longest
cumulative time method.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 78

3.8.1.4 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method
Objects

Source

DomXml.elementToObject(Element) 206 (26.1%) DomXml.java
PpKey.hashCode() 144 (18.3%) PpKey.java
DomXml.attributeKeys() 122 (15.5%) DomXml.java
DomXml.elementKeys() 122 (15.5%) DomXml.java
DomXml.privPut(PpKey, Object, boolean) 84 (10.6%) DomXml.java
DomXml.<init>(String, String) 42 (5.3%) DomXml.java
XMLHelper.parse(String) 24 (3.0%) XMLHelper.java
DomXml.keys() 12 (1.5%) DomXml.java
DomXml.fromXML(InputStream) 8 (1.0%) DomXml.java
XMLHelper.<init>() 8 (1.0%) XMLHelper.java

Since the elementtoObject(Element) method is the method that builds the DOM tree it had the most number of objects.

3.8.1.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name Cumulative
Objects

Source

XMLHelper.parse(String) 442 (56.0%) XMLHelper.java
DomXml.loadXML(InputStream) 418 (53.0%) DomXml.java
DomXml.fromXML(InputStream) 386 (48.9%) DomXml.java
DomXml.elementToObject(Element) 378 (47.9%) DomXml.java
XMLHelper.searchDom(String, DomXml) 324 (41.1%) XMLHelper.java
DomXml.elementKeys() 152 (19.3%) DomXml.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 79

Name Cumulative
Objects

Source

DomXml.attributeKeys() 152 (19.3%) DomXml.java
PpKey.hashCode() 144 (18.3%) PpKey.java
DomXml.privPut(PpKey, Object, boolean) 114 (14.4%) DomXml.java
DomXml.privAdd(PpKey, Object) 90 (11.4%) DomXml.java

Again very similar to Cumulative Time and Cumulative object count, parse(String) is the entry method to the framework so it
would be expected to have the most objects. The interesting fact about this chart is that if a developer traced the code from
parse() hash table loading, the trace would look very similar to the above chart with each successive method adding a few
more objects but not one adding more then 50%.

3.8.1.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method
Time

Source

XMLHelper.<init>() 2 (1.6%) XMLHelper.java
DomXml.fromXML(InputStream) 0 (0.4%) DomXml.java
DomXml.elementToObject(Element) 0 (0.3%) DomXml.java
XMLHelper.parse(String) 0 (0.2%) XMLHelper.java
DomXml.elementKeys() 0 (0.1%) DomXml.java
DomXml.attributeKeys() 0 (0.1%) DomXml.java
DomXml.keys() 0 (0.1%) DomXml.java
DomXml.<init>() 0 (0.1%) DomXml.java
DomXml.mergeIn(DomXml) 0 (0.1%) DomXml.java
DomXml.privPut(PpKey, Object, boolean) 0 (0.1%) DomXml.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 80

3.8.1.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average
Cumulative

Time

Source

XMLHelper.<init>() 15 (15.3%) XMLHelper.java
XMLHelper.parse(String) 5 (5.0%) XMLHelper.java
DomXml.loadXML(InputStream) 5 (4.8%) DomXml.java
DomXml.fromXML(InputStream) 4 (4.2%) DomXml.java
XMLHelper.searchDom(String, DomXml) 1 (0.9%) XMLHelper.java
DomXml.mergeIn(DomXml) 1 (0.6%) DomXml.java
DomXml.elementToObject(Element) 1 (0.5%) DomXml.java
DomXml.attributeKeys() 0 (0.3%) DomXml.java
DomXml.elementKeys() 0 (0.3%) DomXml.java
DomXml.privAdd(PpKey, Object) 0 (0.2%) DomXml.java

The results above and below do not present any surprises and are consistent with the expected results based on evaluation of
the previous performance metrics.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 81

3.8.1.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

Name Avg. Method
Object

Source

DomXml.elementToObject(Element) 206 (26.1%) DomXml.java
PpKey.hashCode() 144 (18.3%) PpKey.java
DomXml.attributeKeys() 122 (15.5%) DomXml.java
DomXml.elementKeys() 122 (15.5%) DomXml.java
DomXml.privPut(PpKey, Object, boolean) 84 (10.6%) DomXml.java
DomXml.<init>(String, String) 42 (5.3%) DomXml.java
XMLHelper.parse(String) 24 (3.0%) XMLHelper.java
DomXml.keys() 12 (1.5%) DomXml.java
XMLHelper.<init>() 8 (1.0%) XMLHelper.java
DomXml.fromXML(InputStream) 8 (1.0%) DomXml.java

3.8.1.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object
count per number of calls.

Name Average
Cumulative

Object

Source

XMLHelper.parse(String) 44 (5.6%) XMLHelper.java
DomXml.loadXML(InputStream) 41 (5.2%) DomXml.java
DomXml.fromXML(InputStream) 38 (4.8%) DomXml.java
XMLHelper.<init>() 23 (2.9%) XMLHelper.java
XMLHelper.searchDom(String, DomXml) 8 (1.0%) XMLHelper.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 82

Name Average
Cumulative

Object

Source

DomXml.elementToObject(Element) 5 (0.6%) DomXml.java
DomXml.attributeKeys() 3 (0.4%) DomXml.java
DomXml.elementKeys() 3 (0.4%) DomXml.java
DomXml.mergeIn(DomXml) 3 (0.4%) DomXml.java
DomXml.privPut(PpKey, Object, boolean) 1 (0.1%) DomXml.java

3.8.2 SaxTest.jsp Scenario

3.8.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Name Calls Source
SaxSearchHandler.characters(char[], int, int) 130 SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 70 SaxSearchHandler.java
SaxSearchHandler.getSearchName() 70 SaxSearchHandler.java
SaxSearchHandler.startElement(String, String, String, Attributes) 70 SaxSearchHandler.java
XMLHelper.parse(String, SaxHandlers) 10 XMLHelper.java
XMLHelper.searchSax(String, String) 10 XMLHelper.java
SaxHandlers.<init>() 10 SaxHandlers.java
SaxHandlers.endDocument() 10 SaxHandlers.java
SaxHandlers.startDocument() 10 SaxHandlers.java
SaxSearchHandler.<init>() 10 SaxSearchHandler.java

The Sax parser calls established methods depending upon what it is parsing within the XML document. For example the sax
parser will call the method startElement(String, String, String, Attributes) if the parser is parsing the start of a element. The

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 83

method characters(char[], int, int) is called everytime a character is encountered in the XML document. This would explain
why this method has the highest amount of calls

3.8.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants
(sub-methods).

Name Method Time Source
XMLHelper.parse(String, SaxHandlers) 5 (16.0%) XMLHelper.java
XMLHelper.searchSax(String, String) 4 (13.5%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 3 (10.3%) SaxXml.java
XMLHelper.<init>() 2 (5.4%) XMLHelper.java
SaxSearchHandler.startElement(String, String, String, Attributes) 1 (3.3%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 1 (1.7%) SaxSearchHandler.java
SaxHandlers.startDocument() 0 (1.4%) SaxHandlers.java
SaxHandlers.<init>() 0 (1.3%) SaxHandlers.java
SaxXml.<init>() 0 (1.3%) SaxXml.java
SaxSearchHandler.endElement(String, String, String) 0 (0.7%) SaxSearchHandler.java

Due to the fact that the Sax parser is dependent upon the developer in providing a handler class that provides the
implementation of the parsing methods, the parse(String, SaxHandlers) method for the SAX API is a lot more active then the
other two XMLHelper API parse methods. The parse(String, SaxHandlers) method takes the handler class as a argument and
instantiates it. This will mean that parse(String, SaxHandlers) will be more active and more objects associated with it.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 84

3.8.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name Cumulative
Time

Source

XMLHelper.parse(String, SaxHandlers) 5 (43.8%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 3 (28.2%) SaxXml.java
SaxSearchHandler.startElement(String, String, String, Attributes) 1 (9.0%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 1 (4.7%) SaxSearchHandler.java
SaxHandlers.startDocument() 0 (3.9%) SaxHandlers.java
SaxXml.<init>() 0 (3.4%) SaxXml.java
SaxSearchHandler.endElement(String, String, String) 0 (1.8%) SaxSearchHandler.java
SaxHandlers.endDocument() 0 (1.8%) SaxHandlers.java
SaxSearchHandler.getSearchName() 0 (1.7%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.3%) SaxSearchHandler.java

The framework entry point is the parse(String, SaxHandlers) method. It would be expected that parse(String, SaxHandlers)
would be the longest cumulative time method.

3.8.2.4 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method
Objects

Source

XMLHelper.parse(String, SaxHandlers) 32 (41.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 32 (41.0%) SaxXml.java
SaxHandlers.startDocument() 6 (7.7%) SaxHandlers.java
SaxXml.<init>() 4 (5.1%) SaxXml.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 85

Name Method
Objects

Source

SaxSearchHandler.startElement(String, String, String, Attributes) 2 (2.6%) SaxSearchHandler.java
SaxHandlers.endDocument() 2 (2.6%) SaxHandlers.java
SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java

As explained in the method time area, SAX parsing uses a Handler class and where in DOM the elementToObject(Element) was
the heaviest used method, in the SAX API most of the work is done in the parse method.

3.8.2.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name Cumulative
Objects

Source

XMLHelper.parse(String, SaxHandlers) 78 (100.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 42 (53.8%) SaxXml.java

SaxHandlers.startDocument() 6 (7.7%) SaxHandlers.java
SaxXml.<init>() 4 (5.1%) SaxXml.java

SaxSearchHandler.startElement(String, String, String, Attributes) 2 (2.6%) SaxSearchHandler.java
SaxHandlers.endDocument() 2 (2.6%) SaxHandlers.java

SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java

SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 86

3.8.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method
Time

Source

XMLHelper.parse(String, SaxHandlers) 0 (4.4%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 0 (2.8%) SaxXml.java
SaxHandlers.startDocument() 0 (0.4%) SaxHandlers.java
SaxXml.<init>() 0 (0.3%) SaxXml.java
SaxHandlers.endDocument() 0 (0.2%) SaxHandlers.java
SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.1%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 87

3.8.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average
Cumulative

Time

Source

XMLHelper.parse(String, SaxHandlers) 1 (10.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 1 (5.1%) SaxXml.java
SaxXml.<init>() 0 (0.4%) SaxXml.java
SaxHandlers.startDocument() 0 (0.4%) SaxHandlers.java
SaxHandlers.endDocument() 0 (0.2%) SaxHandlers.java
SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.2%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

3.8.2.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

Name Avg. Method
Object

Source

XMLHelper.parse(String, SaxHandlers) 3 (3.8%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 3 (3.8%) SaxXml.java
SaxXml.<init>() 0 (0.0%) SaxXml.java
SaxHandlers.startDocument() 0 (0.0%) SaxHandlers.java
SaxHandlers.endDocument() 0 (0.0%) SaxHandlers.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 88

Name Avg. Method
Object

Source

SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

3.8.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object
count per number of calls.

Name Average
Cumulative

Object

Source

XMLHelper.parse(String, SaxHandlers) 7 (9.0%) XMLHelper.java
SaxXml.parse(String, SaxHandlers) 4 (5.1%) SaxXml.java
SaxXml.<init>() 0 (0.0%) SaxXml.java
SaxHandlers.startDocument() 0 (0.0%) SaxHandlers.java
SaxHandlers.endDocument() 0 (0.0%) SaxHandlers.java
SaxSearchHandler.startElement(String, String, String, Attributes) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.characters(char[], int, int) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.setSearchValue(String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.endElement(String, String, String) 0 (0.0%) SaxSearchHandler.java
SaxSearchHandler.getSearchName() 0 (0.0%) SaxSearchHandler.java

3.8.3 BindTest.jsp Scenario
The XMLHelper framework does include the open source CASTOR framework to accomplish marshalling XML document to
a Java object. This means for this test, we filtered JPROBE on package names that included xmlhelper as well exolab.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 89

3.8.3.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Name Calls Source
List.size() 7,590 List.java
List.get(int) 4,140 List.java
ValidationUtils.isLetter(char) 4,120 ValidationUtils.java
XMLFieldDescriptorImpl.getHandler() 3,700 XMLFieldDescriptorImpl.java
XMLFieldDescriptorImpl.isReference() 3,130 XMLFieldDescriptorImpl.java
List.add(Object) 2,340 List.java
XMLFieldDescriptorImpl.getValidator() 2,320 XMLFieldDescriptorImpl.java
FieldValidator.validate(Object, ClassDescriptorResolver) 2,320 FieldValidator.java
XMLFieldDescriptorImpl.isRequired() 2,270 XMLFieldDescriptorImpl.java
MarshalFramework.isPrimitive(Class) 2,240 MarshalFramework.java

The marshalling technology that CASTOR uses to instantiate an Object uses Lists to move attributes and data around. A high
use of LIST methods is expected.

3.8.3.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants
(sub-methods).

Name Method Time Source
XMLHelper.parse(String, String) 8 (24.0%) XMLHelper.java
DataBind.parse(String, String) 7 (21.2%) DataBind.java
XMLHelper.<init>() 2 (5.9%) XMLHelper.java
DataBind.<init>() 0 (1.2%) DataBind.java
DomXml.<init>() 0 (0.5%) DomXml.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 90

Name Method Time Source
List.size() 0 (0.0%) List.java
List.get(int) 0 (0.0%) List.java
ValidationUtils.isLetter(char) 0 (0.0%) ValidationUtils.java
XMLFieldDescriptorImpl.getHandler() 0 (0.0%) XMLFieldDescriptorImpl.java
XMLFieldDescriptorImpl.isReference() 0 (0.0%) XMLFieldDescriptorImpl.java

The only methods available to XMLHelper using the DataBind API are XMLHelper.parse(String, String) and
XMLHelper.write(String, String). The marshalling and demarshalling from CASTOR are accomplished in the parse methods
and thus are expected to be the high use methods in this test scenario

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 91

3.8.3.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name Cumulative
Time

Source

XMLHelper.<init>() 18 (52.1%) XMLHelper.java
XMLHelper.parse(String, String) 17 (47.9%) XMLHelper.java
DataBind.parse(String, String) 8 (22.3%) DataBind.java
DataBind.<init>() 0 (1.4%) DataBind.java
Unmarshaller.unmarshal(InputSource) 0 (0.9%) Unmarshaller.java
DomXml.<init>() 0 (0.5%) DomXml.java
UnmarshalHandler.endElement(String) 0 (0.5%) UnmarshalHandler.java
FieldHandlerImpl.setValue(Object, Object) 0 (0.5%) FieldHandlerImpl.java
UnmarshalHandler.startElement(String, AttributeList) 0 (0.4%) UnmarshalHandler.java
List.size() 0 (0.0%) List.java

3.8.3.4 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method
Objects

Source

DataBind.parse(String, String) 66 (49.6%) DataBind.java
XMLHelper.parse(String, String) 40 (30.1%) XMLHelper.java
XMLHelper.<init>() 8 (6.0%) XMLHelper.java
DataBind.<init>() 4 (3.0%) DataBind.java
DomXml.<init>() 1 (0.8%) DomXml.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
AccessMode.<init>(String) 0 (0.0%) AccessMode.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 92

Name Method
Objects

Source

AccessMode.<clinit>() 0 (0.0%) AccessMode.java
AccessType.toString() 0 (0.0%) AccessType.java
AccessType.valueOf(String) 0 (0.0%) AccessType.java

3.8.3.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name Cumulative
Objects

Source

XMLHelper.parse(String, String) 110 (82.7%) XMLHelper.java
DataBind.parse(String, String) 66 (49.6%) DataBind.java
XMLHelper.<init>() 23 (17.3%) XMLHelper.java
DataBind.<init>() 4 (3.0%) DataBind.java
DomXml.<init>() 1 (0.8%) DomXml.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
AccessMode.<init>(String) 0 (0.0%) AccessMode.java
AccessMode.<clinit>() 0 (0.0%) AccessMode.java
AccessType.toString() 0 (0.0%) AccessType.java
AccessType.valueOf(String) 0 (0.0%) AccessType.java

3.8.3.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method
Time

Source

XMLHelper.<init>() 2 (5.9%) XMLHelper.java
XMLHelper.parse(String, String) 1 (2.4%) XMLHelper.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 93

Name Avg. Method
Time

Source

DataBind.parse(String, String) 1 (2.1%) DataBind.java
DomXml.<init>() 0 (0.5%) DomXml.java
DataBind.<init>() 0 (0.1%) DataBind.java

AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
AccessMode.<init>(String) 0 (0.0%) AccessMode.java

AccessMode.<clinit>() 0 (0.0%) AccessMode.java
AccessType.toString() 0 (0.0%) AccessType.java

AccessType.valueOf(String) 0 (0.0%) AccessType.java

3.8.3.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average
Cumulative

Time

Source

XMLHelper.<init>() 18 (52.1%) XMLHelper.java
XMLHelper.parse(String, String) 2 (4.8%) XMLHelper.java
DataBind.parse(String, String) 1 (2.2%) DataBind.java
DomXml.<init>() 0 (0.5%) DomXml.java
DataBind.<init>() 0 (0.1%) DataBind.java
Unmarshaller.unmarshal(InputSource) 0 (0.0%) Unmarshaller.java
FieldHandlerImpl.setValue(Object, Object) 0 (0.0%) FieldHandlerImpl.java
UnmarshalHandler.endElement(String) 0 (0.0%) UnmarshalHandler.java
UnmarshalHandler.startElement(String, AttributeList) 0 (0.0%) UnmarshalHandler.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 94

3.8.3.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

Name Avg. Method
Object

Source

AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java
UnmarshalHandler.startElement(String, AttributeList) 0 (0.0%) UnmarshalHandler.java
UnmarshalHandler.endElement(String) 0 (0.0%) UnmarshalHandler.java
FieldHandlerImpl.setValue(Object, Object) 0 (0.0%) FieldHandlerImpl.java
Unmarshaller.unmarshal(InputSource) 0 (0.0%) Unmarshaller.java
DataBind.<init>() 0 (0.0%) DataBind.java
DomXml.<init>() 1 (0.8%) DomXml.java
DataBind.parse(String, String) 6 (4.5%) DataBind.java
XMLHelper.parse(String, String) 4 (3.0%) XMLHelper.java
XMLHelper.<init>() 8 (6.0%) XMLHelper.java

3.8.3.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object
count per number of calls.

Name Average
Cumulative

Object

Source

XMLHelper.<init>() 23 (17.3%) XMLHelper.java
XMLHelper.parse(String, String) 11 (8.3%) XMLHelper.java
DataBind.parse(String, String) 6 (4.5%) DataBind.java
DomXml.<init>() 1 (0.8%) DomXml.java
DataBind.<init>() 0 (0.0%) DataBind.java
Unmarshaller.unmarshal(InputSource) 0 (0.0%) Unmarshaller.java
FieldHandlerImpl.setValue(Object, Object) 0 (0.0%) FieldHandlerImpl.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 95

Name Average
Cumulative

Object

Source

UnmarshalHandler.endElement(String) 0 (0.0%) UnmarshalHandler.java
UnmarshalHandler.startElement(String, AttributeList) 0 (0.0%) UnmarshalHandler.java
AccessMode.getAccessMode(String) 0 (0.0%) AccessMode.java

3.9 General Performance Test Summary
All methods tested in the previous test scenarios executed very similar to each other and no one method stood out as being a
performance problem or something that needed attention. Numbers of objects created per method were small and well
distributed among the methods. No loitering objects or memory leaks were found in the heap at the end of each test cycle.
Application groups using this RCS component should expect good performance low memory usage.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 96

3.10 Appendix A

3.10.1 JProbe Configuration File
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
 <program type="application">
 <application
 args=""
 working_dir=""
 source_dir=""
 classname="">
 <classpath/>
 </application>
 <applet
 working_dir=""
 source_dir=""
 htmlfile=""
 main_package="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </applet>
 <serverside
 suggested_filters=""
 id="Other server"
 server_dir="/opt/stg35/WebSphere/AppServer"
 prepend_to_vm_args=""
 source_dir=""
 classname="com .ibm.ejs.sm.util.process.Nanny"
 main_package="gov.ed.sfa.ita.xmlhelper"
 exclude_server_classes="true"
 args=""
 working_dir="/opt/stg35/WebSphere/AppServer/servlets"
 prepend_to_classpath="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </serverside>
 </program>
 <vm
 snapshot_dir="/opt/util/JProbe/snapshots"
 location="/opt/util/jdk1.2.2/bin/java"
 args=""
 type="java2"
 use_jit="true"/>
 <viewer
 socket="170.248.222.52:4444"
 type="remote"/>
 <analysis type="profile">
 <performance
 record_from_start="true"
 timing="elapsed"

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 97

 track_natives="true"
 final_snapshot="true"
 granularity="method">
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="*"
 time="ignore"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=" gov.ed.sfa.ita.xmlhelper.*"
 time="track"
 granularity="method"/>
 </performance>
 <heap
 record_from_start="true"
 no_stack_trace_limit="false"
 final_snapshot="true"
 max_stack_trace="4"
 track_dead_objects="true"/>
 <threadalyzer
 record_from_start="true"
 write_to_console="false">
 <deadlock_detection
 enabled="true"
 deadlock_and_exit="true"
 report_stalls="false"
 track_system_threads="false"
 block_can_stall="false"
 deadlock_threshold="2"/>
 <deadlock_prediction
 enable_hold_and_wait="false"
 enable_lock_order="false"
 lock_order_maintains_covers="true"/>
 <data_race
 ignore_volatile="false"
 enable_happens_before="false"
 no_stack_trace_limit="false"
 enable_lock_covers="false"
 max_stack_trace="1"
 instrument_elements="false"/>
 <visualizer
 enabled="true"
 visualization_level="1"/>
 <threadalyzer.filter
 visibility="invisible"
 enabled="true"
 classmask="*"/>
 <threadalyzer.filter
 visibility="visible"
 enabled="true"
 classmask=".*"/>
 </threadalyzer>

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 98

 <coverage
 record_from_start="true"
 final_snapshot="true"
 granularity="line">
 <coverage.filter
 visibility="invisible"
 methodmask="*"
 enabled="true"
 classmask="*"/>
 <coverage.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=".*"/>
 </coverage>
 </analysis>
</jpl>

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 99

3.11 Resources
• W3C Document Object Model specifications

− http://www.w3c.org/DOM/

• IBM’s Developer-Works
− http://www.ibm.com/developerworks/

• XML Org
− http://www.xml.org/

• Castor
− http://castor.exolab.org/

• Sax Specifications
− http://www.saxproject.org/

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 100

4 RCS – Scheduler Framework
4.1 Test Harness Design

4.1.1 Testing Environment
The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The
focus of this performance test is to identify loitering objects and time spent on each
method relative to each other in the schedule framework.

4.1.1.1 Testing Criteria

The main components of the Schedule framework that will be tested are:

• Adding a scheduled event that occurs at a specific time from a XML Document
• Adding a event that recursively occurs every minute from a XML document
• Checking that the event has been added using the schedule’s framework method

containsAlarm().
• Removing the event using the schedule’s framework method removeAllAlarms().

Since the Schedule framework is an API, the JavaServer Pages developed for the unit
test will serve as a test harness to profile and analyze the performance of the various
methods.

4.1.2 Testing Configuration
In order to profile the Schedule framework with JProbe, the JPROBE Application Server
configured in WebSphere was used and some of the configurations were changed. In
the command line reference of the Application Server, there is a reference to the JProbe
configuration file. The file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/09122002_test_scheduler.jpl. Due to the fact that some of the
applications use STRUTS there are several servlets that are present in the configuration
that are not needed for this test. Thus the action, database, and HelloWorld servlets were
all disabled.

4.1.2.1 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the
settings that JProbe requires to profile an application, applet, or server side component
(such as JavaServer Pages and Servlets). The configuration file will determine which
JVM is used to run JProbe and the monitoring options. The user will be able to specify
the activity of the Profiler. For example, the file can be configured to cause JProbe
Profiler to take a heap snapshot before it exits and the directory to save the snapshots in.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 101

The example application test will be conducted on the Solaris machine with the output
being sent to a remote Windows NT workstation. The configuration in the actual file
used to conduct the test can be found in Appendix A. A filter for the main package,
gov.ed.sfa.ita.schedule, was added to narrow the scope of the test to this package.

4.1.2.2 UNIX Server Settings

The current methodology that ITA uses to do performance testing of RCS packages is to
run custom built test harnesses off a Application Server called JPROBE that is running in
the stage environment of the development Solaris server. The server URI that is
configured in the JPROBE Application server is stg.jprobe.fsa.ed.gov. The WebSphere
JSP servlet Web path to call the test harnesses is JPROBEWebApp. So the following
URL’s should execute the three performance tests.
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/scheduler/onetime.jsp
http:\\Stg.jprobe.fsa.ed.gov/JPROBEWebApp/scheduler/recurs.jsp

To accomplish the above URLs, the following WebSphere configuration files (located in
/opt/stg35/WebSphere/AppServer/temp) were configured as documented.

4.1.2.2.1 rules.properties:
default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/servlet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

4.1.2.2.2 queues.properties:
ose.srvgrp.ibmoselink4.clone1.port=8241
ose.srvgrp.ibmoselink4.clone1.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK
ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

vhosts.properties:
stg.jprobe.fsa.ed.gov=default_host

4.1.3 WebSphere Application Server Configuration
The WebSphere Command Line will identify the JProbe configuration file to use and
ensure that the correct JVM is used. Two Environment Variables will be added to the
Application Server to enable it to run with JPROBE.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 102

4.1.3.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/09122002_test_scheduler.jpl –Xnoclassgc –
Djava.compiler=NONE –ms128m –mx128m
4.1.3.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 103

4.1.4 Directory Structure

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 104

o p t

Su35e5

w w w

stg35

WebSphere

AppServer

util

JProbe

b i n

temp

logs

jpl_f i les

s n a p s h o t s

stg

j p r o b e

/opt/stg35/WebSphere/AppServer/bin: includes startup and shutdown scripts for

WAS and JProbe Application Server

/opt/stg35/WebSphere/AppServer/temp: contains the rules.properties,

queues.properties, and vhosts.properties files.

Also contains ./default_host/JProbeWebApp directory where compiled class files

for the JavaServer Pages are located

/opt/stg35/WebSphere/AppServer/logs: includes log files that are useful in

tracking errors: tracefile, activity.log, and JPROBEstderr.log, JPROBEstdout.log

/opt/util/JProbe/jpl_files: directory for JProbe Configuration (*.jpl) files used to

profile the performance of applications

/opt/util/JProbe/snapshots: directory containing performance and heap snapshots

saved from JProbe tests; the files have to be sent via FTP to the developer’s

workstation console in order to be viewed

lib

/www/stg/jprobe/lib: contains the various ITA - RCS jar files needed to run the

scheduler framework unit test cycles

/www/stg/jprobe/web/scheduler/onetime.jsp:

Java Server Page that enters a loop and schedules 10 specific time

based events .

onet ime. jsp

recurs. jsp

w e b

Scheduler

/www/stg/jprobe/web/scheduler/recurs.jsp:

Java Server Page that enters a loop and schedules 10 threads that

recursively launch an event every minute.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 105

4.2 Testing Scenario
Test applications created for the unit test of the RCS framework will be used to execute
the performance analysis. These test applications are actually Java Server Pages that
access the Schedule framework to do work.

onetime.jsp-Currently coded to build a schedule object and then read in a specific timed
schedule entry (launch method1() at 05:00:00) from two XML documents, onetimem.xml
and onetimed.xml. The onetimem.xml has the mapping attribute parameters of the
ScheduleEntry class and onetimed.xml has the data values for the ScheduleEntry object
that the jsp builds. This JSP can be configured to loop multiple times so that multiple
Schedule Entries can take place. In this test the loop was configured to 10 passes.

recurs.jsp- This JSP was coded to build a schedule object and then read in a schedule
entry from two XML documents, recursm.xml and recursd.xml. that will recursivly
activate every minute. The recursm.xml has the mapping attribute parameters of the
ScheduleEntry class and recursd.xml has the data values for the ScheduleEntry object
that the jsp builds. By setting different data parameters within the data XML document
(recursd.xml and onetimed.xml) that represents the data values for schedule entry is
how the behavior is changed between recursive or one time type scheduling. This JSP
can be configured to loop multiple times so that multiple Schedule Entries can take
place. In this test the loop was configured to 10 passes.

The results gathered from the application that are external to the Schedule Framework
APIs will not be included in the performance profiling results. These results will be
excluded since the purpose of profiling is to determine the performance of the
application under normal conditions. The performance of the methods used to test the
APIs has to be excluded to test just the behavior of the framework.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 106

4.3 Results and Analysis
The JProbe Profiler with Memory Debugger application is used to trace both the
memory usage and performance measurement of the schedule framework API. Two
snapshots are taken for each test scenario: a heap snapshot and a performance snapshot.
Each snapshot provides different information regarding our test.

4.4 Heap Snapshot (Memory Usage)
The heap snapshot can be used to visualize how memory is being used in the heap,
obtain information on objects allocated in the heap, and determine if there are any
loitering objects at the end of the test.

4.4.1 Heap Graph Analysis
The screenshot below is obtained from executing recurs.jsp. It is the only heap graph
screenshot depicted in this report since the heap graphs from executing other test cycle
exhibit the same pattern.

Memory usage during
WAS initialization

Ran garbage collection &
set Checkpoint

Test execution

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 107

In the graph above, it is possible to see that when the Application Server is initialized, a
great deal of memory is consumed. Once the App Server has finished initializing, the
memory usage levels off to a flat line. JProbe will call the Garbage Collector to remove
objects that are no longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance
analysis. The object count will be measured against the count at the checkpoint. By
reading the graph, it can be determined that the overall memory usage for the schedule
framework is very low and will not result in huge increase to the overhead of calling
applications.

4.4.2 Instance Summary
The tables below represent Instance Summary result’s associated with conducting the
different test scenarios. The Count column displays how many instances of the class
currently exist in the heap and the Memory column shows how much memory (in bytes)
those instances consume.

4.4.2.1 onetime.jsp

Package Class Count Memory
gov.ed.sfa.ita.schedule ScheduleEntry 40 (0.0%) 3,040 (0.0%)
fr.dyade.jdring AlarmEntry 20 (0.0%) 1,040 (0.0%)
fr.dyade.jdring AlarmWaiter 20 (0.0%) 560 (0.0%)

gov.ed.sfa.ita.schedule Schedule 20 (0.0%) 240 (0.0%)

gov.ed.sfa.ita.schedule Schedule$2 20 (0.0%) 240 (0.0%)
scheduler _onetime_jsp_19 DomXml$3 1 (0.0%) 20 (0.0%)

4.4.2.2 recurs.jsp

Package Class Count Memory
gov.ed.sfa.ita.schedule ScheduleEntry 20 (0.0%) 1,520 (0.0%)
fr.dyade.jdring AlarmEntry 10 (0.0%) 520 (0.0%)
fr.dyade.jdring AlarmWaiter 10 (0.0%) 280 (0.0%)
gov.ed.sfa.ita.schedule Schedule 10 (0.0%) 120 (0.0%)

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 108

4.5 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe – five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The
compound metrics are averages per number of calls, including: average method time, average cumulative time, average
method object count, and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance
assessment of the Schedule framework. These metrics are basic indicators of process resource utilization. The detailed
graphs associated with each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by *schedule* to obtain only the classes within the Schedule framework
which is what the test is looking for. Since the schedule also includes the package jdring we also filtered for that. Then for
each section, the results were sorted by the metric under investigation to obtain the top ten results for each metric.

4.5.1 onetime.jsp Scenario

4.5.1.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Name Calls Source
AlarmWaiter.debug(String) 80 AlarmWaiter.java
ScheduleEntry.<init>() 40 ScheduleEntry.java
AlarmManager.debug(String) 40 AlarmManager.java
AlarmEntry.debug(String) 40 AlarmEntry.java
_onetime_jsp_19._jspx_writeString(JspWriter, String) 36 _onetime_jsp_19.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 109

Name Calls Source
_onetime_jsp_19._jspx_writeString(JspWriter, char[]) 36 _onetime_jsp_19.java
Schedule.configureXML(String, String) 20 Schedule.java
ScheduleEntry.setArg0(Object) 20 ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 20 Schedule.java
Schedule.<init>() 20 Schedule.java

4.5.1.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants
(sub-methods).

Name Method Time Source
Schedule.configureXML(String, String) 22 (42.4%) Schedule.java
ScheduleEntry.setArg0(Object) 5 (9.8%) ScheduleEntry.java
ScheduleEntry.<init>() 5 (9.3%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 2 (4.3%) Schedule.java
Schedule.<init>() 2 (4.3%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.9%) Schedule.java
Schedule.removeAllAlarms() 0 (0.8%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.4%) Schedule.java
_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _onetime_jsp_19.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 110

4.5.1.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name Cumulative
Time

Source

_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 51 (100.0%) _onetime_jsp_19.java
Schedule.configureXML(String, String) 32 (63.1%) Schedule.java
Schedule.<init>() 15 (28.7%) Schedule.java
ScheduleEntry.setArg0(Object) 5 (10.4%) ScheduleEntry.java
ScheduleEntry.<init>() 5 (10.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 3 (5.0%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 1 (1.1%) Schedule.java
Schedule.removeAllAlarms() 1 (1.0%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.4%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.1.4 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method
Objects

Source

ScheduleEntry.<init>() 88 (31.0%) ScheduleEntry.java
Schedule.configureXML(String, String) 78 (27.5%) Schedule.java
ScheduleEntry.setArg0(Object) 68 (23.9%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 24 (8.5%) Schedule.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 111

Name Method
Objects

Source

Schedule.<init>() 8 (2.8%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (0.7%) Schedule.java
Schedule.removeAllAlarms() 2 (0.7%) Schedule.java
_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _onetime_jsp_19.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.1.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Name Cumulative
Objects

Source

_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 284 (100.0%) _onetime_jsp_19.java
Schedule.configureXML(String, String) 210 (73.9%) Schedule.java
ScheduleEntry.<init>() 88 (31.0%) ScheduleEntry.java
ScheduleEntry.setArg0(Object) 68 (23.9%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 24 (8.5%) Schedule.java
Schedule.<init>() 22 (7.7%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (0.7%) Schedule.java
Schedule.removeAllAlarms() 2 (0.7%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 112

4.5.1.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method
Time

Source

Schedule.configureXML(String, String) 1 (2.1%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.5%) ScheduleEntry.java
ScheduleEntry.<init>() 0 (0.2%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0 (0.2%) Schedule.java
Schedule.<init>() 0 (0.2%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _onetime_jsp_19.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.1.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average
Cumulative

Time

Source

_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 25 (50.0%) _onetime_jsp_19.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 113

Name Average
Cumulative

Time

Source

Schedule.configureXML(String, String) 2 (3.2%) Schedule.java
Schedule.<init>() 1 (1.4%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.5%) ScheduleEntry.java
ScheduleEntry.<init>() 0 (0.2%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0 (0.2%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0 (0.1%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.1.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

Name Avg. Method
Object

Source

_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 25 (50.0%) _onetime_jsp_19.java
Schedule.configureXML(String, String) 2 (3.2%) Schedule.java
Schedule.<init>() 1 (1.4%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.5%) ScheduleEntry.java
ScheduleEntry.<init>() 0 (0.2%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0 (0.2%) Schedule.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 114

Name Avg. Method
Object

Source

Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0 (0.1%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.1.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object
count per number of calls.

Name Average
Cumulative

Object

Source

_onetime_jsp_19._jspService(HttpServletRequest, HttpServletResponse) 142 (50.0%) _onetime_jsp_19.java
Schedule.configureXML(String, String) 10 (3.5%) Schedule.java
ScheduleEntry.setArg0(Object) 3 (1.1%) ScheduleEntry.java
ScheduleEntry.<init>() 2 (0.7%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 1 (0.4%) Schedule.java
Schedule.<init>() 1 (0.4%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
Schedule$2.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 115

4.5.2 recurs.jsp Scenario

4.5.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Name Calls Source
AlarmWaiter.debug(String) 40 AlarmWaiter.java
AlarmManager.debug(String) 20 AlarmManager.java
ScheduleEntry.<init>() 20 ScheduleEntry.java
_recurs_jsp_1._jspx_writeString(JspWriter, String) 18 _recurs_jsp_1.java
_recurs_jsp_1._jspx_writeString(JspWriter, char[]) 18 _recurs_jsp_1.java
Schedule.<init>() 10 Schedule.java
Schedule.addAlarm(ScheduleEntry) 10 Schedule.java
Schedule.configureXML(String, String) 10 Schedule.java
Schedule.containsAlarm(ScheduleEntry) 10 Schedule.java
Schedule.removeAllAlarms() 10 Schedule.java

4.5.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants
(sub-methods).

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 116

Name Method Time Source

Schedule.configureXML(String, String) 19 (45.7%) Schedule.java
ScheduleEntry.setArg0(Object) 3 (7.1%) ScheduleEntry.java
ScheduleEntry.<init>() 2 (5.6%) ScheduleEntry.java
Schedule.<init>() 2 (5.3%) Schedule.java
Schedule.addAlarm(ScheduleEntry) 1 (3.1%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.7%) Schedule.java
Schedule.removeAllAlarms() 0 (0.6%) Schedule.java
Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.3%) Schedule.java
_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _recurs_jsp_1.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but
excludes the time spent in recursive calls to its descendants.

Name Cumulative
Time

Source

_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 42 (100.0%) _recurs_jsp_1.java
Schedule.configureXML(String, String) 25 (60.1%) Schedule.java
Schedule.<init>() 15 (34.6%) Schedule.java
ScheduleEntry.setArg0(Object) 3 (7.4%) ScheduleEntry.java
ScheduleEntry.<init>() 3 (6.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 2 (3.6%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.8%) Schedule.java
Schedule.removeAllAlarms() 0 (0.7%) Schedule.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 117

Name Cumulative
Time

Source

Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.3%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.2.4 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Name Method
Objects

Source

Schedule.configureXML(String, String) 58 (29.9%) Schedule.java
ScheduleEntry.setArg0(Object) 48 (24.7%) ScheduleEntry.java
ScheduleEntry.<init>() 48 (24.7%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 14 (7.2%) Schedule.java
Schedule.<init>() 8 (4.1%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (1.0%) Schedule.java
Schedule.removeAllAlarms() 2 (1.0%) Schedule.java
_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _recurs_jsp_1.java
Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.2.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 118

Name Cumulative
Objects

Source

_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 194 (100.0%) _recurs_jsp_1.java
Schedule.configureXML(String, String) 140 (72.2%) Schedule.java
ScheduleEntry.setArg0(Object) 48 (24.7%) ScheduleEntry.java
ScheduleEntry.<init>() 48 (24.7%) ScheduleEntry.java
Schedule.<init>() 22 (11.3%) Schedule.java
Schedule.addAlarm(ScheduleEntry) 14 (7.2%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 2 (1.0%) Schedule.java
Schedule.removeAllAlarms() 2 (1.0%) Schedule.java
Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on
average, take a long time to execute.

Name Avg. Method
Time

Source

Schedule.configureXML(String, String) 2 (4.6%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.7%) ScheduleEntry.java
Schedule.<init>() 0 (0.5%) Schedule.java
Schedule.addAlarm(ScheduleEntry) 0 (0.3%) Schedule.java
ScheduleEntry.<init>() 0 (0.3%) ScheduleEntry.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0 (0.1%) Schedule.java
Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 119

Name Avg. Method
Time

Source

_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _recurs_jsp_1.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Name Average
Cumulative

Time

Source

_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 42 (100.0%) _recurs_jsp_1.java
Schedule.configureXML(String, String) 3 (6.0%) Schedule.java
Schedule.<init>() 1 (3.5%) Schedule.java
ScheduleEntry.setArg0(Object) 0 (0.7%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 0 (0.4%) Schedule.java
ScheduleEntry.<init>() 0 (0.3%) ScheduleEntry.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.1%) Schedule.java
Schedule.removeAllAlarms() 0 (0.1%) Schedule.java
Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.2.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per
number of calls.

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 120

Name Avg. Method

Object
Source

Schedule.configureXML(String, String) 5 (2.6%) Schedule.java
ScheduleEntry.setArg0(Object) 4 (2.1%) ScheduleEntry.java
ScheduleEntry.<init>() 2 (1.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 1 (0.5%) Schedule.java
Schedule.<init>() 0 (0.0%) Schedule.java
Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 0 (0.0%) _recurs_jsp_1.java
Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.5.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object
count per number of calls.

Name Average
Cumulative

Object

Source

_recurs_jsp_1._jspService(HttpServletRequest, HttpServletResponse) 194 (100.0%) _recurs_jsp_1.java
Schedule.configureXML(String, String) 14 (7.2%) Schedule.java
ScheduleEntry.setArg0(Object) 4 (2.1%) ScheduleEntry.java
Schedule.<init>() 2 (1.0%) Schedule.java
ScheduleEntry.<init>() 2 (1.0%) ScheduleEntry.java
Schedule.addAlarm(ScheduleEntry) 1 (0.5%) Schedule.java

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 121

Name Average
Cumulative

Object

Source

Schedule.containsAlarm(ScheduleEntry) 0 (0.0%) Schedule.java
Schedule.removeAllAlarms() 0 (0.0%) Schedule.java
Schedule$1.<init>(Schedule, ScheduleEntry) 0 (0.0%) Schedule.java
AlarmWaiter.debug(String) 0 (0.0%) AlarmWaiter.java

4.6 General Performance Test Summary
All methods tested in the previous test scenarios executed very similar to each other and no one method stood out as being a
performance problem or something that needed attention. Numbers of objects created per method were small and well
distributed among the methods. No loitering objects or memory leaks were found in the heap at the end of each test cycle.
Application groups using this RCS component should expect good performance low memory usage.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 123

4.7 Appendix A

4.7.1 JProbe Configuration File
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
 <program type="application">
 <application
 args=""
 working_dir=""
 source_dir=""
 classname="">
 <classpath/>
 </application>
 <applet
 working_dir=""
 source_dir=""
 htmlfile=""
 main_package="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </applet>
 <serverside
 suggested_filters=""
 id="Other server"
 server_dir="/opt/stg35/WebSphere/AppServer"
 prepend_to_vm_args=""
 source_dir=""
 classname="com.ibm.ejs.sm.util.process.Nanny"
 main_package="gov.ed.sfa.ita.schedule"
 exclude_server_classes="true"
 args=""
 working_dir="/opt/stg35/WebSphere/AppServer/servlets"
 prepend_to_classpath="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </serverside>
 </program>
 <vm
 snapshot_dir="/opt/util/JProbe/snapshots"
 location="/opt/util/jdk1.2.2/bin/java"
 args=""
 type="java2"
 use_jit="true"/>
 <viewer
 socket="170.248.222.52:4444"
 type="remote"/>
 <analysis type="profile">
 <performance
 record_from_start="true"
 timing="elapsed"
 track_natives="true"
 final_snapshot="true"
 granularity="method">

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 124

 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="*"
 time="ignore"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=" gov.ed.sfa.ita.schedule.*"
 time="track"
 granularity="method"/>
 </performance>
 <heap
 record_from_start="true"
 no_stack_trace_limit="false"
 final_snapshot="true"
 max_stack_trace="4"
 track_dead_objects="true"/>
 <threadalyzer
 record_from_start="true"
 write_to_console="false">
 <deadlock_detection
 enabled="true"
 deadlock_and_exit="true"
 report_stalls="false"
 track_system_threads="false"
 block_can_stall="false"
 deadlock_threshold="2"/>
 <deadlock_prediction
 enable_hold_and_wait="false"
 enable_lock_order="false"
 lock_order_maintains_covers="true"/>
 <data_race
 ignore_volatile="false"
 enable_happens_before="false"
 no_stack_trace_limit="false"
 enable_lock_covers="false"
 max_stack_trace="1"
 instrument_elements="false"/>
 <visualizer
 enabled="true"
 visualization_level="1"/>
 <threadalyzer.filter
 visibility="invisible"
 enabled="true"
 classmask="*"/>
 <threadalyzer.filter
 visibility="visible"
 enabled="true"
 classmask=".*"/>
 </threadalyzer>
 <coverage
 record_from_start="true"
 final_snapshot="true"
 granularity="line">

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 125

 <coverage.filter
 visibility="invisible"
 methodmask="*"
 enabled="true"
 classmask="*"/>
 <coverage.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=".*"/>
 </coverage>
 </analysis>
</jpl>

4.8 Resources
• IBM’s Developer-Works

http://www.ibm.com/developerworks/

• JDRing Web Site
http://webtools.dyade.fr/jdring/

• Castor

http://castor.exolab.org/

5 RCS – Session Framework
5.1 Unit Test Report

5.2 Purpose
This Unit Test Report documents the test conditions and test script of the ITA R3.0 Reusable
Common Services (RCS) User Session framework. This report also provides the expected
results and actual results from running the test script.

5.3 Approach
To ensure quality of the RCS, the User Session framework went through extensive unit testing.
ITA conducted manual unit testing of this framework.

Benefits to the unit test approach are:

• Standardize test conditions and cycles

• Increase code quality

• Increase consistency in the approach to testing

• Increase productivity

• Reduce time for regression testing

• More time available to spend on enhancements as less time is required for fixes

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 126

5.4 Background
The purpose of the ITA User Session framework is to provide a standard to simplify,
standardize, and extend the use of user session/context information within the J2EE standard.
The session framework will provide a common way to access session information. The
framework will decouple session information from the request, session, and cookie contexts;
and it will wrap WebSphere session extension classes.
5.5 Test Design

5.5.1 Testing Environment
The unit test for the User Session framework will be conducted manually. The unit test will be
conducted on a Sun SPARC machine running Solaris 2.6 interacting with a client browser
running on a Windows 2000 machine. Both Microsoft Internet Explorer 5.0.1 and Netscape
Navigator 6.2 client browsers were used to conduct the tests scripts. The focus of this unit test
is to identify that the User Session framework is functioning as designed.

5.5.2 Testing Cycles
The User Session framework is designed to retrieve user session information stored in cookies
on the client (user’s) machine or in the session object stored on the application server. There are
many possible configurations to WebSphere’s Session Manager that affects how the User
Session framework will be used.

The following test cycles will be conducted to test the different scenarios the application
developer could encounter:

Cycle Number Type Storage Type Notes

1 Normal Cookie -
2 Normal HttpSession Variable
3 Normal HttpSession Persistent
4 Normal IBMSession Manual update method not called
5 Normal IBMSession Manual update method called
6 Exception Session Does not matter if HttpSession or

IBMSession

Developers could encounter the scenarios above due to the complexity of managing user
session state and using WebSphere Session Manager. The session object can be maintained in
the server’s cache (memory) or in a database depending on how WebSphere’s Session Manager
is configured. Storing user session information in a database (persistence) is required if the
application is configured for cloning so that a user can be directed to different servers but still
be able to access his or her session information. The Session Manager offers an IBMSession
interface that extends HttpSession and provides the capability to manually request the session
information be persisted to the database. If persistence is enabled and manual update is not
enabled, the user information is persisted at the end of every servlet’s service() method call.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 127

5.5.3 Testing Configuration
In order to test the User Session framework, several JavaServer Pages had to be developed to
utilize the User Session framework classes. An existing development Application Server
(CONV) was used to conduct the tests, with some modification to the Session Manager settings
and directory structure. The UNIX server settings were not modified and are listed below for
reference only.

5.5.3.1 UNIX Server Settings

The usage of the User Session framework is closely tied to how the WebSphere Session Manager
is configured. The WebSphere properties files have not been updated and the existing settings
are used to run the test cycles.

The following sections list the properties related to the Web Application created to unit test the
User Session framework. The configuration settings used in the Administration Console is
defined in the next topic.

5.5.3.1.1 rules.properties:
default_host/CONVWebApp/*.activity=ibmoselink15
default_host/CONVWebApp/*.jsp=ibmoselink15
default_host/CONVWebApp/ErrorReporter=ibmoselink15
default_host/CONVWebApp/servlet/=ibmoselink15
default_host/CONVWebApp/servlet/messagerouter=ibmoselink15
default_host/CONVWebApp/servlet/rpcrouter=ibmoselink15
default_host/CONVWebApp/servlet=ibmoselink15

5.5.3.1.2 queues.properties:
ose.srvgrp.ibmoselink15.clone1.port=8400
ose.srvgrp.ibmoselink15.clone1.type=remote
ose.srvgrp.ibmoselink15.clonescount=1
ose.srvgrp.ibmoselink15.type=FASTLINK
ose.srvgrp=ibmoselink,ibmoselink1,ibmoselink2,ibmoselink3,ibmoselink4,ibmoselink5,ibmoselink6,ibmoselink7,ibmos
elink9,ibmoselink8,ibmoselink10,ibmoselink12,ibmoselink13,ibmoselink14,ibmoselink15,ibmoselink16,ibmoselink17,i
bmoselink18

5.5.3.1.3 vhosts.properties:
dev.conv.sfa.ed.gov\:8531=default_host

5.5.3.2 WebSphere Application Server – Session Manager Configuration

The WebSphere Application Server level and Web Application level properties were not
changed to conduct this unit test. The Session Manager settings had to be changed for each test
according to the setup instructions for that test cycle.

The follow screenshots demonstrate the different configuration options for the Session Manager
in the WebSphere Administration Console. The circled settings are options that will be

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 128

modified during the test cycles. If an option is not listed in the setup for the test cycle, then the
current setting of that option is not important to the test and can be left as is.

Figure 2: Enable Tab

Figure 3: Cookies Tab

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 129

Figure 4: Persistence Tab

Figure 5: Intervals Tab

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 130

Figure 6: Tuning Tab

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 131

5.5.3.3 Directory Structure

opt

Su35e5

www

dev35

AppServer

bin

temp

logs

dev

conv

lib

/opt/dev35/WebSphere/AppServer/bin: includes restart scripts for WAS

/opt/dev35/WebSphere/AppServer/temp: contains the rules.properties,
queues.properties, and vhosts.properties files.
Also contains ./default_host/CONVWebApp/session directory where compiled
class files for the JavaServer Pages are located

/opt/dev35/WebSphere/AppServer/logs: includes log files that are useful in
tracking errors: tracefile and activity.log

/www/dev/conv/lib: contains the various ITA - RCS jar files needed to run the
Session framework unit test cycles

/www/dev/conv/web/sesssion/cookieTest: Contains the *.jsp files used to
test the storage and retrieval of user session information from Cookies
stored on the client’s browser

cookieTest

sessionTest

sessionIBMTest

web

WebSphere

session

/www/dev/conv/web/sesssion/cookieTest: Contains the *.jsp files used
to test the storage and retrieval of user session information from
IBMSession objects stored on the server and to test manual update

/www/dev/conv/web/sesssion/sessionTest: Contains the *.jsp files used to
test the storage and retrieval of user session information from HttpSession
object stored on the server

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 133

5.5.4 Testing Conditions and Results
Three sets of applications have been created to test the different functionality available within
the User Session framework. The basic design and flow of these applications are the same with
slight changes in the constructor used to access the User Session framework’s ContextManager
to store and retrieve user session information.

The files associated with each set of the test applications have been placed into separate
directories: cookieTest, sessionTest, sessionIBMTest. See the previous section for the complete
path to the directory.

The following URLs are used to access the different pages of the test applications:
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/session/cookieTest/*.jsp1
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/session/sessionTest/*.jsp
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/session/sessionIBMTest/*.jsp

All test cycles were conducted using Microsoft’s Internet Explorer (IE). Netscape Navigator
was used for testing cycles 1, 4, and 5 to ensure that the framework will behave as expected in
another browser. Browser differences can occur though; such as when opening a completely
new Internet Explorer browser (i.e. clicking the IE icon), the generated Session ID will be
different in the new browser window; but launching a new window from within an existing
browser window (i.e. Ctrl + N) will result in the same Session ID being used in the new browser
window. Whereas, in Netscape, if one Navigator window is already open, opening a new
browser in either method will still result in it using the same Session ID being used in the new
browser window.

The test conditions are provided below and the configuration of the Session Manager settings
and actual test scripts are provided in Appendix A. To check if persistent session information
has been stored in the database, a SQL query has to be executed. To access the database, type at
the command prompt “sqlplus ejsadmin@was35d” without the “ ”s. Execute the SQL select
statement “select id, maxinactivetime from sessions;” without the “ “s. This will current
sessions stored in the database.

1 Where *.jsp refers to the different JavaServer Pages within each directory as listed in the test
conditions and test scripts.

1 Where *.jsp refers to the different JavaServer Pages within each directory as listed in the test conditions
and test scripts.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 135

5.5.4.1 Test Cycle 1

Tests the storage and retrieval of user session information from session cookies on the user’s browser.

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

1 Call the ContextManager
constructor to access the
cookie retrieval type

ContextManager,
CookieRetrieval

ContextManager,
CookieRetrieval

cookieTest/ input.jsp First Name: Ben
Last Name: Franklin
Age: 100

Constructor is initialized and it in turn
initializes the CookieRetrieval
constructor

2 Save the information to a
session cookie sent back
to the client

ContextManager,
CookieRetrieval

Constructor &
setAttribute

cookieTest/
processInput.jsp

Information passed in from
previous condition is stored in
the cookie

Cookies are saved and values displayed
should be identical to values entered in
condition 1

3 Retrieve and display the
information stored in the
cookie

ContextManager,
CookieRetrieval

Constructor,
getNames, &
getAttribute

cookieTest/
display.jsp

Information passed in from
condition 1 is stored in the
cookie

Obtain a list of all name and values
saved in cookies. The list should match
data entered in condition 1 plus display
the Session ID

4 Delete information from a
cookie

ContextManager,
CookieRetrieval

Constructor &
deleteAttribute

cookieTest/
deleteForm.jsp

Delete: Age The cookie for age is deleted

5 Call the ContextManager
to set cookies with a path
(new browser)

ContextManager,
CookieRetrieval

Constructor &
setAttribute

cookieTest/pathTest/
pathInput.jsp

First Name: George
Last Name: W
Age: 10

6 Determine that the cookie
set with a path can be
displayed in the same
directory

ContextManager,
CookieRetrieval

Constructor,
getNames, &
getAttribute

cookieTest/pathTest/
displayPath.jsp

Information passed in from
previous condition is stored in
the cookie

Information passed in from previous
condition is displayed

7 Determine that the cookie
set with a path can not be
displayed in a parent
directory

ContextManager,
CookieRetrieval

Constructor,
getNames, &
getAttribute

cookieTest/
displayPath.jsp

none No cookies except for the session
cookie should be displayed

8 Determine that the cookie
set with a path can be
seen in a sub directory.

ContextManager,
CookieRetrieval

Constructor,
getNames, &
getAttribute

cookieTest/pathTest/
subDir/displayPath.j
sp

Information passed in from
condition 5 is stored in the
cookie.

Information passed in from condition 5 is
displayed.

9

Ensure cookies are not
maintained across
separate new browsers

ContextManager,
CookieRetrieval

Constructor,
getNames, &
getAttribute

cookieTest/
display.jsp

No information should be
persisted here from test
condition 1

The Session ID from the test condition 1
should not be displayed and all values
should be null

10 Ensure cookies are
session cookies and not
persistent cookies

none none none none No cookies should exist for
dev.conv.sfa.ed.gov in the test
computer’s cookie folder.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 136

5.5.4.2 Test Cycle 2

Tests the storage and retrieval of user session information stored in the HttpSession object in the application server’s memory
(cache).

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

1 Call the ContextManager
constructor to access the
session retrieval type

ContextManager,
SessionRetrieval

ContextManager,
SessionRetrieval

sessionTest/
input.jsp

First Name: Ben
Last Name: Franklin
Age: 100

Constructor is initialized and it in turn
initializes the SessionRetrieval constructor

2 Bind the information to
session object

ContextManager,
SessionRetrieval

Constructor &
setAttribute

sessionTest/
processInput.jsp

Information passed in
from previous condition
is stored in the session
variables

Session objects are saved in the server
memory and attributes entered in condition 1
should be displayed

3 Retrieve and display the
information bound to the
session object

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionTest/
display.jsp

Information passed in
from condition 1 is
stored in the session
variables

Obtain a list of all name and values saved in
the session variables. The list should match
data entered in condition 1 plus display the
Session ID

4 Delete information bound to
session object

ContextManager,
SessionRetrieval

Constructor &
deleteAttribute

sessionTest/
deleteForm.jsp

Delete: Age Delete the session variable for age

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionTest/
newSession.jsp

No information should
be persisted here from
test condition 1

The Session ID displayed should be different
then the Session ID from test condition 1 and
all other values should be null

5 Introduce a second Session
ID (open new browser) to the
browser’s memory to ensure
objects bound to the session
are not maintained across
new browsers and also to
ensure that the first session is
still held in the memory cache

ContextManager,
SessionRetrieval

Constructor &
deleteAttribute

sessionTest/
deleteForm.jsp

Delete: First Name Delete the session variable for f irst name

6 Retrieve and display the
information bound to the
session object to show that
the first session was still held
in cache

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionTest/
display.jsp

Last name: Franklin Last name from condition 1 will be the only
value remaining

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 137

5.5.4.3 Test Cycle 3

Tests the storage and retrieval of user session information stored in the HttpSession object in the application server’s database
(persistent).

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

1 Call the ContextManager
constructor to access the
session retrieval type

ContextManager,
SessionRetrieval

ContextManager,
SessionRetrieval

sessionTest/
input.jsp

First Name: Ben
Last Name: Franklin
Age: 100

Constructor is initialized and it in turn
initializes the SessionRetrieval constructor

2 Ensure session has been
persisted to the sessions table
in the database

ContextManager,
SessionRetrieval

Constructor &
setAttribute

sessionTest/
processInput.jsp

Information passed in
from previous condition
is stored in the session
object

A entry with the Session ID from test
condition 1 should be listed with a
maxinactivetime of 600 and attributes
entered in condition 1 should be displayed in
the JSP

Verify database population by using the SQL
command: select id, maxinactivetime from
sessions;

3 Retrieve and display the
information stored in the
sessions table

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionTest/
display.jsp

Information passed in
from condition 1 and
stored in the sessions
table

Obtain a list of all name and values saved in
the session table. The list should match
data entered in condition 1 plus display the
Session ID

4 Delete information from
session table

ContextManager,
SessionRetrieval

Constructor &
deleteAttribute

sessionTest/
deleteForm.jsp

Delete: Age Delete the session for age from the session
table

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionTest/
newSession.jsp

No information should
be persisted here from
test condition 1

The Session ID displayed should be different
then the Session ID from test condition 1 and
all other values should be null

5 Introduce a second session to
ensure session information is
not maintained across new
browsers and to ensure that
the first session is no longer
held in the memory cache so
that the data retrieved has to
come from the database

ContextManager,
SessionRetrieval

Constructor &
deleteAttribute

sessionTest/
deleteForm.jsp

Delete: First Name Delete the session variable for first name

6 Retrieve and display the
information stored in the
session variables to show that
the first session in the
sessions table is still
accessible

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionTest/
display.jsp

Last name: Franklin Last name from condition 1 will be the only
value remaining

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 138

5.5.4.4 Test Cycle 4

Tests the storage and retrieval of user session information stored in the IBMSession object in the application server’s database
(persistent) without manually calling the method to persist the information to the database.

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

1 Call the ContextManager
construc tor to access the
session retrieval type

ContextManager,
SessionRetrieval

ContextManager,
SessionRetrieval

sessionIBMTest/
input.jsp

First Name: Ben
Last Name: Franklin
Age: 100

Constructor is initialized and it in turn
initializes the SessionRetrieval constructor

2 Bind the objects to the
session, does not call
writeAttributes (sync)

ContextManager,
SessionRetrieval

Constructor &
setAttribute

sessionIBMTest/
processInput.jsp

Information passed in
from previous condition
is stored in the session
variables

Bound objects are saved in the server
memory cache and not the database since
write was not called. Attributes entered in
condition 1 should be displayed

3 Retrieve and display the
objects bound to the session

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionIBMTest/
display.jsp

Information passed in
from condition 1

Obtain a list of all name and values bound to
the session. The list should match data
entered in condition 1 plus display the
Session ID. The attributes entered from
condition 1 will be displayed even though
writeAttributes was not called because it is
stored in the server's memory cache

4 Delete object bound to the
session, does not call
writeAttributes (sync)

ContextManager,
SessionRetrieval

Constructor &
deleteAttribute

sessionIBMTest/
deleteForm.jsp

Delete: Age Delete the age object bound to the session

5 Introduce a second session
(new IE browser) to ensure
session information is not
maintained across new
browsers and also to ensure
that the first session is no
longer held in the memory
cache to ensure that the data
retrieved has to come from the
database

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionIBMTest/
input.jsp

No information should
be persisted here from
test condition 1

The Session ID displayed should be different
then the Session ID from test condition 1
and all other values should be null

6 Access the original session by
entering its session id in a
new browser

none none sessionIBMTest/
newForm.jsp

Session ID: 0001 plus
the Session ID saved
from test condition 1

Pressing Submit will post the form to itself.
If a value has been entered, a Hyperlink for
next will appear. The current browser
Session ID will be set to the Session ID
created by the very first browser from test
condition 1

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 139

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

7 Display objects bound to the
original session

ContextManager,
SessionRetrieval

Constructor,
getNames &
getAttribute

sessionIBMTest/
newDisplay.jsp

No information should
be persisted here from
test condition 1

The values should be blank since
writeAttributes (sync) was never called to
persist the information to the database.

5.5.4.5 Test Cycle 5

Tests the storage and retrieval of user session information stored in the IBMSession object in the application server’s database
(persistent) with manually calling the method to persist the information to the database.

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

1 Call the ContextManager
constructor to access the
appropriate retrieval type

ContextManager,
SessionRetrieval

ContextManager,
SessionRetrieval

sessionIBMTest/
inputW.jsp

First Name: Ben
Last Name: Franklin
Age: 100

Constructor is initialized and it in turn
initializes the SessionRetrieval constructor

2 Bind the objects to the
session, call writeAttributes
(sync)

ContextManager,
SessionRetrieval

Constructor &
setAttribute

sessionIBMTest/
processInputW.jsp

Information passed in
from previous
condition is stored in
the session variables

Session objects are saved in the server
memory and to the sessions table; attributes
entered in condition 1 should be displayed

3 Retrieve and display the
objects bound to the session

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionIBMTest/
display.jsp

Information passed in
from condition 1

Obtain a list of all name and values bound to
the session. The list should match data
entered in condition 1 plus display the
Session ID.

4 Delete object bound to the
session, call writeAttributes
(sync)

ContextManager,
SessionRetrieval

Constructor &
deleteAttribute

sessionIBMTest/
deleteFormW.jsp

Delete: Age Delete the age object bound to the session

5 Introduce a second session
(new browser window) to
ensure session information is
not maintained across new
browsers; also ensures the
first session is no longer held
in the memory cache so that
the data retrieved has to come
from the database

ContextManager,
SessionRetrieval

Constructor,
getNames, &
getAttribute

sessionIBMTest/
inputW.jsp

No information should
be persisted here from
test condition 1

The Session ID displayed should be different
then the Session ID from test condition 1 and
all other values should be null

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 140

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

6 Access the original session by
entering its session id in a
new browser

none none sessionIBMTest/
newForm.jsp

Session ID: 0001 plus
the Session ID saved
from test condition 1

Pressing Submit will post the form to itself. If
a value has been entered, a Hyperlink for
next will appear. The current browser
Session ID will be set to the Session ID
created by the very first browser from test
condition 1

7 Display objects bound to the
original session

ContextManager,
SessionRetrieval

Constructor,
getNames &
getAttribute

sessionIBMTest/
newDisplay.jsp

Information passed in
from condition 1

The values entered form test condition 1 will
be displayed here since writeAttributes
(sync) was called to persist the information
to the database.

5.5.4.6 Test Cycle 6

Tests the exception handling of the User Session framework to ensure that appropriate exceptions are thrown when an invalid
session has been detected while storing user session information on the server.

Condition
Number

Detailed Condition Class Name Method Name JSP Name Form Data Input Expected Results

1 Test setAttribute will throw an
exception

ContextManager,
SessionRetrieval

setAttribute sessionIBMTest/
processInputW.jsp

First Name: Ben
Last Name: Franklin
Age: 100

An exception will be caught stating that the
session is invalid.

2 Test getNames and
getAttribute will throw
exceptions

ContextManager,
SessionRetrieval

getNames, &
getAttribute

sessionIBMTest/
display.jsp

First Name: Ben
Last Name: Franklin
Age: 100

An exception will be caught stating that the
session is invalid.

3 Test deleteAttribute will throw
an exception

ContextManager,
SessionRetrieval

deleteAttribute sessionIBMTest/
deleteFormW.jsp

First Name: Ben
Last Name: Franklin
Age: 100

An exception will be caught stating that the
session is invalid.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 141

5.6 Performance Analysis

5.6.1 Purpose
This Performance Analysis Report documents the results of utilizing JProbe to test the ITA R3.0
Reusable Common Services (RCS) User Session framework. This report provides an in-depth
analysis of the results gathered from the JProbe application profiling and documents any
performance issues and suggests resolutions. The Detailed Design, User Guide, Unit Test
Report, and the Performance Analysis documents for the User Session framework
documentation will enable developers to quickly build applications using the User Session
framework within the ITA environment architec ture.

5.6.2 Approach
To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to analyze the
User Session framework. JProbe is a performance-profiling tool and it was used to detect
performance issues such as loitering objects, unexpected references, and over-use of objects in
Java based programming. In order to profile this framework, portions of the unit test scripts
were used to conduct this test. The performance analysis of this framework is documented in
this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow gathering detailed information on individual methods and
the interaction between them.

5.6.3 Summary
This report contains the background information, performance test harness design, performance
analyses, and resulting performance metrics for the framework. Profiling the User Session
framework using the test scripts will test the code performance of the framework. The actual
results will be compared against the results of how this framework is expected to function.
Overall, this framework does not produce any loitering objects or create an excessive amount of
objects. This framework is a robust API that should not cause any performance issues for
calling applications.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 142

5.6.4 Test Harness Design
5.6.4.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance test is to identify loitering objects and time spent on each method relative to
each other in the User Session framework.

5.6.4.1.1 Testing Criteria

The two main components of the User Session framework will be tested: accessing session
information stored in cookies and in the HTTP session object. Accessing information from the
session object can be further divided into accessing the information from a variable or database,
and the use of an IBMSession versus an HttpSession to store session objects. Since the User
Session framework is an API, the JavaServer Pages developed for the unit test will serve as a
test harness to profile and analyze the performance of the various methods.

5.6.4.2 Testing Configuration

In order to profile the User Session framework test applications for use with JProbe, the JPROBE
Application Server configured in WebSphere was used and some of the configurations were
changed. In the command line reference of the Application Server, there is a reference to the
JProbe configuration file. The file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/06052002_test_sessions.jpl. The action, database, and HelloWorld
servlets were all disabled. The Session Manager configurations were modified according to the
settings required by the test scripts.

5.6.4.2.1 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the settings that
JProbe requires to profile an application, applet, or server side component (such as JavaServer
Pages and Servlets). The configuration file will determine which JVM is used to run JProbe and
the monitoring options. The user will be able to specify the activity of the Profiler. For
example, the file can be configured to cause JProbe Profiler to take a heap snapshot before it
exits and the directory to save the snapshots in.

The example application test will be conducted on the Solaris machine with the output being
sent to a remote Windows NT workstation. The configuration in the actual file used to conduct
the test can be found in Appendix A. A filter for the main package, gov.ed.fsa.ita.session, was
added to narrow the scope of the test to this package.

5.6.4.2.2 UNIX Server Settings

The usage of the User Session framework is closely tied to how the WebSphere Session Manager
is configured. The WebSphere properties files have not been updated to run the test cycles.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 143

The following sections list the properties related to the Web Application created to unit test the
User Session framework. The configuration settings used in the Administration Console is
defined in the next topic.

5.6.4.2.2.1 rules.properties:
default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/servlet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

5.6.4.2.2.2 queues.properties:
ose.srvgrp.ibmoselink4.clone1.port=8241
ose.srvgrp.ibmoselink4.clone1.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK
ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

5.6.4.2.2.3 vhosts.properties:
stg.jprobe.fsa.ed.gov=default_host

5.6.4.2.3 WebSphere Application Server Configuration

The WebSphere Command Line will identify the JProbe configuration file to use and ensure
that the correct JVM is used. Two Environment Variables will be added to the Application
Server and two servlets will be added to the Web Application. The Session Manager
configurations have to be updated, more information on how to update the settings can be
found in the User Session Framework User Guide document.

5.6.4.2.3.1 Command line arguments:
-jp_input=/opt/util/JProbe/jpl_files/06052002_test_sessions.jpl –Xnoclassgc –
Djava.compiler=NONE –ms128m –mx128m

5.6.4.2.3.2 Environment:
EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

5.6.4.2.4 Directory Structure

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 144

opt

Su35e5

www

stg35

WebSphere

AppServer

util

JProbe

bin

temp

logs

jpl_files

snapshots

stg

jprobe

/opt/stg35/WebSphere/AppServer/bin: includes startup and shutdown scripts for
WAS and JProbe Application Server

/opt/stg35/WebSphere/AppServer/temp: contains the rules.properties,
queues.properties, and vhosts.properties files.
Also contains ./default_host/JProbeWebApp directory where compiled class files
for the JavaServer Pages are located

/opt/stg35/WebSphere/AppServer/logs: includes log files that are useful in
tracking errors: tracefile, activity.log, and JPROBEstderr.log, JPROBEstdout.log

/opt/util/JProbe/jpl_files: directory for JProbe Configuration (*.jpl) files used to
profile the performance of applications

/opt/util/JProbe/snapshots: directory containing performance and heap snapshots
saved from JProbe tests; the files have to be sent via FTP to the developer’s
workstation console in order to be viewed

lib
/www/stg/jprobe/lib: contains the various ITA - RCS jar files needed to run the
Session framework unit test cycles

/www/stg/jprobe/web/sesssion/cookieTest: Contains the *.jsp files used to
test the storage and retrieval of user session information from Cookies
stored on the client’s browser

cookieTest

sessionTest

sessionIBMTest

web

session

/www/stg/jprobe/web/sesssion/cookieTest: Contains the *.jsp files used
to test the storage and retrieval of user session information from
IBMSession objects stored on the server and to test manual update

/www/stg/jprobeweb/sesssion/sessionTest: Contains the *.jsp files used to
test the storage and retrieval of user session information from HttpSession
object stored on the server

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 145

5.6.5 Testing Scenario
Test applications created for the unit test will be used to execute the performance analysis.
Portions of Test Cycles: 1, 2, 3, and 5 will be executed to test the performance of the User Session
framework in different scenarios.

Test Cycle 1 will be executed to profile the performance of methods used to access and store
data from cookies. Test Cycle 2 and 3 will test the use of storing user data in HttpSession
objects in either the application server memory or in a persistent database. Test Cycle 5 will be
used to test how the API functions when using an IBMSession object instead of an HttpSession
object.

The results gathered from the application that are external to the User Session Framework APIs
will not be included in the performance profiling results. These results will be excluded since
the purpose of profiling is to determine the performance of the application under normal
conditions. The performance of the methods used to test the APIs has to be excluded to test just
the behavior of the framework.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 146

5.6.6 Results and Analysis
The JProbe Profiler with Memory Debugger application is used to trace both the memory usage
and performance measurement of the User Session framework API. Two snapshots are taken: a
heap snapshot and a performance Snapshot. Each snapshot provides different information
regarding our test.

5.6.6.1 Heap Snapshot (Memory Usage)

The heap snapshot can be used to visualize how memory is being used in the heap, obtain
information on objects allocated in the heap, and determine if there are any loitering objects at
the end of the test.

5.6.6.1.1 Heap Graph Analysis

The screenshot below is obtained from executing test cycle 3. It is the only heap graph
screenshot depicted in this report since the heap graphs from executing other test cycle exhibit
the same pattern.

In the graph above, it is possible to see that when the Application Server is initialized, a great
deal of memory is consumed. Once the App Server has finished initializing, the memory usage
levels off to a flat line. JProbe will call the Garbage Collector to remove objects that are no
longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance analysis.
The object count will be measured against the count at the checkpoint. By reading the graph, it

Ran garbage collection &

set Checkpoint
Memory usage during
WAS initialization

Garbage collection
and take snapshots

Test execution

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 147

can be determined that the overall memory usage for the User Session framework is very low
and will not result in huge increase to the overhead of calling applications.

5.6.6.1.2 Instance Summary

The table below is a section of the Instance Summary result associated with conducting test
cycle 3. The Count column displays how many instances of the class currently exist in the heap
and the Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the
checkpoint was set. The checkpoint tells JProbe to tag all subsequently created objects as
“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Package Class Count Count
Change

Memory Memory
Change

com.ibm.servlet.personalization.tracking HashtableEntry 5
(14.7%)

+ 5 0.08
(5.9%)

+0.08

com.ibm.servlet.personalization.tracking SessionDataList 4
(11.8%)

+ 4 0.048
(3.5%)

+0.048

com.ibm.servlet.personalization.tracking SessionSimpleHashtable 4
(11.8%)

+ 4 0.048
(3.5%)

+0.012

com.ibm.servlet.personalization.tracking DatabaseSessionData 2
(5.9%)

+ 2 0.36
(26.5%)

+0.36

com.ibm.servlet.personalization.tracking SimpleHashtableEnumerator 2
(5.9%)

+ 2 0.04
(2.9%)

+0.04

com.ibm.servlet.personalization.tracking BackedHastable 1
(2.9%)

+ 1 0.036
(2.6%)

+0.036

com.ibm.servlet.personalization.tracking DatabaseSessionContext 1
(2.9%)

+ 1 0.124
(9.1%)

+0.124

com.ibm.servlet.personalization.tracking SessionApplicationParameters 1
(2.9%)

+ 1 0.028
(2.1%)

+0.028

com.ibm.servlet.personalization.tracking SessionTrackignEPMApplicati
onData

1
(2.9%)

+ 1 0.028
(2.1%)

+0.028

These results were gathered after the test scenario has finished executing and garbage collection
has occurred. We then filtered for “*session*” since those are the only results we are interested
in. The Count Change column was used to sort the data to determine which objects remain
loitering in the heap after the scenario has been completed.

None of the User Session framework objects remain in the memory heap after garbage
collection has been called. This includes all calls to the ContextManager class, which in turn
calls the CookieRetrieval or SessionRetrieval classes. From this we can determine that the User
Session framework does not create any loitering objects once the browser has been exited or the
session invalidated.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 149

5.6.6.2 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe – five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The compound
metrics are averages per number of calls, including: average method time, average cumulative time, average method object count,
and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance assessment of
the User Session framework. These metrics are basic indicators of process resource utilization. The detailed graphs associated with
each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by *FSA* to obtain only the classes within the User Session framework which is
what the test is looking for. Then for each section, the results were sorted by the metric under investigation to obtain the top ten
results for each metric.

Only the test results from test cycle 1 and test cycle 5 are reported in this document. These two cycles were chosen since they
represented two of the broadest uses of the ITA User Session framework.

5.6.6.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Cycle 1:

Name Calls Source
ContextManager.getAttribute(String) 15 ContextManager.java
CookieRetrieval.getAttribute(String) 15 CookieRetrieval
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 4 ContextManager.java
CookieRetrieval.<init>(HttpServletRequest, HttpServletResponse, String) 4 CookieRetrieval
ContextManager.getHttpRequest() 4 ContextManager.java
ContextManager.getHttpResponse() 3 ContextManager.java
ContextManager.setAttribute(String, Object) 3 ContextManager.java
CookieRetrieval.getHttpRequest() 3 CookieRetrieval

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 150

Name Calls Source
CookieRetrieval.getHttpResponse() 3 CookieRetrieval
CookieRetrieval.setAttribute(String, Object 3 CookieRetrieval

Cycle 5:

Name Calls Source
ContextManager.getAttribute(String) 11 SessionRetrieval.java
SessionRetrieval.getAttribute(String) 11 ContextManager.java
ContextManager.getHttpRequest() 6 SessionRetrieval.java
ContextManager.getHttpResponse() 6 SessionRetrieval.java
SessionRetrieval.getHttpRequest() 6 ContextManager.java
SessionRetrieval.getHttpResponse() 6 ContextManager.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 4 SessionRetrieval.java
ContextManager.writeAttributes() 4 SessionRetrieval.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 4 ContextManager.java
SessionRetrieval.writeAttributes() 4 SessionRetrieval.java

From the results above, it is possible to see that method calls to the User Session framework APIs were behaving as expected. For
every call to the ContextManager, there is a call to the CookieRetrieval or SessionRetrieval method to access user session information
from the chosen storage context. There were no excessive calls since the framework is designed to provide a single set of APIs that
developers could call which will then interact with the chosen storage context. The number of calls to the ContextManager could be
reduced based on how the calling application chooses to utilize the framework. Since the test application is a series of JSP, an
ContextManager object was created in each page.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 151

5.6.6.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants (sub-
methods).

Cycle 1:

Name Method Time Source
CookieRetrieval.getNames() 2.89 (40.0%) CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 2.37 (32.9%) ContextManager.java
CookieRetrieval.getAttribute(String) 0.67 (9.3%) CookieRetrieval.java
CookieRetrieval.setAttribute(String, Object) 0.50 (6.9%) CookieRetrieval.java
CookieRetrieval.class$(String) 0.16 (2.2%) CookieRetrieval.java
ContextManager.getAttribute(String) 0.13 (1.8%) ContextManager.java
CookieRetrieval.deleteAttribute(String) 0.12 (1.6%) CookieRetrieval.java
CookieRetrieval.<init>(HttpServletRequest, HttpServletResponse, String) 0.08 (1.2%) CookieRetrieval.java
ContextManager.setAttribute(String, Object) 0.05 (0.7%) ContextManager.java
ContextManager.getNames() 0.05 (0.6%) ContextManager.java

Cycle 5:

Name Method Time Source
ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 5.08 (55.6%) ContextManager.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 2.74 (29.9%) SessionRetrieval.java
SessionRetrieval.writeAttributes() 0.26 (2.8%) SessionRetrieval.java
SessionRetrieval.class$(String) 0.17 (1.8%) SessionRetrieval.java
SessionRetrieval.getAttribute(String) 0.13 (1.5%) SessionRetrieval.java
ContextManager.getAttribute(String) 0.10 (1.1%) ContextManager.java
SessionRetrieval.setAttribute(String, Object) 0.09 (1.0%) SessionRetrieval.java
ContextManager.getHttpRequest() 0.07 (0.8%) ContextManager.java
ContextManager.setAttribute(String, Object) 0.07 (0.8%) ContextManager.java
SessionRetrieval.getNames() 0.07 (0.7%) SessionRetrieval.java

The results above show that the longest running methods are the initialization methods. The CookieRetrieval and SessionRetrieval
methods have longer times compared to the ContextManager methods. This is due to the ContextManager methods calling an
CookieRetrieval or SessionRetrieval method and the time spent executing the children methods are not being counted.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 152

SessionRetrieval’s writeAttributes() method has a longer execution time compared to other methods, which is expected since it has to
access a database to perform a write to it. CookieRetrieval’s getNames() method takes longer to execute compared to
SessionRetrieval’s getNames() method. This is an expected condition as it is more complicated to cycle through and obtain the
names of all cookies then it is to retrieve all names from a session object.

5.6.6.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but excludes
the time spent in recursive calls to its descendants.

Cycle 1:

Name Cumulative
Time

Source

ContextManager.getNames() 3.10 (42.9%) ContextManager.java
CookieRetrieval.getNames() 3.05 (42.3%) CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 2.46 (34.0%) ContextManager.java
ContextManager.getAttribute(String) 0.81 (11.2%) ContextManager.java
CookieRetrieval.getAttribute(String) 0.67 (9.3%) CookieRetrieval.java
ContextManager.setAttribute(String, Object) 0.55 (7.6%) ContextManager.java
CookieRetrieval.setAttribute(String, Object) 0.50 (6.9%) CookieRetrieval.java
CookieRetrieval.class$(String) 0.16 (2.2%) CookieRetrieval.java
ContextManager.deleteAttribute(String) 0.15 (2.1%) ContextManager.java
CookieRetrieval.deleteAttribute(String) 0.12 (1.6%) CookieRetrieval.java

Cycle 5:

Name Cumulative
Time

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 7.99 (87.3%) ContextManager.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 2.90 (31.7%) SessionRetrieval.java
ContextManager.writeAttributes() 0.32 (3.5%) ContextManager.java
SessionRetrieval.writeAttributes() 0.26 (2.8%) SessionRetrieval.java
ContextManager.getAttribute(String) 0.24 (2.6%) ContextManager.java
SessionRetrieval.class$(String) 0.17 (1.8%) SessionRetrieval.java
ContextManager.setAttribute(String, Object) 0.16 (1.8%) ContextManager.java
SessionRetrieval.getAttribute(String) 0.13 (1.5%) SessionRetrieval.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 153

Name Cumulative
Time

Source

ContextManager.getNames() 0.11 (1.2%) ContextManager.java
ContextManager.getHttpRequest() 0.10 (1.1%) ContextManager.java

In the results above, it is possible to see that ContextManager methods have a longer cumulative time since it includes in the count
the time it takes for the ContextManager methods to call a sub-method to retrieve the data. Again, it takes considerably longer to
execute the getNames() method in CookieRetrieval then it does in SessionRetrieval due to the complexity of the logic in that
particular method.

5.6.6.2.4 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Cycle 1:

Name Method
Objects

Source

CookieRetrieval.getNames() 23 (51.1%) CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 10 (22.2%) ContextManager.java
CookieRetrieval.setAttribute(String, Object) 9 (20.0%) CookieRetrieval.java
CookieRetrieval.class$(String) 2 (4.4%) CookieRetrieval.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) CookieRetrieval.java
ContextManager.<clinit>() 0 (0.0%) ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) ContextManager.java
ContextManager.getHttpResponse() 0 (0.0%) ContextManager.java

Cycle 5:

Name Method
Objects

Source

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 20 (45.5%) SessionRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 18 (40.9%) ContextManager.java
SessionRetrieval.writeAttributes() 4 (9.1%) SessionRetrieval.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 154

Name Method
Objects

Source

SessionRetrieval.class$(String) 2 (4.5%) SessionRetrieval.java
ContextManager.writeAttributes() 0 (0.0%) ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.setAttribute(String, Object) 0 (0.0%) ContextManager.java
SessionRetrieval.getAttribute(String) 0 (0.0%) SessionRetrieval.java
ContextManager.getNames() 0 (0.0%) ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) ContextManager.java

The method getNames() from the CookieRetrieval class created several objects compared to the same method in SessionRetrieval.
This is due to the design of the method, and which requires it to obtain all cookies from the request first, create a vector for the cookie
name, iterate through all cookies, and then add the names to the vector. In future uses, if there is not enough memory to execute this
framework then this method could be examined to see if less objects can be created. Presently, the getNames() method does not
produce any significant performance problems that would require it to be redeveloped.

The method setAttributes() from the CookieRetrieval class compared to the same method in the SessionRetrieval class also created
more objects. This is expected since a new Cookie object has to be created for each cookie to be added to the response object and set
on the client browser. There is no alternative to the implementation of this method and developers will need to be aware that this
method will create a new Cookie object for each cookie that has to be set.

5.6.6.2.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Cycle 1:

Name Cumulative
Objects

Source

CookieRetrieval.getNames() 25 (55.6%) CookieRetrieval.java
ContextManager.getNames() 25 (55.6%) ContextManager.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 10 (22.2%) ContextManager.java
CookieRetrieval.setAttribute(String, Object) 9 (20.0%) CookieRetrieval.java
ContextManager.setAttribute(String, Object) 9 (20.0%) ContextManager.java
CookieRetrieval.class$(String) 2 (4.4%) CookieRetrieval.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) CookieRetrieval.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 155

Name Cumulative
Objects

Source

ContextManager.deleteAttribute(String) 1 (2.2%) ContextManager.java
ContextManager.<clinit>() 0 (0.0%) ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) ContextManager.java

Cycle 5:

Name Cumulative
Objects

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 40 (90.9%) ContextManager.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 22 (50.0%) SessionRetrieval.java
ContextManager.writeAttributes() 4 (9.1%) ContextManager.java
SessionRetrieval.writeAttributes() 4 (9.1%) SessionRetrieval.java
SessionRetrieval.class$(String) 2 (4.5%) SessionRetrieval.java
ContextManager.<clinit>() 0 (0.0%) ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) ContextManager.java
ContextManager.getHttpResponse() 0 (0.0%) ContextManager.java

The findings from this metric are similar to the previous results for Method Object Count. The count for objects created by methods
in the ContextManager class increased since it now includes the count of objects created by sub-methods.

5.6.6.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on average,
take a long time to execute.

Cycle 1:

Name Avg. Method
Time

Source

CookieRetrieval.getNames() 1.44 (20.0%) CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 0.59 (8.2%) ContextManager.java
CookieRetrieval.setAttribute(String, Object) 0.17 (2.3%) CookieRetrieval.java
CookieRetrieval.class$(String) 0.16 (2.2%) CookieRetrieval.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 156

Name Avg. Method
Time

Source

CookieRetrieval.deleteAttribute(String) 0.12 (1.6%) CookieRetrieval.java
CookieRetrieval.getAttribute(String) 0.04 (0.6%) CookieRetrieval.java
ContextManager.deleteAttribute(String) 0.04 (0.5%) ContextManager.java
ContextManager.<clinit>() 0.03 (0.4%) ContextManager.java
ContextManager.getNames() 0.02 (0.3%) ContextManager.java
CookieRetrieval.<init>(HttpServletRequest, HttpServletResponse, String) 0.02 (0.3%) CookieRetrieval.java

Cycle 5:

Name Avg. Method
Time

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 1.27 (13.9%) ContextManager.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 0.68 (7.5%) SessionRetrieval.java
SessionRetrieval.class$(String) 0.17 (1.8%) SessionRetrieval.java
SessionRetrieval.writeAttributes() 0.06 (0.7%) SessionRetrieval.java
SessionRetrieval.deleteAttribute(String) 0.05 (0.5%) SessionRetrieval.java
SessionRetrieval.getNames() 0.03 (0.4%) SessionRetrieval.java
ContextManager.deleteAttribute(String) 0.03 (0.3%) ContextManager.java
ContextManager.<clinit>() 0.03 (0.3%) ContextManager.java
SessionRetrieval.setAttribute(String, Object) 0.03 (0.3%) SessionRetrieval.java
ContextManager.getHttpSession() 0.03 (0.3%) ContextManager.java

The above results demonstrate that on average, the initialization methods, CookieRetrieval.getNames(), and
FSASessionRetreival.writeAttributes() takes longer to execute. These findings are expected and previously explored in the Method
Time metric.

5.6.6.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Cycle 1:

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 157

Name Average
Cumulative

Time

Source

ContextManager.getNames() 1.55 (21.5%) ContextManager.java
CookieRetrieval.getNames() 1.53 (21.1%) CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 0.61 (8.5%) ContextManager.java
ContextManager.setAttribute(String, Object) 0.18 (2.5%) ContextManager.java
CookieRetrieval.setAttribute(String, Object) 0.17 (2.3%) CookieRetrieval.java
CookieRetrieval.class$(String) 0.16 (2.2%) CookieRetrieval.java
ContextManager.deleteAttribute(String) 0.15 (2.1%) ContextManager.java
CookieRetrieval.deleteAttribute(String) 0.12 (1.6%) CookieRetrieval.java
ContextManager.getAttribute(String) 0.05 (0.7%) ContextManager.java
CookieRetrieval.getAttribute(String) 0.04 (0.6%) CookieRetrieval.java

Cycle 5:

Name Average
Cumulative

Time

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 2.00 (21.8%) ContextManager.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 0.73 (7.9%) SessionRetrieval.java
SessionRetrieval.class$(String) 0.17 (1.8%) SessionRetrieval.java
ContextManager.deleteAttribute(String) 0.08 (0.9%) ContextManager.java
ContextManager.writeAttributes() 0.08 (0.9%) ContextManager.java
SessionRetrieval.writeAttributes() 0.06 (0.7%) SessionRetrieval.java
ContextManager.getNames() 0.05 (0.6%) ContextManager.java
ContextManager.setAttribute(String, Object) 0.05 (0.6%) ContextManager.java
SessionRetrieval.deleteAttribute(String) 0.05 (0.5%) SessionRetrieval.java
ContextManager.getHttpSession() 0.04 (0.4%) ContextManager.java

The results above do not present any surprises and are consistent with the expected results based on evaluation of the previous
performance metrics.

5.6.6.2.8 Average Method Object

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 158

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per number
of calls.

Cycle 1:

Name Avg. Method
Object

Source

CookieRetrieval.getNames() 11 (24.4%) CookieRetrieval.java
CookieRetrieval.setAttribute(String, Object) 3 (6.7%) CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 2 (4.4%) ContextManager.java
CookieRetrieval.class$(String) 2 (4.4%) CookieRetrieval.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) CookieRetrieval.java
ContextManager.getNames() 0 (0.0%) ContextManager.java
ContextManager.setAttribute(String, Object) 0 (0.0%) ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.<clinit>() 0 (0.0%) ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) ContextManager.java

Cycle 5:

Name Avg. Method
Object

Source

SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 5 11.4%) SessionRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 4 (9.1%) ContextManager.java
SessionRetrieval.class$(String) 2 (4.5%) SessionRetrieval.java
SessionRetrieval.writeAttributes() 1 (2.3%) SessionRetrieval.java
ContextManager.<clinit>() 0 (0.0%) ContextManager.java
ContextManager.deleteAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.getAttribut e(String) 0 (0.0%) ContextManager.java
ContextManager.getHttpRequest() 0 (0.0%) ContextManager.java
ContextManager.getHttpResponse() 0 (0.0%) ContextManager.java
ContextManager.getHttpSession() 0 (0.0%) ContextManager.java

These results serve to demonstrate that the methods that produce the most objects are called the most times. Designing the test
application differently can eliminate some of the number of calls and objects created.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 159

5.6.6.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object count per
number of calls.

Cycle 1:

Name Average
Cumulative

Object

Source

ContextManager.getNames() 12 (26.7%) ContextManager.java
CookieRetrieval.getNames() 12 (26.7%) CookieRetrieval.java
ContextManager.setAttribute(String, Object) 3 (6.7%) ContextManager.java
CookieRetrieval.setAttribute(String, Object) 3 (6.7%) CookieRetrieval.java
ContextManager.<init>(HttpServletRequest, HttpServletResponse) 2 (4.4%) ContextManager.java
CookieRetrieval.class$(String) 2 (4.4%) CookieRetrieval.java
ContextManager.deleteAttribute(String) 1 (2.2%) ContextManager.java
CookieRetrieval.deleteAttribute(String) 1 (2.2%) CookieRetrieval.java
ContextManager.<clinit>() 0 (0.0%) ContextManager.java
ContextManager.getAttribute(String) 0 (0.0%) ContextManager.java

Cycle 5:

Name Average
Cumulative

Object

Source

ContextManager.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 10 (22.7%) ContextManager.java
SessionRetrieval.<init>(HttpServletRequest, HttpServletResponse, boolean, boolean) 5 (11.4%) SessionRetrieval.java
SessionRetrieval.class$(String) 2 (4.5%) SessionRetrieval.java
ContextManager.deleteAttribute(String) 0 (0.0%) ContextManager.java
ContextManager.writeAttributes() 1 (2.3%) ContextManager.java
SessionRetrieval.writeAttributes() 1 (2.3%) SessionRetrieval.java
ContextManager.getNames() 0 (0.0%) ContextManager.java
ContextManager.setAttribute(String, Object) 0 (0.0%) ContextManager.java
SessionRetrieval.deleteAttribute(String) 0 (0.0%) SessionRetrieval.java
ContextManager.getHttpSession() 0 (0.0%) ContextManager.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 160

The average cumulative object is a reflection of the Average Method Object Count metric but includes information for methods from
the ContextManager class and calls to its children.

5.6.6.3 General Performance Metrics

The RCS User Session framework is tested on a Solaris 2.6 platform running JDK1.2.2 Reference Implementation. The test harness
tested the major operations of the User Session framework independently and the system as a whole.

No memory leaks were found in the Session framework using the different test cycles as a test harness. No loitering objects were
found in the heap at the end of the each test cycle.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 161

5.6.7 Appendix A
5.6.7.1 JProbe Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
 <program type="application">
 <application
 args=""
 working_dir=""
 source_dir=""
 classname="">
 <classpath/>
 </application>
 <applet
 working_dir=""
 source_dir=""
 htmlfile=""
 main_package="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </applet>
 <serverside
 suggested_filters=""
 id="Other server"
 server_dir="/opt/stg35/WebSphere/AppServer"
 prepend_to_vm_args=""
 source_dir=""
 classname="com.ibm.ejs.sm.util.process.Nanny"
 main_package="gov.ed.fsa.ita.session"
 exclude_server_classes="true"
 args=""
 working_dir="/opt/stg35/WebSphere/AppServer/servlets"
 prepend_to_classpath="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </serverside>
 </program>
 <vm
 snapshot_dir="/opt/util/JProbe/snapshots"
 location="/opt/util/jdk1.2.2/bin/java"
 args=""
 type="java2"
 use_jit="true"/>
 <viewer
 socket="170.248.222.74:4444"
 type="remote"/>
 <analysis type="profile">
 <performance
 record_from_start="true"
 timing="elapsed"
 track_natives="true"

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 162

 final_snapshot="true"
 granularity="method">
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="*"
 time="ignore"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=" gov.ed.fsa.ita.session.*"
 time="track"
 granularity="method"/>
 </performance>
 <heap
 record_from_start="true"
 no_stack_trace_limit="false"
 final_snapshot="true"
 max_stack_trace="4"
 track_dead_objects="true"/>
 <threadalyzer
 record_from_start="true"
 write_to_console="false">
 <deadlock_detection
 enabled="true"
 deadlock_and_exit="true"
 report_stalls="false"
 track_system_threads="false"
 block_can_stall="false"
 deadlock_threshold="2"/>
 <deadlock_prediction
 enable_hold_and_wait="false"
 enable_lock_order="false"
 lock_order_maintains_covers="true"/>
 <data_race
 ignore_volatile="false"
 enable_happens_before="false"
 no_stack_trace_limit="false"
 enable_lock_covers="false"
 max_stack_trace="1"
 instrument_elements="false"/>
 <visualizer
 enabled="true"
 visualization_level="1"/>
 <threadalyzer.filter
 visibility="invisible"
 enabled="true"
 classmask="*"/>
 <threadalyzer.filter
 visibility="visible"
 enabled="true"
 classmask=".*"/>
 </threadalyzer>
 <coverage
 record_from_start="true"

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 163

 final_snapshot="true"
 granularity="line">
 <coverage.fi lter
 visibility="invisible"
 methodmask="*"
 enabled="true"
 classmask="*"/>
 <coverage.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=".*"/>
 </coverage>
 </analysis>
</jpl>

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 164

5.6.8 Resources
• Best Practices for Session Programming: WebSphere Application Server

− http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/040401
0108.html

• Building Business Solutions with WebSphere
− http://www-

4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/060611
00.html

• Maintaining Session Data with the WebSphere Session Manager –
− http://www6.software.ibm.com/devtools/news0801/art26.htm

• Session Manager Properties
− http://www-

4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/060611
00.html

• WebSphere Application Server Best Practices using HTTP Sessions
− http://www.106.ibm.com/developerworks/patterns/guidelines/HTTP_Session

_Best_Practice.pdf

6 RCS – Web Services (SOAP) Framework

6.1 Purpose
This section of the Performance Analysis Report documents the results of utilizing
JProbe to analyze the ITA R3.0 Reusable Common Services (RCS) SOAP framework.
This section provides an in-depth analysis of the results gathered from the JProbe and
documents performance issues. The Detailed Design, User Guide, and the Performance
Analysis documents for the SOAP framework will enable developers to quickly build
applications using the SOAP framework within the ITA environment architecture.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 165

6.2 Approach
To ensure program efficiency and to detect possible bottlenecks, ITA used JProbe to
analyze the SOAP framework. JProbe is a performance-profiling tool and it was utilized
to detect performance issues such as loitering objects, unexpected references, and over-
use of objects in Java based programming.

Two key groups of statistics are collected from the JProbe Profiler: The memory (heap)
usage and the time spent on each method within the program (performance detail). This
tool can be used to identify loitering objects and inefficiencies in code more easily.
JProbe also contains the capabilities to drill-down and allow detailed information to be
gathered on individual methods and define the calling relationship between methods.

6.3 Summary
This section of the report contains the performance test harness design, performance
analysis, and resulting performance metrics for the SOAP framework. The example
SOAP messaging application provided with the framework distribution was used as the
test harness. The test was executed with one message and also with three messages.
The actual results were compared against the results of how this framework is expected
to function. Overall, this framework does not produce any loitering objects that remain
in the heap after its useful life.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 166

6.4 Test Harness Design

6.4.1 Testing Environment
The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The
focus of this performance analysis is to identify loitering objects and time spent on each
method relative to other methods within the SOAP Framework.

6.4.1.1 Testing Criteria

The Messaging portion of the Apache SOAP Framework is what needed to be
performance tested. Since the SOAP Framework is an API, the example messaging
application packaged with the framework distribution was used as a test harness to
profile and analyse the performance of the various methods.

6.4.1.2 JProbe Configuration File

The JProbe Configuration file has a file extenstion of .jpl. This file contains all of the
settings that JProbe requires to profile an application, applet, or serverside component
(such as JavaServer Pages and Servlets). The configuration file will determine which
JVM is used to run JProbe and the monitoring options.

The example application test was conducted on the Solaris machine with the output
directed to a remote Windows NT workstation. Performance and heap snapshots were
taken before the Application Server was stopped. The following is the actual file used to
conduct the test.

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
 <program type="application">
 <application
 args=""
 working_dir=""
 source_dir=""
 classname="">
 <classpath/>
 </application>
 <applet
 working_dir=""
 source_dir=""
 htmlfile=""
 main_package="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </applet>

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 167

 <serverside
 suggested_filters=""
 id="Other server"
 server_dir="/opt/stg35/WebSphere/AppServer"
 prepend_to_vm_args=""
 source_dir=""
 classname="com.ibm.ejs.sm.util.process.Nanny"
 main_package="org.apache.soap"
 exclude_server_classes="true"
 args=""
 working_dir="/opt/stg35/WebSphere/AppServer/servlets"
 prepend_to_classpath="">
 <classpath>
 <classpath.path
location="%CLASSPATH%"/>
 </classpath>
 </serverside>
 </program>
 <vm
 snapshot_dir="/opt/util/JProbe/snapshots"
 location="/opt/util/jdk1.2.2/bin/java"
 args=""
 type="java2"
 use_jit="true"/>
 <viewer
 socket="170.248.222.80:4444"
 type="remote"/>
 <analysis type="profile">
 <performance
 record_from_start="true"
 timing="elapsed"
 track_natives="true"
 final_snapshot="false"
 granularity="method">
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="*"
 time="ignore"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="org.apache.soap.*"
 time="track"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="samples.messaging.*"

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 168

 time="track"
 granularity="method"/>
 </performance>
 <heap
 record_from_start="true"
 no_stack_trace_limit="false"
 final_snapshot="false"
 max_stack_trace="4"
 track_dead_objects="true"/>
 <threadalyzer
 record_from_start="true"
 write_to_console="false">
 <deadlock_detection
 enabled="true"
 deadlock_and_exit="true"
 report_stalls="false"
 track_system_threads="false"
 block_can_stall="false"
 deadlock_threshold="2"/>
 <deadlock_prediction
 enable_hold_and_wait="false"
 enable_lock_order="false"
 lock_order_maintains_covers="true"/>
 <data_race
 ignore_volatile="false"
 enable_happens_before="false"
 no_stack_trace_limit="false"
 enable_lock_covers="false"
 max_stack_trace="1"
 instrument_elements="false"/>
 <visualizer
 enabled="true"
 visualization_level="1"/>
 <threadalyzer.filter
 visibility="invisible"
 enabled="true"
 classmask="*"/>
 <threadalyzer.filter
 visibility="visible"
 enabled="true"
 classmask=".*"/>
 </threadalyzer>
 <coverage
 record_from_start="true"
 final_snapshot="false"
 granularity="line">
 <coverage.filter
 visibility="invisible"
 methodmask="*"
 enabled="true"
 classmask="*"/>
 <coverage.filter
 visibility="visible"

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 169

 methodmask="*"
 enabled="true"
 classmask=".*"/>
 </coverage>
 </analysis>
</jpl>

6.4.1.3 WebSphere Application Server Configuration

The WebSphere Command Line was configured with the JProbe configuration file used
to ensure that the correct JVM was used. One servlet was added to the Web Application
to listen for SOAP messages coming in.

6.4.1.3.1 Command line arguements:

-jp_input=/opt/util/JProbe/jpl_files/09232002_test_soap.jpl –Xnoclassgc –
Djava.compiler=NONE –ms128m –mx128m

6.4.1.3.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

6.4.1.3.3 Message Servlet:

Servlet: messageRouter
Description: SOAP Message Servlet
Servlet Class Name: org.apache.soap.servet.http.MessageRouterServlet
Servlet Web Path List: default_host/JPROBEWebApp/
Init Parameters:

Init Param Name Value
detail 2
debug 2
validate true
config /struts-config.xml
application Resource

Debug Mode: False
Load at Startup: True

6.4.1.4 Additional Required Components

The following java archive files are required to run the example application:
• soap.jar

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 170

• mail.jar
• activation.jar
• xerces.jar
• bsf.jar
• js.jar

6.5 Testing Scenario
The example messaging application provided with the framework distribution was used
as the test harness.

6.5.1 Test Preparation
Refer to the JProbe Quick Start Guide for the test execution preparation information.
This guide identifies the steps required to profile an application using JProbe.

6.5.2 Test Scenario
Run the following test script from the soap2_2/samples/messaging directory:

@echo off
echo This test assumes server URLs of http://stg.jprobe.fsa.ed.gov /JPROBEWebApp/servlet/rpcrouter
echo and http://stg.jprobe.fsa.ed.gov/JPROBEWebApp/servlet/messagerouter
java samples.messaging.SendMessage http://stg.jprobe.fsa.ed.gov/JPROBEWebApp/servlet/messagerouter msg1.xml
echo . after sent message
java samples.messaging.SendMessage http://stg.jprobe.fsa.ed.gov/JPROBEWebApp/servlet/messagerouter msg1.xml
echo . after sent message
java samples.messaging.SendMessage http://stg.jprobe.fsa.ed.gov/JPROBEWebApp/servlet/messagerouter msg1.xml
echo . after sent message

6.6 Results and Analysis

6.6.1 Heap Snapshot (Memory Usage)
The heap snapshot was used to visualize how memory was used, obtain information on
objects allocated in the heap, and determine if there are any loitering objects at the end
of the test.

6.6.1.1 Heap Graph Analysis

The screenshot below is obtained from sending three messages to the Message Servlet.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 171

The spike is expected since a new message is being created to be sent back. You will
notice that as the second and third messages are sent, the heap graph stays the same
height. This tells us that no extra objects are being created as each message comes
through the Messaging Servlet.

6.6.1.2 Instance Summary

The table below is a section of the Instance Summary results associated with running the
three messages through the Messaging Servlet. The Count column displays howmany
instances of the class currently exist in the heap and the Memory column shows how
much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where
the Checkpoint was set. The Checkpoint tells JProbe to tag all subsequently created
objects as “new.” The Count Change and Memory Change columns show data
regarding new instances (created after the checkpoint) that are currently in the heap.

Ran garbage
collection & set
Checkpoint

Sent Message 1

Sent Message 2

Sent Message 3

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 172

These results were gathered after the test scenario has finished executing and garbage
collection has occured. The results were filtered for ‘org.apache.soap.*’ since those are
the classes this report is concerned with. The Count Change column was used to sort
the data to determine which class had the most objects remaining in the heap after the
scenario has been completed.

None of the SOAP Framework objects remain in the memory heap after garbage
collection has been called. All the message objects are destroyed as are the objects
created by the servlet to process the messages. From this we can determine that the
SOAP framework does not create any loitering objects once the messages have been
processed.

6.7 Test Conclusions
A formal unit test was not conducted on the SOAP Framework. It is leveraged from an
established framework created by the Jakarta Group as part of the Apache project.

ITA performed an analysis of the example messaging application packaged with the
SOAP distribution. Analysis of the results led to the conclusion that the SOAP
Framework does not produce any loitering objects.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 173

6.8 Resources

• Apache SOAP Toolkit Website
http://xml.apache.org/soap/index.html
• JavaMail Website
http://java.sun.com/products/javamail/

6.9 JavaBeans Activation Framework Website
http://java.sun.com/products/beans/glasgow/jaf.html
6.10 Apache Xerces Website
http://xml.apache.org/xerces-j
6.11 Bean Scripting Framework Website
http://oss.software.ibm.com/developerworks/projects/bsf
6.12 Rhino Website
6.13 http://www.mozilla.org/rhino/

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 174

7 RCS – Configuration Framework
7.1 Purpose
This Unit Test Report documents the test conditions and test script of the ITA R3.0
Reusable Common Services (RCS) Configuration framework. This report also provides
the expected results and actual results from running the test script.

7.2 Approach
To ensure quality of the RCS, the Configuration framework went through extensive unit
testing. ITA conducted automatic unit testing of this framework.

Benefits to the unit test approach are:

• Standardize test conditions and cycles

• Increase code quality

• Increase consistency in the approach to testing

• Increase productivity

• Reduce time for regression testing

• More time available to spend on enhancements as less time is required for fixes

7.3 Background
The purpose of the ITA configuration framework is to provide a standard for application
configuration input. The framework will allow configuration information to be loaded
from properties files, xml files, or database tables.

The ITA configuration framework is implemented using the Accenture’s GRNDS
(General and Reusable Netcentric Delivery Solution) configuration framework. The
GRNDS code has been extended to meet FSA application development requirements.
Specifically, the framework has been extended to:

• Use a static initializer to load the configuration files, instead of using the GRNDS
bootstrap framework.

• Support configuration input from database tables.

7.4 Testing Environment
The unit test for the Configuration framework was automated by using JUnit. JUnit is a
set of Java packages that allows developers to readily create Java test cases for Java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 175

classes, and to then run these unit tests interactively or in batch mode. The unit test was
conducted on a Sun SPARC machine running Solaris 2.6 interacting with a client
browser running on a Windows 2000 machine. The focus of this unit test is to identify
that the Configuration framework is functioning as designed.
errorMessages.properties
RCS Exception Handling Messages
This file contains mapping information from error codes to error messages

601-700 Errors in the ConfigurationFramework:
msg601=Could not initialize {0}
msg602=Error occurred during {0} finalization
msg603=Error while reading properties file
msg604=Error accessing {0} class
msg605=Error instantiating {0} objects
msg606=I/O error occurred parsing configuration documents
msg607=Runtime exception occurred. Be sure xml resources are in classpath

masterBasic_app2.properties
app2_key=app1ication2_text
name=firstName

7.4.1 XML Files
One xml file was used in the Configuration Framework. The file masterBasic_app1.xml
was used to test the xml file portion of the Configuration Framework.

MasterBasic_app1.xml
<?xml version="1.0"?>
<App1>
 <name>Application1</name>
 <app1_key>Application1 key</app1_key>
</App1>

7.4.2 Database tables
Three database tables were used in the Configuration Framework. They were used to
test the database table portion of the Configuration Framework.

CONFIG
PROPERTY_ID DOMAIN_ID

1 1
2 2
3 1
4 3
4 1
5 3
6 4

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 176

7 4
4 5
6 6
7 6
8 6
5 5
9 5

10 5

PROPERTY_DOMAIN
DOMAIN_ID DOMAIN_NAME PARENT_ID

1 Resource 0
2 fr 1
3 Master 0
4 app1 3
5 MasterBasic 0
6 app3 5

PROPERTY
PROPERTY_ID PROPERTY_KEY PROPERTY_VALUE

1 button.ok OK
2 button.ok Yessir
3 test.try Crazy
4 Name Test db name
5 appDomain.App1 MasterBasic_app1.xml
6 app1_key application1db_text
7 name app1 db name
8 app3_key application3_text
9 appDomain.App2 masterBasic_app2.properties

10 appDomain.App3 masterBasic_app3

7.4.3 WebSphere Application Server – Configuration Framework
Configuration

The name of the master domain needs to be placed on the command line of the
WebSphere console. The following is an example:

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 177

7.5 Automated Testing Conditions

Component Name Configuration Framework Version # 1

File Name FSADatabaseSource.java

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 178

Prepared By Kirsten Metzler Date Prepared 4/30/2002

Tested By Kirsten Metzler Date Testing Finished 5/10/2002

Reviewed By Wayne Chang Date Reviewed 4/31/2002

Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Database Table

1 Valid domain, no subdomains TestDatabaseSource testValidDomainNoSubdomain FSADatabaseSource getEnvironment database domain data is loaded into the environment cache config, property,
property_domain

2 Valid domain, valid subdomain TestDatabaseSource testValidDomainValidSubdomain FSADatabaseSource getEnvironment database domain data and subdomain data is loaded into the
environment cache

config, property,
property_domain

3 Invalid domain TestDatabaseSource testInvalidDomain FSADatabaseSource getEnvironment database domain data is not loaded. A message is written to the logs
that the file could not be found.

config, property,
property_domain

4 Valid domain, invalid
subdomain

TestDatabaseSource testInvalidSubDomain FSADatabaseSource getEnvironment
database domain data is loaded into the environment cache,
database subdomain data is not loaded and a message is written to
the logs.

config, property,
property_domain

5 Could not get database
connection

TestDatabaseSource testDatabaseConnection FSADatabaseSource getEnvironment Error is written to the log, no data is loaded. An exception is thrown. config, property,
property_domain

6 Database tables do not exist TestDatabaseSource testNoDatabaseTables FSADatabaseSource getEnvironment Error is written to the log, no data is loaded. An exception is thrown. config, property,
property_domain

Component Name Configuration Framework Version # 1

File Name FSAXmlFileSource.java

Prepared By Kirsten Metzler Date Prepared 4/30/2002

Tested By Kirsten Metzler Date Testing Finished 5/10/2002

Reviewed By Wayne Chang Date Reviewed 4/31/2002

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 179

Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name

1 Valid domain, no
subdomains TestXmlFileSource testValidDomainNoSubdomain FSAXmlFileSource getEnvironment properties domain file is loaded into the

environment cache master.xml

2 Valid domain, valid
subdomain TestXmlFileSource testValidDomainValidSubdomain FSAXmlFileSource getEnvironment properties domain file and subdomain file is

loaded into the environment cache
master.xml,

master_app1.xml

3 Invalid domain TestXmlFileSource testInvalidDomain FSAXmlFileSource getEnvironment
properties domain file is not loaded. A
message is written to the logs that the file
could not be found.

none.

4 Valid domain, invalid
subdomain TestXmlFileSource testInvalidSubDomain FSAXmlFileSource getEnvironment

properties domain file is loaded into the
environment cache, properties subdomain
file is not loaded and a message is written
to the logs.

master.xml

5 Relative path TestXmlFileSource testRelativePath FSAXmlFileSource getEnvironment properties domain file is loaded into the
environment cache. master.xml

6 Absolute path TestXmlFileSource testAbsolutePath FSAXm lFileSource getEnvironment properties domain file is loaded into the
environment cache. master.xml

Component Name Configuration Framework Version # 1

File Name FSAConfigurationSI.java

Prepared By Kirsten Metzler Date Prepared 4/30/2002

Tested By Kirsten Metzler Date Testing Finished 5/10/2002

Reviewed By Wayne Chang Date Reviewed 4/31/2002

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 180

Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name Database Table

1 Master config is a
properties file TestFSAConfigurationSIProp TestMasterProperties FSAConfigurationSI init master properties file is loaded into the

environment cache. master.properties

2 Master config is an
xml file TestFSAConfigurationSIXml TestMasterXml FSAConfigurationSI init master xml file is loaded into the environment

cache. master.xml

3 Master config is the
database. TestFSAConfigurationSIDb TestMasterDatabase FSAConfigurationSI init master data is loaded from the database into the

environment cache None. config, property,
property_domain

4

Master config
properties file
contains xml
subdomain

TestFSAConfigurationSIProp TestMasterPropertiesSubXml FSAConfigurationSI init master properties file and subdomain xml file data
is loaded into the environment cache.

master.properties,
master_app1.xml

5

Master config
properties file
contains properties
subdomain

TestFSAConfigurationSIProp TestMasterPropertiesSubProperties FSAConfigurationSI init master properties file and subdomain properties file
data is loaded into the environment cache

master.properties,
master_app1.properties

6

Master config
properties file
contains database
subdomain

TestFSAConfigurationSIProp TestMasterPropertisSubDatabase FSAConfigurationSI init master properties file and subdomain database
data is loaded into the environment cache. master.properties config, property,

property_domain

7
Master config xml file
contains xml
subdomain

TestFSAConfigurationSIXml TestMasterXmlSubXml FSAConfigurationSI init master xml file and subdomain xml file data is
loaded into the environment cache master.xml, master_app1.xml

8
Master config xml file
contains properties
subdomain

TestFSAConfigurationSIXml TestMasterXmlSubProperties FSAConfigurationSI init master xml file and subdomain properties file data
is loaded into the env ironment cache

master.xml,
master_app1.properties

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 181

9
Master config xml file
contains database
subdomain

TestFSAConfigurationSIXml TestMasterXmlSubDatabase FSAConfigurationSI init master xml file and subdomain database data is
loaded into the environment cache. master.xml config, property,

property_domain

10
Master config
database contains xml
subdomain

TestFSAConfigurationSIDb TestMasterDatabaseSubXml FSAConfigurationSI init master database and subdomain xml data is loaded
into the environment cache master_app1.xml config, property,

property_domain

11
Master config
database contains
properties subdomain

TestFSAConfigurationSIDb TestMasterDatabaseSubProperties FSAConfigurationSI init master database and subdomain properties data is
loaded into the environment cache master_app1.properties config, property,

property_domain

12
Master config
database contains
database subdomain

TestFSAConfigurationSIDb TestMasterDatabaseSubDatabase FSAConfigurationSI init master database and subdomain database data is
loaded into the environment cache config, property,

property_domain

Component Name Configuration Framework Version # 1

File Name FSAConfigurationSI.java

Prepared By Kirsten Metzler Date Prepared 4/30/2002

Tested By Kirsten Metzler Date Testing Finished 5/10/2002

Reviewed By Wayne Chang Date Reviewed 4/31/2002

Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name

1
Master configuration
file/database does not
exist

TestMasterDoesNotExist TestNoMaster FSAConfigurationSI init Error is written to the log and no data is loaded. None.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 182

Component Name Configuration Framework Version # 1

File Name FSAConfigurationSI.java

Prepared By Kirsten Metzler Date Prepared 4/30/2002

Tested By Kirsten Metzler Date Testing Finished 5/10/2002

Reviewed By Wayne Chang Date Reviewed 4/31/2002

Detailed Condition Test Class Name Test Class Method Class Name Method Name Results Data File Name

1
Configuration type not
properties, xml or
database

TestBadConfigType TestBadConfig FSAConfigurationSI init Error is written to the log and no data is loaded. None.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 183

7.6 Performance Testing

7.6.1 Approach
To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to analyze the
Configuration framework. JProbe is a performance-profiling tool and it was used to detect
performance issues such as loitering objects, unexpected references, and over-use of objects in
Java based programming. In order to profile this framework, portions of the unit test scripts
were used to conduct this test. The performance analysis of this framework is documented in
this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow gathering detailed information on individual methods and
the interaction between them.

7.6.2 Summary
This report contains the background information, performance test harness design, performance
analyses, and resulting performance metrics for the framework. Profiling the Configuration
framework using the test scripts will test the code performance of the framework. The actual
results will be compared against the results of how this framework is expected to function.

7.7 Test Harness Design

7.7.1 Testing Environment
The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance test is to identify loitering objects and time spent on each method relative to
each other in the Configuration framework.

7.7.2 Test Configuraton
There is very little configuration that needs to be done for the ITA Configuration framework
itself. There are two system level properties that need to be configured within the WebSphere
administartion console.

• A system variable “masterConfig” must be added to command line with value
set to the master configuration domain

• The ServletInitializer system variable must be updated to contain a call run the
servlet initializer with the FSAConfigurationSI class

JProbe needs to be configured to be able to gather metrics from the framework as it ran in the
IBM Websphere environment. A .jpl file, which lists all the profiling parameters, must be
created. These parameters are normally set in the JProbe GUI, but since a server is being
monitored, they are set through a file interface. The text of the configuration file is provided
below:

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 184

7.7.3 WebSphere Application Server Configuration
The WebSphere Command Line will identify the JProbe configuration file to use and ensure
that the correct JVM is used. Two Environment Variables will be added to the Application
Server and two servlets will be added to the Web Application. The Session Manager
configurations have to be updated, more information on how to update the settings can be
found in the User Session Framework User Guide document.
7.7.3.1 Command line arguments:

-jp_input=/opt/util/JProbe/jpl_files/06052002_test_sessions.jpl –Xnoclassgc –
Djava.compiler=NONE –ms128m –mx128m
7.7.3.2 Environment:

EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

7.8 Testing Scenarios
The configuration performance test focused on one usage scenario for its analysis: The creation
of the configuration information in memory.
The test did a Class.forName(“gov.ed.fsa.ita.config.FSAConfigurationSI”) which runs the static
initializer within the FSAConfigurationSI class. This static initializer loads all the configuration
data within the application into a storage object.

7.9 Analysis
The analysis consists of three parts:

1. Memory (Heap) Usage: Examines how the memory (heap) is used by the RCS Java code
to identify loitering object and over-allocation of objects.

2. Garbage Collection: The garbage collector is a process that runs on a low priority
thread. When the JVM attempts to allocate an object but the Java heap is full, the JVM
calls the garbage collector. The garbage collector frees memory using some algorithm to
remove unused objects. Examining the activities of the garbage collection will give a
good indication of the performance impact of the garbage collector on the application.

3. Code Efficiency: To identify any performance bottlenecks due to inefficient code
algorithms

7.9.1 Memory (Heap) Usage
The heap snapshot can be used to visualize how memory is being used in the heap, obtain
information on objects allocated in the heap, and determine if there are any loitering objects at
the end of the test.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 185

7.9.2 Heap Graph Analysis
When the Application Server is initialized, a great deal of memory is consumed. Once the App
Server has finished initializing, the memory usage levels off to a flat line. JProbe will call the
Garbage Collector to remove objects that are no longer being referenced from the heap.

A Checkpoint will then be set to mark the starting count point of this performance analysis.
The object count will be measured against the count at the checkpoint. The overall memory
usage for the Configuration framework is very low and will not result in huge increase to the
overhead of calling applications. The following graph displays this information.

7.10 Instance Summary
The table below is a section of the Instance Summary result associated with conducting the test.
The Count column displays how many instances of the class currently exist in the heap and the
Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the
checkpoint was set. The checkpoint tells JProbe to tag all subsequently created objects as
“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Memory usage during
WAS initialization

Ran garbage collection &

set Checkpoint

Garbage collection
and take snapshots

Test execution

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 186

These results were gathered after the test scenario has finished executing and garbage collection
has occurred. The results were filtered for ‘gov.ed.fsa.ita.config.*’ since those are the classes the
Configuration Framework is concerned with.

The count change for the String class is very high. This is expected because the Configuration
Framework must create a String object every time it loads a new configuration parameter. It
creates a String object to read in the parameter, then places this parameter into the main
PropertiesPlus object. When the static initializer has completed loading the configuration data,
this PropertiesPlus object holds all the data. This data is stored for the life of the web
application, so there should be String objects held in memory.

7.11 Garbage Collections
The Garbage Monitor was used to identify the classes that are responsible for large allocations
of short-lived objects. It shows the cumulative results of successive garbage collections during
the session. The Garbage Monitor shows only the top ten classes, representing the classes with
the most instances garbage collected. During the session, the top ten classes will change as the
number of garbage collected objects accumulates.

There was not any unexpected activity shown, or activity that would indicate a performance
problem. Most of the objects created are either strings, string buffers, or character arrays. These

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 187

numbers are in line with the framework requirements and expected behavior as it formats a
large number of messages.

7.12 Resources

7.12.1 GRNDS Framework
https://onesource.accenture.com

7.12.2 Sun Java website
http://java.sun.com

8 RCS - JSP Custom Tag Library Framework
8.1 JSP Custom Tag Library Unit Test Report

8.1.1
8.1.1.1 Purpose

This Unit Test Report documents the test conditions and test script of the ITA R3.0 Reusable
Common Services (RCS) JSP Custom Tag Library framework. This report also provides the
expected results and actual results from running the test applications.

8.1.1.2 Approach

To ensure quality of the RCS, the JSP Custom Tag Library framework went through extensive
unit testing. ITA conducted manual unit testing of this framework.

Benefits to the unit test approach are:

• Standardize test conditions and cycles

• Increase code quality

• Increase consistency in the approach to testing

• Increase productivity

• Reduce time for regression testing

• More time available to spend on enhancements as less time is required for fixes

8.1.1.3 Background

The purpose of the ITA RCS JSP Custom Tag Library framework is to provide a set of custom
tags for developers to utilize to simplify, standardize, and extend the use of JSP tag libraries
within the J2EE standard.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 188

8.1.2 Test Design
8.1.2.1 Testing Environment

The unit test for the JSP Custom Tag Library framework was conducted manually. The unit test
was conducted on a Sun SPARC machine running Solaris 2.6 interacting with a client browser
running on a Windows 2000 machine. Both Microsoft Internet Explorer 5.0.1 and Netscape
Navigator 6.2 client browsers were used to conduct the tests scripts. The focus of this unit test
is to identify that the JSP Custom Tag Library framework is functioning as designed.

8.1.2.1.1 Testing Cycles

The RCS JSP Custom Tag Library framework is created using the Java programming language.
The tag library framework provides a collection of commonly used JSP custom tag libraries for
JSP developers to access. The JSP Tag Library framework is comprised of libraries leveraged
from the Jakarta Struts framework, Apache Taglibs project, and custom developed libraries.

Eleven tag libraries were tested as part of this framework:

Test Cycle 1 Jakarta Struts Bean Taglib
Test Cycle 2 Jakarta Struts HTML Taglib
Test Cycle 3 Jakarta Struts Logic Taglib
Test Cycle 4 Jakarta Struts Template Taglib
Test Cycle 5 Jakarta DateTime Taglib
Test Cycle 6 Jakarta I18N Taglib
Test Cycle 7 Jakarta Input Taglib
Test Cycle 8 Logging Taglib
Test Cycle 9 Jakarta Page Taglib
Test Cycle 10 Jakarta XSL Taglib
Test Cycle 11 Jakarta XTags Taglib

8.1.2.2 Testing Configuration

In order to test the JSP Custom Tag Library framework, several JavaServer Pages had to be
developed to utilize the different tags available within each library. An existing development
Application Server (CONV) was used to conduct the tests, with some modification to the
Session Manager settings and directory structure.

8.1.2.2.1 UNIX Server Settings

The WebSphere properties files have not been updated and the existing settings are used to run
the test cycles.

The following sections list the properties related to the Web Application created to unit test the
JSP Custom Tag Library framework. The configuration settings used in the Administration
Console is defined in the next topic.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 189

8.1.2.2.1.1 rules.properties:
default_host/CONVWebApp/*.activity=ibmoselink15
default_host/CONVWebApp/*.jsp=ibmoselink15
default_host/CONVWebApp/ErrorReporter=ibmoselink15
default_host/CONVWebApp/servlet/=ibmoselink15
default_host/CONVWebApp/servlet/messagerouter=ibmoselink15
default_host/CONVWebApp/servlet/rpcrouter=ibmoselink15
default_host/CONVWebApp/servlet=ibmoselink15

8.1.2.2.1.2 queues.properties:
ose.srvgrp.ibmoselink15.clone1.port=8400
ose.srvgrp.ibmoselink15.clone1.type=remote
ose.srvgrp.ibmoselink15.clonescount=1
ose.srvgrp.ibmoselink15.type=FASTLINK
ose.srvgrp=ibmoselink,ibmoselink1,ibmoselink2,ibmoselink3,ibmoselink4,ibmoselink5,ibmoselink6,ibmoselink7,ibmos
elink9,ibmoselink8,ibmoselink10,ibmoselink12,ibmoselink13,ibmoselink14,ibmoselink15,ibmoselink16,ibmoselink17,i
bmoselink18

vhosts.properties:
dev.conv.sfa.ed.gov\:8531=default_host

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 190

8.1.2.2.2 Directory Structure

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 191

8.1.3 Testing Conditions and Results
Eleven sets of applications have been created to test the different functionality available within
the JSP Custom Tag Library framework. The files associated with each set of the test
applications have been placed into separate directories: Bean, datetime, html, i18n, input,
logging, logic, page, template, xsl, and xtags. See the previous section for the complete path to
the directory.

Of the eleven tag libraries tested, two tag libraries were removed from this framework due to
incompatibilities found during testing. The versions of xerces.jar used by those tag libraries and
the version currently used for FSA development are different. All frameworks must be
regression tested in order to include these two tag libraries in this framework. The scope of
such an effort is beyond the current bandwidth available to perform the regression testing, so
these two tag libraries may be included in a future release.

The URLs to access the different pages of the test applications are in the following format:
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/jsptags/<tag library>/*.jsp2.
An example URL is:
http://dev.conv.sfa.ed.gov:8531/CONVWebApp/jsptags/datetime/datetimeTest.jsp

All test cycles were conducted using Microsoft’s Internet Explorer (IE). Netscape Navigator
was used for testing a few of the applications to ensure that the framework will behave as
expected in another browser.

For each test cycle, there is a ‘Test Findings’ section, which contains the results gathered from
running the test JavaServer Pages. Any attributes from leveraged tag libraries that did not
working as documented by Jakarta will be noted. It is up to the developer to ensure that any
tags that are used are thoroughly tested with his/her application and servlet container.

2 Where *.jsp refers to the different JavaServer Pages within each directory as listed in the test conditions
and test scripts.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 193

8.1.3.1 Test Cycle 1 – Jakarta Struts Bean Taglib

The "struts-bean" tag library contains JSP custom tags useful to defining new beans (in any
desired scope), from a variety of possible sources, as well as a tag to render a particular bean (or
bean property) to the output response.

Tags:

Class Test Page

CookieTag*3 bean-cookie.jsp

Define Tag* bean-define.jsp, bean-define2.jsp

Header Tag* bean-header.jsp, bean-header_multi.jsp

IncludeTag* bean-include.jsp

MessageTag bean-message.jsp

PageTag* bean-page.jsp

ParameterTag* bean-parameter-InputMulti.jsp, bean-parameter.jsp

ResourceTag* bean-resource.jsp

SizeTag* bean-size.jsp

StrutsTag* bean-struts.jsp

WriteTag bean-write.jsp, bean-write2.jsp

TEST FINDINGS:
CookieTag
Four JavaServer Pages were created to test the cookieTag in this tag library. The first JSP will
set cookies to be displayed by the second JSP. The third JSP will set a new cookie with the same
name as a cookie set in the first JSP but with a different path. The fourth JSP will be used to
display it to be sure the ‘multiple’ attribute is working.

DefineTag
Jakarta’s documentation does not note that to obtain the value for a bean originally defined
with a scope, the scope in the define tag must be defined; otherwise, a ‘null’ will be returned.
The code pertaining to the boolean and int in the second JSP have been commented out. To test
the scope of the <bean:define> tag, uncomment one and an error message will result saying that
the looked for bean is out of scope.

3 Note: * next to a tag indicates that the TagExtraInfo (TEI) implementation of the class is available (i.e..
CookieTag* means that there is a CookieTei. All TEI classes contain the method getVariableInfo, which
returns information about the scripting variable to be created).

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 194

HeaderTag
The second test JSP is a modified version of the first JSP to test the ‘multiple’ attribute. The
testing does not show that the result is displayed any differently between the two JSPs. This
could be attributed to how the application is designed or the servlet container being used since
as other tags have behaved differently when running different containers. It is the developer’s
responsibility to ensure the tag works appropriately for his/her application.

MessageTag
This jsp tests the use of the Resource.properties file located in the /www/dev/conv/servlets
directory. The attributes: locale and bundle were not tested.

SizeTag
The test application used is an example application from the tag library distribution. The scope
attribute was not tested in this sample application.

WriteTag
The first JSP tests that bean:write can output a bean. The second JSP tests the scope attribute.
The JSP will display an error if it can’t find the bean in the scope regardless of if the bean exists.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 195

8.1.3.2 Test Cycle 2 - Jakarta Struts HTML Taglib

The "struts-html" tag library contains JSP custom tags for creating dynamic HTML user
interfaces, including input forms.

Tags:

Class Test Page

BaseTag html-form.jsp, html-link.jsp

ButtonTag html-form.jsp

CancelTag html-form.jsp, html-select.jsp

CheckboxTag html-form.jsp, html-link.jsp

ErrorsTag html-form.jsp

FileTag html-form.jsp

FormTag html-form.jsp

HiddenTag html-form.jsp

HtmlTag html-form.jsp

ImageTag html-form.jsp

ImgTag html-form.jsp

LinkTag html-link.jsp

MultiboxTag html-form.jsp

OptionsTag html-select.jsp

OptionTag html-select.jsp

PasswordTag html-form.jsp

RadioTag html-form.jsp

ResetTag html-form.jsp, html-select.jsp

RewriteTag Not Tested

SelectTag html-select.jsp

SubmitTag html-form.jsp, html-select.jsp

TextareaTag html-form.jsp

TextTag html-form.jsp, html-link.jsp

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 196

TEST FINDINGS:
ButtonTag
In testing, the ‘accesskey’ attribute did not work. This could be due to the design or servlet
container used. It is the developer’s responsibility to ensure that this tag works with his/her
application.

ImageTag
This tag did not work in testing until the WebSphere Session Manager - URL Rewriting option
was disabled. Otherwise, the session identifier was inserted at the end of the URL, which will
cause the image link to fail. The ‘border’ attribute for this tag was not working in the test
application.

ImgTag
The ‘page’ attribute does not work for this tag, either the ‘src’ or ‘srcKey’ attributes should be
used instead. This attribute does not work as it is a local reference and the images are stored on
the web server and not the application server, which causes it to not find the image and fails.

LinkTag
The ‘target’ and ‘transaction’ attributes were not tested.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 197

8.1.3.3 Test Cycle 3 - Jakarta Struts Logic Taglib

The "struts-logic" tag library contains tags that for managing conditional generation of output
text, looping over object collections for repetitive generation of output text, and application flow
management.

Tags:

Class Test Page

EqualTag createCookie.jsp, enterName.jsp, logic-equal.jsp

ForwardTag logic-equal.jsp

GreaterEqualTag createCookie.jsp, logic-greaterEqual.jsp

GreaterThanTag logic-greaterEqual.jsp

IterateTag* see /bean/bean-header_multi.jsp

LessEqualTag logic-greaterEqual.jsp

LessThanTag logic-greaterEqual.jsp

MatchTag createCookie.jsp, enterAddress.jsp, logic-match.jsp

NotEqualTag logic-equal.jsp

NotMatchTag logic-match.jsp

NotPresentTag logic-equal.jsp

PresentTag logic-equal.jsp

RedirectTag createCookie.jsp, logic-match.jsp

TEST FINDINGS:
EqualTag & NotEqualTag
The ‘scope’ attribute was not tested for either tag.

RedirectTag
The redirect tag contains a bug: http://archive.covalent.net/jakarta/struts-
dev/2001/12/0064.xml. Developers should test this tag to ensure it works properly before
using it in a production environment.

InterateTag
The iterate tag was tested when testing the bean tag library and is not tested again here.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 198

8.1.3.4 Test Cycle 4 - Jakarta Struts Template Taglib

The "struts-template" tag library contains tags that are useful for creating dynamic JSP
templates for pages that share a common format.

Tags:

Class Test Page

GetTag chapterTemplate.jsp

InsertTag introduction.jsp

PutTag introduction.jsp

TEST FINDINGS:
The template tag library works as intended and no additional results are reported.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 199

8.1.3.5 Test Cycle 5 - Jakarta DateTime Taglib

The DateTime custom tag library contains tags, which can be used to handle date, and time
related functions. Tags are provided for formatting a Date for output, generating a Date from
HTML form input, using time zones, and localization.

Tags:

Class Test Page

AmPmsTag* datetimeTest.jsp

CurrentTimeTag setzone.jsp

ErasTag* datetimeTest.js

FormatTag datetimeTest.jsp, setzone.jsp

MonthsTag* datetimeTest.jsp

ParseTag datetimeTest.jsp, setzone.jspn

TimeZonesTag* datetimeTest.jsp

TimeZoneTag datetimeTest.jsp, setzone.jsp

WeekdaysTag* datetimeTest.jsp

TEST FINDINGS:
In the format tag, the ‘date’ attribute does not work when the JSP was tested in WebSphere, but
did work when tested using Jakarta Tomcat. Developers should test the any applications that
use this tag attribute thoroughly.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 200

8.1.3.6 Test Cycle 6 - Jakarta I18N Taglib

The i18n custom tag library contains tags that help manage the complexity of creating multi-
lingual web applications. These tags provide similar (though not identical) functionality to the
internationalization available in the Struts framework, but do not require adopting the entire
Struts framework.

Tags:

Class Test Page

BundleTag* i18nTest.jsp

FormatCurrencyTag format-include.jsf

FormatDateTag* format-include.jsf, formatLocale.jsf

FormatDateTimeTag* format-include.jsf, formatLocale.jsf

FormatNumberTag* format-include.jsf, formatLocale.jsf

FormatPercentTag* format-include.jsf, formatLocale.jsf

FormatStringTag* format.jsp

FormatTimeTag* format-include.jsf, formatLocale.jsf

IfdefTag ifdef.jsf

IfndefTag ifndef.jsf

LocaleTag* format.jsp

MessageArgumentsTag message.jsf

MessageTag* message.jsf

TEST FINDINGS:
The bundle base tag is the location to the *.properties files starting form the
/www/dev/conv/servlets directory. The bundle:debug and message:debug attributes were
not tested. The id attribute for the formatXXX tags did not work properly in testing during
testing.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 201

8.1.3.7 Test Cycle 7 - Jakarta Input Taglib

The input tag extension library features the presentment of HTML <form> elements that are
tied to the ServletRequest calling the JSP page. Forms elements can be pre-populated with prior
values that the user has chosen -- or with default values for the first time user of a web page.
This is useful when the same page needs to be presented to the user several times. Server-side
validation is a good example of this process.
It is also possible to automatically build up <select> boxes, making it easier to build data-driven
forms. Even if the same page is presented multiple times, and the form elements that have
default values are desired, this library provides this functionality to free programmers from
writing extensive code.

Tags:

Class Test Page

Checkbox inputTest.jsp

Radio inputTest.jsp

Select inputTest.jsp

Text inputTest.jsp

TextArea inputTest.jsp

TEST FINDINGS:

In the inputTest.jsp file for the select attribute, the line map.put(“multiple”, null) is commented
out so the select display is a drop down list. If it is not commented out, the select display
becomes a list.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 203

8.1.3.8 Test Cycle 8 - Logging Taglib

The Log library allows embedding logging calls in JSP using the ITA RCS logging framework.
This tag library is leveraged from the ITA RCSlogging framework. It has the ability to log
messages and test if a given level can be logged based on the current settings.

Tags:

Class Test Page

CanLogTag testlog.jsp

CanNotLogTag testlog.jsp

SyslogTag testlog.jsp

TEST FINDINGS:
The current logging level in the rcs.xml file was changed to different levels to test this tag
library. The testlog.jsp executed in the browser and the results displayed varied based on the
current logging level set.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 205

8.1.3.9 Test Cycle 9 - Jakarta Page Taglib

Used to access all of the information about the PageContext of a JSP page.

Tags:

Class Test Page

AttributeTag pageTest.jsp

AttributesTag* pageTest.jsp

EqualsAttributeTag pageTest.jsp

ExistsAttributeTag pageTest.jsp

RemoveAttributeTag pageTest.jsp

SetAttributeTag pageTest.jsp

TEST FINDINGS:

http://dev.conv.sfa.ed.gov:8531/CONVWebApp/jsptags/page/pageTest.jsp

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 207

8.1.4 Resources

• Best Practices for Session Programming: WebSphere Application Server

− http://www-
4.ibm.com/software/webservers/appserv/doc/v35/ae/infocenter/was/0404010108.ht
ml

8.2 JSP Custom Tag Library Performance Analysis

8.2.1

8.2.2 Purpose
This Performance Analysis Report documents the results of utilizing JProbe to test the ITA R3.0
Reusable Common Services (RCS) JSP Custom Tag Library framework. This report provides an
in-depth analysis of the results gathered from the JProbe application profiling and documents
any performance issues and suggests resolutions. The series of JSP Custom Tag Library
framework documentation will enable developers to quickly build applications using the JSP
Custom Tag Library within the ITA environment architecture.

8.2.3 Approach
To ensure program efficiency and to detect possible bottleneck, ITA used JProbe to analyze the
JSP Custom Tag Library framework. Only the Custom Logging Tag Library (which utilizes RCS
Logging framework) was profiled as it is built completely by the ITA team and not leveraged
from external sources.

JProbe is a performance-profiling tool and it was used to detect performance issues such as
loitering objects, unexpected references, and over-use of objects in Java based programming. In
order to profile this framework, the unit test application was used to conduct this test. The
performance analysis of this framework is documented in this report.

Two key groups of statistics are collected from the JProbe Profiler: the memory (heap) usage
and the time spent on each method within the program (performance detail). This tool can be
used to identify loitering objects and inefficiencies in code more easily. JProbe also contains the
capabilities to drill-down and allow gathering detailed information on individual methods and
the interaction between them.

8.2.4 Summary
This report contains the background information, performance test harness design, performance
analyses, and resulting performance metrics for the framework. Profiling the JSP Custom Tag
Library framework using the test JSP will test the code performance of the framework. The

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 208

actual results will be compared against the results of how this framework is expected to
function.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 209

8.2.5 Test Harness Design
8.2.5.1 Testing Environment

The performance test was conducted on a Sun SPARC machine running Solaris 2.6. The focus
of this performance test is to identify loitering objects and time spent on each method relative to
each other in the Logging Tag Library within the JSP Custom Tag Library framework.

8.2.5.1.1 Testing Criteria

The two main components of the Logging Tag Library will be tested: the ability to write data to
a log file and also check whether a given level can or cannot be logged. Since the Logging Tag
Library is an API, a JavaServer Page was developed for the unit test to serve as a test harness to
profile and analyze the performance of the various methods.

8.2.5.2 Testing Configuration

In order to profile the Logging Tag Library using the test application and JProbe, the JPROBE
Application Server was used and some of the configurations were changed. In the command
line reference of the Application Server, there is a reference to the JProbe configuration file. The
file used to conduct this performance analysis is:
/opt/util/JProbe/jpl_files/08022002_test_jsptags.jpl. The action, database, and HelloWorld
servlets were all disabled.

8.2.5.2.1 JProbe Configuration File

The JProbe configuration file has a file extension of .jpl. This file contains all of the settings that
JProbe requires to profile an application, applet, or server side component (such as JavaServer
Pages and Servlets). The configuration file will determine which JVM is used to run JProbe and
the monitoring options. The user will be able to specify the activity of the Profiler. For
example, the file can be configured to cause JProbe Profiler to take a heap snapshot before it
exits and the directory to save the snapshots in.

The example application test will be conducted on the Solaris machine with the output being
sent to a remote Windows NT workstation. Performance and heap snapshots will be taken
before the application is exited. The configuration in the actual file used to conduct the test can
be found in Appendix A. A filter for the main package, gov.ed.fsa.ita.jsptags, was added to
narrow the scope of the test to this package.

8.2.5.2.2 UNIX Server Settings

The usage of the User Session framework is closely tied to how the WebSphere Session Manager
is configured. The WebSphere properties files have not been updated to run the test cycles.

The following sections list the properties related to the Web Application created to unit test the
User Session framework. The configuration settings used in the Administration Console is
defined in the next topic.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 210

8.2.5.2.2.1 rules.properties:
default_host/JPROBEWebApp/*.do=ibmoselink4
default_host/JPROBEWebApp/*.jsp=ibmoselink4
default_host/JPROBEWebApp/*.jsv=ibmoselink4
default_host/JPROBEWebApp/*.jsw=ibmoselink4
default_host/JPROBEWebApp/=ibmoselink4
default_host/JPROBEWebApp/ErrorReporter=ibmoselink4
default_host/JPROBEWebApp/servlet=ibmoselink4
default_host/JPROBEWebApp=ibmoselink4

8.2.5.2.2.2 queues.properties:
ose.srvgrp.ibmoselink4.clone1.port=8241
ose.srvgrp.ibmoselink4.clone1.type=remote
ose.srvgrp.ibmoselink4.clonescount=1
ose.srvgrp.ibmoselink4.type=FASTLINK
ose.srvgrp=ibmoselink3,ibmoselink2,ibmoselink4,ibmoselink17

8.2.5.2.2.3 vhosts.properties:
stg.jprobe.fsa.ed.gov=default_host

8.2.5.2.3 WebSphere Application Server Configuration

The WebSphere Command Line will identify the JProbe configuration file to use and ensure
that the correct JVM is used. Two Environment Variables will be added to the Application
Server.

8.2.5.2.3.1 Command line argume nts:
-jp_input=/opt/util/JProbe/jpl_files/08022002_test_jsptags.jpl –Xnoclassgc –
Djava.compiler=NONE –ms128m –mx128m

8.2.5.2.3.2 Environment:
EXECUTE=YES
EXECUTABLE=/opt/util/JProbe/profiler/jprun

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 211

8.2.5.2.4 Directory Structure

opt

Su35e5

www

dev35

AppServer

bin

temp

logs

dev

conv

lib

/opt/dev35/WebSphere/AppServer/bin: includes restart scripts for WAS

/opt/dev35/WebSphere/AppServer/temp: contains the rules.properties,
queues.properties, and vhosts.properties files.
Also contains ./default_host/CONVWebApp/session directory where compiled
class files for the JavaServer Pages are located

/opt/dev35/WebSphere/AppServer/logs: includes log files that are useful in
tracking errors: tracefile and activity.log

/www/dev/conv/lib: contains the various ITA - RCS jar files needed to run the
Session framework unit test cycles

/www/dev/conv/web/sesssion/cookieTest: Contains the testlog.jsp used to
test the tag librarylogging

web

WebSphere

jsptags

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 212

8.2.6 Testing Scenario
The test JSP created for the unit test was also used to execute the performance analysis. The
tags attempt to log different levels of messages to the log file. The test will also validate that an
error message is logged when the user uses an incorrect/non-existent logging level. The tag
will be used to test if the given logging level can be logged based on the current filtering
criteria.

The results gathered from the application that are external to the Custom Logging Tag Library
APIs will not be included in the performance profiling results. These results will be excluded
since the purpose of profiling is to determine the performance of the application under normal
conditions. The performance of the methods used to test the APIs has to be excluded to test just
the behavior of the framework.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 213

8.2.7 Results and Analysis
The JProbe Profiler with Memory Debugger application is used to trace both the memory usage
and performance measurement of the Logging Tag Library API. Two snapshots are taken: a
heap snapshot and a performance Snapshot. Each snapshot provides different information
regarding our test.

8.2.7.1 Heap Snapshot (Memory Usage)

The heap snapshot can be used to visualize how memory is being used in the heap, obtain
information on objects allocated in the heap, and determine if there are any loitering objects at
the end of the test.

8.2.7.1.1 Heap Graph Analysis

The screenshot below is obtained from executing the test JSP.

In the graph above, it is possible to see that when the Application Server is initialized, a great
deal of memory is consumed. Once the App Server has finished initializing, the memory usage
levels off to a flat line. JProbe asks the Garbage Collector to remove objects that are no longer
being referenced from the heap.

A Checkpoint is then set to mark the starting count point of this performance analysis. The
object count remaining in the heap at the end of the test is measured against the count at the
checkpoint. By reading the graph, it can be determined that the overall memory usage for the
JSP Custom Logging Tag Library is very low and will not result in huge increase to the
overhead of calling applications.

Ran garbage collection
& set Checkpoint Memory usage

during WAS
initialization

Reference Line

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 214

8.2.7.1.2 Instance Summary

The table below is a section of the Instance Summary result associated with conducting test
cycle 3. The Count column displays how many instances of the class currently exist in the heap
and the Memory column shows how much memory those instances consume.

In the heap graph in the previous section, there is a green vertical line that shows where the
checkpoint was set. The checkpoint tells JProbe to tag all subsequently created objects as
“new.” The Count Change and Memory Change columns show data regarding new instances
(created after the checkpoint) that are currently in the heap.

Package Class Count Count
Change

Memory Memory
Change

gov.ed.fsa.ita.jsptags SyslogTag 11 (0.0%) - 0.484
(0.0%)

-

gov.ed.fsa.ita.jsptags CanNotLogTag 6 (0.0%) - 0.216
(0.0%)

-

gov.ed.fsa.ita.jsptags CanLogTag 6 (0.0%) - 0.168
(0.0%)

-

The above results were gathered after the test scenario has finished executing and garbage
collection has occurred. We then filtered for “gov.ed.*” since those are the only results we are
interested in. The Count Change column was used to sort the data to determine which objects
remain loitering in the heap after the scenario has been completed.

None of the Logging Tag Library objects remain in the memory heap after garbage collection
has been called. From this we can determine that the Logging Tag Library does not create any
loitering objects.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 215

8.2.7.2 Performance Snapshot (Code Efficiency)

There are nine efficiency metrics that can be collected using JProbe – five basic metrics and four compound metrics. The basic
metrics include: number of calls, method time, cumulative time, method object count, and cumulative object count. The compound
metrics are averages per number of calls, including: average method time, average cumulative time, average method object count,
and average cumulative object count. Time is measured as elapsed time in milliseconds.

The following sections will describe each metric and display the top results for each measurement for the performance assessment of
the JSP Custom Logging Tag Library. These metrics are basic indicators of process resource utilization. The detailed graphs
associated with each method can be reviewed for unexpected activity or optimization opportunities.

All performance metric results were first filtered by gov.ed.* to obtain only the classes within the JSP Custom Logging Tag Library
which is what the test is looking for. Then for each section, the results were sorted by the metric under investigation to obtain the
top ten results for each metric.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 216

8.2.7.2.1 Number of Calls

Measures the number of times the method was invoked and shows the methods with the most calls. Helps to determine and
streamline excessive method calls.

Package Name Calls Source
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 23 SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 12 CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 12 CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 12 CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.setLevel(String) 12 CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doEndTag() 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setChannel(String) 11 SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setClassname(String) 11 SyslogTag.java

From the results above, it is possible to see that the setCallLevel() method in the SyslogTag class was called almost twice as often as
other method calls for this test. This lead to the conclusion that the test application code and the library’s API code should be
examined to determine if the method is overused.

There were 23 calls made to the setCallLevel() method, and in the test application the tags from this tag library was used 23 times.
This lead to the conclusion that every call to the tags from this library resulted in a call to the setCallLevel() method. This analysis
was based on a complete understanding of the tag library’s design and code and the high number of calls to this method was
expected, as every tag in this library was designed to call this method to set the current logging level that the application developer
wants to use for that tag. The tag library design will not be changed as a fundamental part of the RCS Logging framework, which
this tag library implements, is the ability to have different messages be set to different levels in the same application.

The count of the number of calls to the remaining methods is also accurate based on the number of times the tags were called in the
test application.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 217

8.2.7.2.2 Method Time

Measures the amount of time (in milliseconds) spent executing the method, but it excludes the time spent in its descendants (sub-
methods).

Package Name Method Time Source
gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 3.19 (16.3%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0.73 (3.7%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0.32 (1.6%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0.22 (1.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0.21 (1.1%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.15 (0.8%) CanNotLogTag.java
gov.ed.sfa.ita.logging Syslog.log(Object, Object, Object, Object, int) 0.10 (0.5%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 0.09 (0.5%) CanLogTag.java
gov.ed.sfa.ita.logging Syslog.canLog(int) 0.08 (0.4%) Syslog.java

The results above show that the longest running method was the call to initialize the Syslog object from the RCS Logging framework.
While the length of time seems excessive compared against the other methods, this method will only be called once during the life of
the test application.

The second highest method time is for the CanLogTag.condition() method which is called by both the CanLogTag and
CanNotLogTag classes. This method evaluates a given tag to see if the condition is equal to the current logging level and was
expected to require more time to execute along with the other initialization and Logging framework class, which had to write the
output to a file.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 218

8.2.7.2.3 Cumulative Time

Measures the total amount of time (in milliseconds) spent executing the method and the time spent in its descendants, but excludes
the time spent in recursive calls to its descendants.

Package Name Cumulative
Time

Source

gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 18.09 (92.4%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 17.89 (91.4%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 17.75 (90.7%) CanLogTag.java
gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) Syslog.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0.73 (3.7%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0.59 (3.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0.25 (1.3%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0.22 (1.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0.21 (1.1%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.19 (1.0%) CanNotLogTag.java

The doStartTag() method for the various tags were expected to be in this list as all methods called for each tag was called as a result
of doStartTag() executing. Both CanLogTag.condition() and CanNotLogTag.condition() methods call the
CanLogTag.condition(boolean) method, which explains why the cumulative time for the condition(boolean) method is more than the
other two methods when listed separately. The results do not contain any surprises to what the design specified.

It is also important to keep in mind while reviewing this analysis that the syslog class’ initialization method in the RCS Logging
framework is only called once and in this instance, the time for that method has been added to the CanLogTag methods’ times since
that is the first tag the JSP accessed. If the JSP accessed the SyslogTag first then the cumulative time displayed would be different.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 219

8.2.7.2.4 Method Object Count

Measures the number of objects created curing the method’s execution, excluding those created by its descendants.

Package Name Method
Objects

Source

gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 10 (29.4%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 2 (5.9%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 2 (5.9%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 2 (5.9%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 0 (0.0%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 0 (0.0%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0 (0.0%) CanNotLogTag.java

The Syslog class from the RCS logging framework creates the largest number of objects in its initialization methods. This method
objects count refers to the number of objects created each time the method is called and is not reporting the total number of objects
created by the method during the execution of the entire application (i.e. SyslogTag.setCallLevel() creates 10 objects each time it is
called and it was called 23 times. The count reports 10 and not 230.)

 Refer to the Performance Analysis Report for that framework for detail information regarding the Syslog class. The low number of
objects created by the other methods should not lead to any performance impacts.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 220

8.2.7.2.5 Cumulative Object Count

Measures the total number of objects created during the method’s execution, including those created by its descendants.

Package Name Cumulative
Objects

Source

gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 26 (76.5%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 26 (76.5%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 26 (76.5%) CanLogTag.java
gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 10 (29.4%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 2 (5.9%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 2 (5.9%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 2 (5.9%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.setLevel(String) 0 (0.0%) CanLogTag.java

The number of cumulative objects listed in the chart above show several methods with similar cumulative objects count. This is due
to the sequence of method calls, with one method calling on the next and all of their created objects being added into the cumulative
objects count. These results can be used to determine if the methods create an excessively high number of objects. Similar to the
Method Object Count, the Cumulative Object Count represents the count for each call of the method and not a running count of
objects created for all calls to the method.

When the RCS logging framework is initialized, 14 objects are created and those are objects are included in the count of 26. Taking
that out leaves us with 12 objects that can be directly attributed to the CanLogTag class, out of which 10 of these objects can be
attributed to the SyslogTag.setCallLevel() method. The number of objects created by this framework should not be considered
excessive.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 221

8.2.7.2.6 Average Method Time

Measures Method Time (in milliseconds) divided by the Number of Calls. Helps to identify individual methods that, on average,
take a long time to execute.

Package Name Avg. Method
Time

Source

gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 0.27 (1.4%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0.03 (0.2%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0.03 (0.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.03 (0.1%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0.02 (0.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0.02 (0.1%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0.01 (0.0%) CanNotLogTag.java
gov.ed.sfa.ita.logging Syslog.log(Object, Object, Object, Object, int) 0.01 (0.0%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 0.01 (0.0%) CanLogTag.java

The RCS Logging framework’s initialization method takes the longest to execute on average. Just looking at these numbers alone
does not provide any useful information since this number makes the situation appear worse then it actually is. The execution time
on average does not automatically translate to a bad event here when taking into consideration that the method is only executed
once during the life of the application.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 222

8.2.7.2.7 Average Cumulative Time

Measures Cumulative Time (in milliseconds) divided by Number of Calls. Helps to identify methods that, together with their
descendants, take a long time (on average) to execute.

Package Name Average
Cumulative

Time

Source

gov.ed.sfa.ita.logging Syslog.<clinit>() 14.06 (71.8%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 2.96 (15.1%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 1.51 (7.7%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 1.49 (7.6%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0.05 (0.3%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0.04 (0.2%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0.03 (0.2%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0.03 (0.2%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0.02 (0.1%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0.02 (0.1%) CanLogTag.java

The results above do not present any surprises and are consistent with the expected results based on evaluation of the previous
performance metrics.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 223

8.2.7.2.8 Average Method Object

Measures Method Object Count divided by Number of Calls. Highlights methods with the highest method object count per number
of calls.

Package Name Avg. Method
Object

Source

gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 0 (0.0%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 0 (0.0%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 0 (0.0%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0 (0.0%) CanLogTag.java

The results of the average method object column displays mostly zeros, as the number is the results of the method object count
divided by number of calls rounded down. Only the RCS Logging framework’s initialization method resulted in a number greater
than zero as the method was only called once. CanLogTag.condition() created 10 objects but was called 23 times which leads to an
actual average method object count of 0.43478 which was rounded down to zero. These results highlight the fact that no classes from
the JSP Custom Logging Tag library contain any methods that create many objects.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 224

8.2.7.2.9 Average Cumulative Object Count

Measures Cumulative Object Count divided by Number of Calls. Highlights methods with the highest cumulative object count per
number of calls.

Package Name Average
Cumulative

Object

Source

gov.ed.sfa.ita.logging Syslog.<clinit>() 14 (41.2%) Syslog.java
gov.ed.fsa.ita.jsptags CanLogTag.condition() 4 (11.8%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.doStartTag() 2 (5.9%) CanLogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.condition(boolean) 2 (5.9%) CanLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.doStartTag() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.condition() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags CanNotLogTag.<init>() 0 (0.0%) CanNotLogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.setCallLevel(String) 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags SyslogTag.<init>() 0 (0.0%) SyslogTag.java
gov.ed.fsa.ita.jsptags CanLogTag.<init>() 0 (0.0%) CanLogTag.java

The average cumulative object count demonstrates that on average, these methods create the most number of objects. It should be
noted that the cumulative counts includes objects created by other methods in this table so the numbers from this table should not be
added. These results do not indicate that the tag library will create too many cumulative objects on average.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 225

8.2.7.3 General Performance Metrics

The RCS JSP Custom Tag Library framework was tested on a Solaris 2.6 platform running JDK1.2.2 Reference Implementation. The
test harness tested the major operations of the JSP Custom Logging Tag Library independently and the system as a whole.

No memory leaks were found in the Logging Tag Library using the test JSP as a test harness. No loitering objects were found in the
heap at the end of the each test cycle.

ITA Release 3.0
Build & Test Report

Version 2.0 69 – 69.1.5 227

8.2.8 Appendix A
8.2.8.1 JProbe Configuration File

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE jpl SYSTEM "jpl.dtd" >

<jpl version="1.5">
 <program type="application">
 <application
 args=""
 working_dir=""
 source_dir=""
 classname="">
 <classpath/>
 </application>
 <applet
 working_dir=""
 source_dir=""
 htmlfile=""
 main_package="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </applet>
 <serverside
 suggested_filters=""
 id="Other server"
 server_dir="/opt/stg35/WebSphere/AppServer"
 prepend_to_vm_args=""
 source_dir=""
 classname="com.ibm.ejs.sm.util.process.Nanny"
 main_package="gov.ed.fsa.ita.jsptags"
 exclude_server_classes="true"
 args=""
 working_dir="/opt/stg35/WebSphere/AppServer/servlets"
 prepend_to_classpath="">
 <classpath>
 <classpath.path location="%CLASSPATH%"/>
 </classpath>
 </serverside>
 </program>
 <vm
 snapshot_dir="/opt/util/JProbe/snapshots"
 location="/opt/util/jdk1.2.2/bin/java"
 args=""
 type="java2"
 use_jit="true"/>
 <viewer
 socket="170.248.222.74:4444"
 type="remote"/>
 <analysis type="profile">
 <performance
 record_from_start="true"
 timing="elapsed"
 track_natives="true"
 final_snapshot="true"

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 228

 granularity="method">
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask="*"
 time="ignore"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=" gov.ed.fsa.ita.jsptags.*"
 time="track"
 granularity="method"/>
 <performance.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=" gov.ed.sfa.ita.logging.*"
 time="track"
 granularity="method"/>

 </performance>
 <heap
 record_from_start="true"
 no_stack_trace_limit="false"
 final_snapshot="true"
 max_stack_trace="4"
 track_dead_objects="true"/>
 <threadalyzer
 record_from_start="true"
 write_to_console="false">
 <deadlock_detection
 enabled="true"
 deadlock_and_exit="true"
 report_stalls="false"
 track_system_threads="false"
 block_can_stall="false"
 deadlock_threshold="2"/>
 <deadlock_prediction
 enable_hold_and_wait="false"
 enable_lock_order="false"
 lock_order_maintains_covers="true"/>
 <data_race
 ignore_volatile="false"
 enable_happens_before="false"
 no_stack_trace_limit="false"
 enable_lock_covers="false"
 max_stack_trace="1"
 instrument_elements ="false"/>
 <visualizer
 enabled="true"
 visualization_level="1"/>
 <threadalyzer.filter
 visibility="invisible"
 enabled="true"
 classmask="*"/>
 <threadalyzer.filter

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 229

 visibility="visible"
 enabled="true"
 classmask=".*"/>
 </threadalyzer>
 <coverage
 record_from_start="true"
 final_snapshot="true"
 granularity="line">
 <coverage.filter
 visibility="invisible"
 methodmask="*"
 enabled="true"
 classmask="*"/>
 <coverage.filter
 visibility="visible"
 methodmask="*"
 enabled="true"
 classmask=".*"/>
 </coverage>
 </analysis>
</jpl>

ITA Release 3.0

Build & Test Report

Version 2.0 69 – 69.1.5 230

8.2.9 Resources

• The Jakarta Taglibs Project

− http://jakarta.apache.org/taglibs/

• Core Servlets and JavaServer Pages – Chapter 14: Creating Custom Tag Libraries
− http://developer.java.sun.com/developer/Books/javaserverpages/cservletsjsp/chapte

r14.pdf

• The Struts Framework Project
− http://jakarta.apache.org/struts

• Struts Framework API (Version 1.0)4
− http://jakarta.apache.org/struts/api-1.0/index.html

• XTags is built on DOM4J
− http://DOM4J.org

4 Version 1.0.1 is a patch release for version 1.0.

