Y FEDERAL
STUDENT AID

.I.I.":" lr Irl_’||li ¥ |r I|'i |I L 1 Hh_"]'.l‘;'“ Ir .Irf Fr ”::Illlf .:"-|'|rfr L) .llll

FSA Modernization Partner
Enterprise Application Integration (EAI)
Core Release 3.0

Application Enablement Guide (Preliminary)

Version 1.0

Task Order 80
Deliverable 80.1.4a

June 28, 2002

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 8
L1 PURPOSE.....coceeeeeie ettt ettt h et he e s it e st e e ne e sae e e bt e e ne e nan e e neenneennneen 8
1.2 APPROACH .ttt e nan e e e 8
1.3 DESCRIPTION OF SECTIONSooitiiitieitieieeeite ettt ne s e e sneesnee e ens 8
L4 SCOPE..... .ottt Rt e e R et n e R e e nan e ne e nnneea 9
1.5 INTENDED AUDIENCEoooitiiiiiiteeese ettt n e neenneennne e 9
2 MQSERIESARCHITECTURE CONVENTIONSAND GUIDELINES 11
21 MQSERIES NAMING GUIDELINES........ccooiiiiiiiieiie et 11
211 COmMMON RUIES........ooiiiii e n e neenane e 11
212 QUEUE IMIBINAGESeeiieiiiiiee ettt e e ettt ee ettt e e s aabee e e s ssee e e e s abe e e e e aabeeeesanbeee e s anneeeesannreeeeenneas 12

2.1.2.1 Naming Convention for MQSeries Queue Manager for Mainframe (CPS and
NSLDS on OS/390) 13

2.1.2.2 Naming convention of the MQSeries Queue Managers for all other platforms

13

2.1.3 LOCAI QUEUES.......coeiuieeeteeeeiee ettt e et e e et e e tee e st e e satee e seeeanseeeanseeeneeeanteeeaneeesnseeeanseeanneeeans 14
214 REMOMEQUEUES........cce ittt e ettt e e e e e e e e e e e e st e e e e e e e e e s anreeeeeeeeeesannnreeeeeeaeean 15
2.15 AlIGSQUEUES......ccceeeeeeitieee et e e e et e e e et e e e e st e e e s snte e e e e ate e e e e aatee e e s e nreeeeeanneeeeeanreeeeanrees 15
216 Mode and DYNamiC QUEUEScccueiiiieeeiieeeieeesieeeeeeeesteeesateesteeesnteeesneeesseeesnseesnneeesas 16
2.1.6.1 Model Queue Naming Conventions 16
2.17 TranSMiSSION QUEUES........cccoiueeeeeiireeeeeiieeeessteeeessssteeesassteeeesaseeeesansseeessansenesssssseeessnnsens 17
2.1.8 Dead LEEr QUEUESooi e eieieeetieeeiee et et e e et e et e e st eesaeeesseeesnteeesneeesneeesnseeenneeeaa 17
A LS T 1 =10 [0 1= U= 18
2.1.00 PrOCESSES.uueeeiureeesreestetessreesaseeesre e s smseesseeesane e s assee s neeesnre e e ane e e s ne e e smreeeaneeesane e e nnreennneena 18
21101 CRANNEIS ...ttt b e e b e n e e e n e e ne e nnne e 18
2.2 MQSERIES APPLICATION MESSAGING INTERFACE (AMI) NAMING GUIDELINES 19
221 SEIVICE POINES.....c.oiiiiiiiiiiicicci 19
2.2.2 POlICIES. ... e 20
2.3 USING A MQSERIES OBUIECTccuiiiiiiiieitie ettt nne e 21
2.3 1 CRANNEIS. ...ttt n e ne e nane e 21
2.3.2 QUEBUES.ceeeeeeiee ettt ettt h et b R a e e R Rt Rt R e e na et n e e Re e nne e e ne e neennneea 21
24 MQSERIES MESSAGING IMPLEMENTATION GUIDELINES.........coooiiiieieeeiece 22
25 MQSERIES CLUSTER DESIGN GUIDELINES.........cociiiieieiie e 23
251 Sdecting Queue Managers to Hold REPOSITONIES.........cccvviiiiiiieeiieseeeesee e 23
252 Organizing @ ClUSIEYooo ittt e e et e e ste e e saeeesneeesnteeenneeeens 24
253 OVErlapPINg CIUSIErS.coiiieiieiee ettt n e s n e sneenane e 25
254 IntheUnlikely Event of a RepoSitory Failure..........coooeeiiiiiiee e 26
255 ClUSter ChanNEIS......cc.oo e 26

6/28/02 80.1.4a 2

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

26 MQSERIES CLUSTER IMPLEMENTATION GUIDELINES........cccccoiiiiiieieene e 27
2.7 FSA CLUSTER SPECIFICS ...ttt 28
2.7.1 Physical layout Of the CIUSLENcooiiiiie e 28
2.7.1.1 Cluster configuration — Development/Test 30
2.7.1.2 Cluster configuration — Production 32

2.8 MQSERIES SECURITY STANDARDS........coiiiiiieiieiie et 34
2.8.1.1 Data Encryption Policy (internal to FSA) 34
2.8.1.2 Data Encryption Policy (external to FSA) 35

29 EAI MQSERIES SECURITY IMPLEMENTATION GUIDELINES........c.ocoiiiiiieeeee 35
2.9.1 EAI Application CONSIAENatiONccoiueeiiiieiieieeieeeeieeeeeeste e e seeeesaeeeseeeesneeeenneeeens 35
210 MQSERIES WEBSPHERE DESIGN GUIDELINESccooiiiiiiieiecneeeeeeese e 36
A (O RRTIV/= o1 o] 1= g SN 0 0] 1= ox (0] = SRS 36
2.10.1.1 Common Connector Framework 37
2.10.1.2 Build Your Own Connector 37
2.10.2 Architecture ook and fEELcouiiiiiie e 38
2.10.3 FSA EAlI WebSphere Reusable COmpPONENTc.ooiieiieiieeiieesee e 39
2.10.3.1 WebSphere MQ Adapter Overview 39

3 DATAINTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES 40
3.1 DATA INTEGRATOR STANDARDS.......ccooiiiieitteiie et 40
311 Bi-Directional SENGINGcccceeiiiiiiiiieiee st 40
31,2 POOI ArChITECIUNE. ...ttt et n e ne e sen e neesneennne e 40
00 G TS o] o £ TSP P PRSPPI 40
G0 O S @0 011 = 1) I 1 =SOSR 40
3.2 DATA INTEGRATOR IMPLEMENTATION.....ooiiiiieiieeieeniee e 40

4 MQSERIESINTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES 42

4.1 MQSI NAMING STANDARDS.........otiitetieiiiete et nnne e 42
411 COMMON RUIES.... .ottt ettt e se e e ne e e st e e e snte e eneeeenteeeanseeeneens 42
O 0] RS 42
4.1.3 EXECULION GIOUDSccueiiurieieesieeeteesiee s st et s st sseesseease e se e sse e s s e e sneenaneeneesnnennneenees 42
O |V == Vo o o 1S 43
415 MESSAGE SELS....ccoeeieiiei e ettt nn e 43
I Y =55 T [PP 44
417 MeSSage FIOW NOGESooiiiie e et eeeeees 44
41.7.1 Check 44
4.1.7.2 Compute 45
4.1.7.3 Database 45
4.1.7.4 DataDelete 46
4.1.7.5 Datalnsert 46
4.1.7.6 DataUpdate 46
4.1.7.7 Extract 47

6/28/02 80.1.4a 3

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

4.1.7.8 Filter 47
4.1.7.9 FlowOrder 47
4.1.7.10 Input Terminal 48
4.1.7.11 Label 48
4.1.7.12 MQInput 48
4.1.7.13 MQOutput 49
4.1.7.14 MQReply 49
4.1.7.15 NeonFormatter 49
4.1.7.16 NeonRules 50
4.1.7.17 Output Terminal 50
4.1.7.18 Publication 50
4.1.7.19 ResetContentDescriptor 51
4.1.7.20 RouteToLabel 51
4.1.7.21 Throw 51
4.1.7.22 Trace 52
4.1.7.23 TryCatch 52
4.1.7.24 Warehouse 52
4.2 MQSI IMPLEMENTATION GUIDELINESoooiiiiiiieiieiee e 53
5 FSA APPLICATION ENABLEMENT GUIDELINES 54
51 APPLICATION PROGRAMS AND MESSAGINGccooiiiiieiieeieesee e 54
52 APPLICATION USAGE GUIDELINESFOR MQSERIES.........ccocoiiiiniieeeceeeee 54
5.2.1 Identifying an Application for a Queue Managercccverereiiieeiiee e 55
522 Opening and ClOSING QUELIES...........eeiiuireiieeateteateeesteeesteeeseeeessteeesteeesneeesseeesnseeenneeesas 56
5.2.2.1 MQOPEN Call 56
5.2.2.2 MQCLOSE Call 56
523 Putting Messages On A QUEUE..........ooiuiiiiiiiieiie sttt neesnee e 57
524 Getting Messages From A QUEUE............oiiuiieiieeeee et eeeesete et e se e saeeesee e e sneeeenneeeeas 57
5.24.1 MQGET Call 58
525 Queue Manager Connectivity GUIAEIINEScoiiiii i 58
5.2.6 Connecting To and Disconnecting From a Queue Managerccooccevereeeeieeerieeeneeenns 59
5.2.7 Passthe Connection Name as a Program Parameteroocceeeieeeienenieeecee e 59
5.2.8 Messaging Using More Than One QUEUE MaNAJEScooverireerrerreeireeseeseeesseesseesnenns 60

5.3 APPLICATION USAGE GUIDELINES FOR MQSERIES APPLICATION MESSAGING
INTERFACE (AMI) ettt et b e e n e e s be e nse e e ne e s nnennneenees 60
531 AMI ConnectiVity GUIAEIINESooieiiiiee ettt s 61
5.3.2 Establishing and Terminating AMI SESSIONS.........ccooiiiiiiiiiiiiesee e 61
5.3.3 AMI Sender and AMI ReCaiVEr ODJECES.......ccueeiiiiiiiiieiee e 61
5.3.3.1 Using AMI Sender objects 61
5.3.3.2 Using AMI Receiver objects 61

54 APPLICATION INTERFACE PROGRAMMING OPTIONS FOR MESSAGE QUEUE

INTERFACE (MQI) ittt ettt n e nne e sae e e ne e nneennneene s 62
BAL MESSAGE DEIIVEIYottt ettt e et e e et e e st e e e snt e e ene e e snteeenneeeen 62
5.4.1.1 Message Queue Interface (MQI) 62

6/28/02 80.1.4a 4

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.4.1.2 Java Message Service (JMS) 63
5.4.1.3 Application Messaging Interface (AMI) 63
542 MESSAGE CONANE.oiiiiiiiii ettt ettt e e et e e e e e eabe e e e s eabe e e s saabe e e e e annneeeeenneas 63
5.4.2.1 Extensible Markup Language (XML) 63

55 EAlI COMMON ERROR HANDLING GUIDELINESccooiiiiiieieneeeeeee e 65
551 Failureof aMQI Call.......ooooiiiii et e e e 65
552 SYSteM INTENTUDLION. ..ottt ettt et e e et e e sate e e saeeesneeesmeeesnneeeans 65
55.3 UNableto ProCeSS MESSAGES.ciiuieiuieiriiiiesee sttt nane e 65
554 ReSPONAING 1O EFTOS. . .eiiiiiieeieiie et eiee et et re e et e e st e e st e e s ae e e smteeesneeeeneeesnneeenneeeans 65
5.6 TRIGGERED QUEUESAND APPLICATIONS......cceiiiiiieiie et 66
5.6.1 Designing MQSeries APPlICALIONS.oiiieieiiieeee et 66
56.2 Sarting MQSeries APPlICALIONS.cccviiiiiiieiie et 67
5.7 APPLICATION USAGE GUIDELINES FOR DATA INTEGRATORoociieiiereerieenieee 68
571 Data Integrator COMPONENEScccuuiiiiiiiiiaeaiiieeeeeiteee e esree e e s abre e e s ssbree s saabeeeesanreeesennees 68
5.7.1.1 e-Adapter Manager 68
5.7.1.2 e-Adapter Sender 68
5.7.1.3 e-Adapter Receiver 68
5.7.2 COmMMON SCrPE AINGUIMENESeeiiiierieiiie st ettt ne s e s e neesneessneeneesneennneeas 68
5.7.2.1 Queue Manager Arguments 68
5.7.2.2 Source/Target File Arguments 69
5.7.2.3 Process Arguments 69
5.7.2.4 User Exit Arguments 69
5.7.2.5 Data Specification Arguments 69
5.7.2.6 0OS/390 Arguments 69
5.7.2.7 Additional Script Arguments 69

5.8 APPLICATION USAGE GUIDELINES FOR DATA INTEGRATOR STATUSUTILITY...70
581 S0ring the Status MESSAJES...........eiirieiierieeiiese st r e neesneenane e 70
5,82 Retrieving the StatUS MESSAgESeiiiiee e eieeeeee et e eeeste e st e e steeesaeeeeeeeesneeeenneeeans 70
59 APPLICATION USAGE GUIDELINES FOR MQSERIES INTEGRATOR........cccceiveenieene 70
5.9.1 DEfiNING IMESSAGES.ceiteieiiieeitieeeiteeeeiee et e et e e steeestee e st e e sateesaaeeesnteeesneeesseeesnseeenneeeans 70
5.9.1.1 Message domains 70
5.9.1.2 Unstructured messages in the BLOB domain 71
5.9.1.3 Self-defining messages in the XML domain 71
5.9.1.4 Predefined messages in the MRM domain 71
592 Designing MeSSage FIOWS..........eiiiiiieie ettt e e e en 72
5.9.2.1 Message flows and units of work 73
5.9.2.2 Parallel processing of message flow instances 73
5.9.2.3 Transformation 73
5.9.2.4 Intelligent routing 74
5.9.2.5 Enriching message content 74
5.9.3 Using Message Processing NOUES..........couiiiieiieirieieesee st 74
5.9.3.1 MQSI Primitives 74
5.9.3.2 Common node characteristics 76
5.9.3.3 Input and output nodes 76

6/28/02 80.1.4a 5

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE

3.0

ENABLEMENT GUIDE (PRELIMINARY)

5.9.3.4 Processing messages 77
5.9.3.5 Error handling 77
5.9.3.6 Adding or enhancing message processing nodes 78

5.9.4 Assigning and Deploying Resourcesto Brokerscccooveiiiei i 78

6 APPLICATION CONNECTIVITY (ADAPTERS AND BRIDGEY) 79
6.1 MQSERIES APPLICATION ADAPTERc.ooiiiiiieee e 79
6.2 ADAPTER CLASSIFICATIONS.....ooiiiiitieiie ittt 79
B.2.1 TYPE OFf MESSAGE ... neieeeetiie ettt e ettt ettt et e st e et e e st eesnte e s st e e snteeenneeeenneeesnseeenneeean 79
L 1 01 = = o Y/ o TSRS 79

6.3 MQSERIES-CICSESA BRIDGE.........cceiiteiiiiieiiiesiee et 80
6.3.1 USING the CICSBITUGEcotieiiiiieiiee ettt nnne e 80
6.3.2 CICSBIIAQE At WOIK.......ciiteeiiiiiieiiesiie sttt n e senesneesneenine e 80

6.4 RUNNING CICSDPL PROGRAMS ...ttt 81
6.4.1 RunNnNing CICS 3270 tranSACHIONS.......ccueiiirieeieerei ettt ne e nine e 82

7 APPLICATION INTEGRATION EXAMPLES 84
7.1 DATA INTEGRATOR EXAMPLE.......oo oo 84
7.2 MQSERIES INTEGRATOR EXAMPLE ..ot 85
7.3 ADAPTER EXAMPLE ...ttt 86

8 REUSEABLE EAI FUNCTIONS 87
8.1 EAI COMMON LOG FUNCTION.....cctiiiieitieiieeieesiee e 87
8.1.1 Interface Design SPECITICALIONcccueiiiiieiee e 87
8.1.2 INEITACE OVEIVIEW. ...ttt sttt n e s e e e n e e nneenane e 87
8.1.2.1 Detailed Technical Overview 88
8.1.2.2 Background EAI Logging Objectives 88
8.1.2.3 Logging Thresholds Provided via EAI Logging facility 89
8.1.2.4 Configuration Parameters 90
8.1.2.5 Component Model 90

8.1.3 DESIGN ASSUMIPLIONS.eieteeiie it eteesiee sttt ettt seesse e b e s beesse e s s e e s neessneeneenneennneeas 91
8.1.4 DeSign DEPENUENCIES.cooiiieeieiee e eee ettt et e et e e st e e saee e s et e e snteeesneeeeneeesnseeenneeean 92
8.1.5 Detailed TEChNICAl DESIGN....cccciiiiiieeiiie et se et e e se e et ee s e e e snaeeenneeeens 92

9 COMMITTING AND BACKING OUT UNITS OF WORK 94
9.1 COMMITTING AND BACKING OUToiiiiiiiiiiiesiee et 94
9.2 SYNCPOINT COORDINATION, SYNCPOINT, UNIT OF WORKcccccoiieiiireerieenieene 94
9.3 SYNCPOINT GUIDELINES........oooiiiiiiiiieiie ettt 9
9.3.1 Syncpointsin MQSeries for Windows NT, MQSeries on UNIX Systems..........cccveveernenne 95
6/28/02 80.1.4a 6

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

0.3.2 LOCAl UNITS OF WOTK ...t 95
0.3.3 Global UNITS Of WOTKcoiiieiiiiie e 95
9.3.4 Internal syncpoint COOrdiNALIONcc.eeiiiieiiieiee e e et sneeenneeeene 95
9.3.5 External syncpoint COONdiNALIONc.eeiiiieiiiieiieeerieeeeeesie et eese e e e e e e sneeeesneeeens 96
9.3.6 Interfacesto external SyNCPOINt MANAGENS........eiiiiieeiiee e eeieeeseeeeteeeseeeeeeeeseeeenaeeeens 97

9.4 MQSERIES SYNCPOINT CALLS FOR OS/390........cciiiiiieiieiieeieesiee e 98
9.5 MQSERIES SYNCPOINT CALLS ON WINDOWSNT AND UNIX SYSTEMS................. 98
9.6 SINGLE-PHASE COMMIT ...ttt 99
9.7 TWO-PHASE COMMIT ..ttt 99
10 APPENDIX A: REFERENCE MATERIAL 100
11 APPENDIX B: GLOSSARY 102

6/28/02

80.1.4a 7

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

1 EXECUTIVE SUMMARY

11 PURPOSE

The EAI Application Enablement Guide was developed in support of the Department of Education’s
Federal Student Aid (FSA) Modernization Program, to provide an overview of the MQSeries Messaging
functionality being implemented as part of the Enterprise Application Integration (EAI) project. The EAI
provides a standard reusable architecture for connecting disparate, heterogeneous systems through common
middleware architecture. The EAI architecture is built using the following middleware products: MQSeries
Messaging, MQSeries Integrator, and Data Integrator. This deliverable defines the guidelines for enabling
FSA application devel opers to design and implement applications utilizing the features of the EAI Core
architecture. Thisincludes work done in Release 1.0, 2.0, and 3.0 of EAL.

The deliverable also serves to provide a high level overview of the features and capabilities of the FSA EAI
Messaging infrastructure architecture and product capabilities. This deliverable should be theinitial
reading for all application developers who will be developing applications to interface to the EAl Bus at
FSA.

The document is intended to be a living document and a repository of MQSeries best practices and
guidelines, which can be adopted by FSA for the implementation of EAI applications.

1.2 APPROACH
The following approach was used to develop the EAl Application Enablement Guide ddliverable:
Review and modify industry best practices to meet the FSA EAI Core Architecture requirements

Incorporate additiona steps required for gpplications to integrate and utilize the FSA EAI Core
Architecture

Update Release 2.0 Enablement Guide sections where necessary

Add sections pertinent to Release 3.0

1.3 DESCRIPTION OF SECTIONS

This deliverable is divided into the following sections:
Section 1 — Executive Summary

This section provides an introduction and overview of the EAI Application Enablement Guide.

Section 2 — MQSeries Architecture Conventions and Guiddines

This section will provide guidance on naming conventions for usng MQSeriesin the FSA EAI architecture.
The guiddines provide guidance in defining and implementing MQSeries objects.

Section 3 — Data Integrator Architecture Conventions and Guiddlines

This section will discuss the Data Integrator standards that have been developed and provide suggestions for
design and implementation of Data Integrator.

6/28/02 80.1.4a 8

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Section 4 — MQSeries Integrator Architecture Conventions and Guidelines

This section will provide guidance on naming conventions for using MQSeries Integrator in the FSA EAI
architecture.

Section 5— FSA Application Enablement Guiddines

This section provides an overview of messaging and provides specific steps an goplication needs to perform
in order to connect to a queue manager and to send and recaeive messages.
Section 6 -- Application Connectivity (Adapters and Bridges)

This section discusses the use of adapters and bridges. Adapters handle data inbound-to and outbound-from
the application or environment. A bridge is a software component that moves data between amessageon a
gueue and an gpplication or environment.

Section 7 — Application Integration Examples
This section will provide guidance on integrating FSA Applicationsto utilize the EAl Core Architecture
through illudrative examples.

Section 8 — Reusable EAl Functions

This section describes reusable EAI functions that can be utilized by applications integrated with the EAI
Core Architecture.

Section 9 — Committing and Backing Out Units of Work

This section describes how to commit and back out any recoverable get and put operations. It also
describes applications and their use of operating under syncpoint control.

Section 10 — Appendix A: Reference Materia
This section provides URL links to on-line documentation referenced within this document.
Section 11 — Appendix B: Glossary

This section provides a glossary of MQSeries related terms and abbreviations. In addition, it includes
terms and abbreviations found in this document.

14 SCOPE

The scope of this deliverable isto provide guiddines and best practices for designing and implementing
interfaces between applications using the EAI Bus (EAI core architecture). The guidelines defined in this
deliverable are based on best practices. They provide a structured approach for defining a consistent and
mai ntai nable environment.

15 |INTENDED AUDIENCE

The EAI Application Enablement Guide document is intended for application teams who need to
understand the services and capabilities provided by the EAI Core Architecture. The contents of this

6/28/02 80.1.4a 9

US DEPARTMENT OF EDUCATION EAI CORE ARCHITECTURE RELEASE 3.0

FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (PRELIMINARY)

document should be utilized and built upon in accordance with requirements for applications integrating
with the EAI Core Architecture.

6/28/02 80.1.4a 10

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2 MQSERIESARCHITECTURE CONVENTIONSAND GUIDELINES

Prior to Modernization Partner’s EAl implementation, FSA had not previoudly utilized MQSeries as part
of its existing middleware infrastructure. During Release 1.0 of thisimplementation standards were
implemented and documented in the Release 1.0 version of the Enablement Guide. With each subsequent
EAI Release, the Enablement Guide has been updated. This section provides guidance on naming
conventions for using MQSeriesin the FSA EAI architecture. These guidelines are meant to provide
guidance in defining and implementing M QSeries objects.

These standards have been developed in conjunction with the AI'S group from Computer Science
Corporation, which will be responsible for monitoring FSA queue managers.

21 MQSeriesNaming Guidelines
This section defines M QSeries Messaging naming guidelines for MQSeries objects within FSA’s enterprise
technical architecture.

2.1.1 Common Rules

All MQSeries names should follow MQSeries naming conventions, rather than the standard for object
names on each supported platform. Key standards and guidelines:

Use dl upper case letters (some platforms default text to upper case and M QSeries names are case sensitive)

- MQSeriesalows both upper and lower case lettersinits names. However, MQSeries names are case-
sengtive. Using lower and uppercase characters for object names isacommon source for naming errors.

Refrain from usng % in names

- Thischaracter isvdid in al MQSeries names, dthough it is not commonly used in other names across
platforms.

Limit names to alpha—numeric characters
- Exceptions are the specid characters[_/.]
Choose meaningful names within the congraint of the standard.
- Usng meaningful names aids the MQSeries Adminigirator in maintaining the M QSeries environment.

- Thereisno required Sructure, or hierarchy, in an object name, such as may be found on many systems
file names. MQSeries only compares the name strings.

- These gandards recommend using hierarchical names under certain conditions. One such exampleisto
use a suffix where there are multiple “ingtances’ of an object.

Document object names and aways include a description.

- All objects have a DESCR attribute for this purpose. MQSeries does not act on the value, but it
provides additiond information as to the function of the queue.

Choose meaningful names for new MQSeries interfaces.

6/28/02 80.1.4a 11

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Each application to be integrated usng MQSeries creates one or more MQSeriesinterfaces. The
MQSeriesinterface defines or exposes some gpplication to the outside world. Implied in an interfaceisa
level of religbility and performance commonly referred to as a contract. Any other component can
request and receive a service by awareness and compliance with a defined interface. The application does
not need to know how or where the sarvice is performed. The interface becomes a DMZ between an
gpplication and the outside world, so changes to the interface may cause repercussions across dl users of
theinterface. XML has become one solution to the static nature of interfaces because it alows for sdlf-
defining and extengble interfaces. Still XML does not solve al issues and problems with interface
definitions.

Name an interface for what it does and is, because MQSeries interface names tend to surface in the
naming of MQSeries components related to the interface.

Save the definitions
There are anumber of reasonsfor saving the definitions:

212

In the case of asystem failure, objects may need to berecreasted. To perform thisfunction, the
definitions need to be saved separately from the queue manager.

They can be used to reset the attributes to aknown state. For exampleif triggering has been turned off,
or GET or PUT disabled, it ishelpful to be able to restore the objects to their initid date.

The definitions can supplement the MQSeries documentation.

Queue Manager

A gueue manager provides the messaging and queuing services to application programs through Message
Queue Interface (MQI) program calls. Queue manager names are created at the sole discretion of
MQSeries administrators. The following guidelines should be followed when naming queue managers:

Assign unique namesto al queue managers

This recommendation can often cause sgnificant problemsif queue manager names are not unique.
(On MV S, the queue manager name must dso be digtinct from other subsystem names on the same
MVS)

A queue manager can be understood as a* container” for queues and related objects. Thereistypicaly
one per system, but additional queue managers can be defined.

Queue Managers with the same name can be configured to exchange messages - by using Queue
Manager diases. Thisisstrongly discouraged. There are some examples where this can lead to
ambiguity, and messages can then be sent to the wrong queue manager.

0 If ReplyToQMgr isleft blank in the Message Descriptor, MQSeries inserts the actual local
Queue Manager name, not its alias.

0 Dead Letter Queue messages identify the real Queue Manager, not any dias.

Do not copy documentation examples

6/28/02

80.1.4a 12

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

- Copying the documentation examples provided with the ingdlation filesis an easy way to produce
gueue managers with duplicate names. Plan for the names of queue managers ahead of time.

Keep the queue manager name short and meaningful

A recommendation would be to make queue manager names the same as the network host name. However,
keep the following pointsin mind:

- OnMVS, the queue manager name corresponds to the MV S subsystem name. Therefore, the queue
manager nameisrediricted to four characters.

- Many queue managers use the first eight characters when generating unique message identifiers.

- Channd names, which by convention are derived from queue manager names, are limited to 20
characters.

If there were no obvious name, most users would adopt a convention for constructing a queuie manager
name. Make sure that the convention provides for further expansion, particularly where the restricted
names on MV S are concerned.

For a Queue Manager dias, use the naming conventions for the specific platform
- Thisfeatureisusudly related to defining multiple channds between a pair of queue managers.

2.1.2.1 Naming Convention for MQSeries Queue Manager for Mainframe (CPS and NSLDS on OS/390)

Naming examples for M QSeries queue managers on the OS390 are illustrated below. OS390 queue
manager names are limited to 4 charactersin length.

Examples:

QMP1
QM —Indication that STC(Started Task) is for a queue manager
P — Production (D(development), P(production), or T(test))
1 — First instance

QMP2
QM — Indication that STC(Started Task) is for a queue manager
T —Test (D(development), P(production), or T(test))
2 — Second instance

2.1.2.2 Naming convention of the M QSeries Queue Managersfor all other platforms

On Non-MV S platforms the queue manager name should not exceed 8 characters. Queue manager names
on distributed platforms will be based on the nature of the work performed, with indicators for environment
and distance. For example, EAIBUSPL is the first instance of a production queue manager on the EAI Bus.
PEPSD1 would be the first instance of a queue manager in the PEPS development environment.

6/28/02 80.1.4a 13

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Examples:

SAIGT1
SAIG — Student Aid Internet Gateway gqueue manager
T — Test(D(development), P(production), or T(test))
1 —First instance

Queue Manager Names can also have aliases. This adds another layer of “insulation and abstraction” from
the underlying object name. Message routing using alias queue manager names is an example of their use.
Consolidation of multiple queue managers to one queue manager is also away to make use of queue
manager alias names to minimize the impact of the consolidation on MQSeries application programs and
the MQ Administrator. Although queue manager alias objects are defined via remote queue definitions, they
should be named according to queue manager naming guidelines.

2.1.3 Loca Queues

Asarule, applications will never reference local queues directly but will always access them via alias
queues.

A loca queue object defines aloca queue belonging to the queue manager to which applications are
connected. The following guidelines should be adhered to when naming local queues:

Local queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

Local queue names should not include the name of the queue manager or an indication of the platform
used.

Local queue names should not indicate that the queue islocal.

Local queue names should not include the words local or queue (unless relevant in the context of the
application).

Local queue names should be of the form:
FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

Thefirst nodeisfive or six characters indicating the name of the system that owns the object.
Thiswill be useful when applications from multiple bus ness units share the same machine/queue
manager.

- Thesecond nodeis optional and may contain five or six characters. This may be used to define
which system the queueis going to or from or some other detail of the interface this queue
supports.

- Thethird nodeis optional and may contain five or six characters. This may be used to define
which system the queueis going to or from or some other detail of the interface this queue
supports.

- Thefourth node is any number of characters, such that entire queue name does not exceed 48
charactersin length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

6/28/02 80.1.4a 14

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Examples:

SAIG.GETMAIL
SAIG.ONLINE.COD.GETMAIL
SAIG.COD.GETMAIL

2.1.4 Remote Queues

Asarule, applications will never reference remote queues directly but will always access them via alias
queues.

A remote queue object identifies a queue belonging to another queue manager. The remote queue is usually
given aloca definition. The definition specifies the name of the remote queue manager where the queue
exists as well as the name of the remote queueitself. The information specified when defining a remote
gueue object enables the queue manager to find the remote queue manager, so that any messages destined
for the remote queue go to the correct queue manager. The following guidelines should be adhered to when
naming remote queues:

Remote queue names can be up to 48 characterslong. They should be short, but long enough to be
meaningful.

Remote queue names should be of the form:
TARGETQM.TARGETLOCALQUEUE

- Thefirst node indicates which queue manager owns the local queue that it references.
- Thesecond node is the name of the local queue referenced by this remote queue.

Thisis done to provide operations with a clear view of message flow. Since applications never
reference remote queues directly, a change in remote queue name or properties would not have any
adverse effect nor require any modifications.

Examples:

SAIGP1.SAIG.GETMAIL
SAIGP1.SAIG.ONLINE.COD.GETMAIL
SAIGP1.SAIG.COD.GETMAIL

2.1.5 Alias Queues

An alias queue object enables applications to access queues by referring to them indirectly in MQI cals.
When an dlias queue nameis used in an MQI call the name is resolved to the name of a message queue at
run time. This enables changes to the queues that applications use without changing the application itself
inany way. The following guidelines should be adhered to when naming alias queues:

Alias queue names can be up to 48 characters long. They should be short, but long enough to be
meaningful.

Alias queue names should not include the name of the queue manager or an indication of the platform
used.

6/28/02 80.1.4a 15

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Alias queue names should not indicate that the queue is an alias.

Alias queue names should not include the words dias or queue (unless relevant in the context of the
application).

Alias queue names can be of the form:

TARGETQUEUE.[MODE]

- Thefirst node is the name of the local or remote queue referenced by this alias queue.
- Thesecond node is an indicator or whether this queue is to be enqueued (.PUT) or dequeued
(.GET).

Examples:

SAIG.GETMAIL.PUT
SAIG.ONLINE.COD.GETMAIL.GET
SAIG.COD.GETMAIL.PUT

Alias queues which are to be used to enqueue will be GET(DISABLED), while aias queues which are
to be used to dequeue will be PUT(DISABLED).

2.1.6 Moded and Dynamic Queues

The model queue object defines a set of queue attributes that are used as a template for a dynamic queue.
The queue manager creates dynamic queues when an application makes an open queue request specifying a
gueue that isamodel queue. The dynamic queuethat is created in thisway isaloca queue whose nameis
specified by the application and whose attributes are the same as the model queue.

21.6.1 Mode Queue Naming Conventions

Generaly, modd queue names should be of the form:
FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

- Thefirst node isfive or six characters indicating the name of the system that owns the object.
Thiswill be useful when applications from multiple business units share the same machine/queue
manager.

- Thesecond nodeis optional and may contain five or six characters. This may be used to define
which system the queueis going to or from or some other detail of the interface this queue
supports.

- Thethird node is optional and may contain five or six characters. This may be used to define
which system the queueis going to or from or some other detail of the interface this queue
supports.

- Thefourth node is any number of characters, such that entire queue name does not exceed 48
charactersin length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

6/28/02 80.1.4a 16

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.1.7 Transmission Queues

A transmission queue temporarily stores messages that are destined for a remote queue manager.
Transmission queues must be defined for each remote queue manager that alocal queue manager will send
messagesto. It is possible to associate several transmission queues with different characteristics with a
remote queue manager. This allows different classes of transmission service. The following guidelines
should be adhered to when naming transmission queues:

Transmission queue names will include the name of the adjacent (i.e. directly connected) queue
manager. The transmission queue name will be the name of the destination queue manager only in the
case where the destination queue manager is directly connected with the sending queue manager.
Otherwise, the transmission queue name will be the name of some other queue manager that will play
the middle party in a multi-hop message transfer to the destination queue manager.

If thereis only one channel to the queue manager, use the exact name of the adjacent queue manager.

If there will be multiple channels to the queue manager, use the adjacent queue manager name followed
by a dot and some class of service.

If the exact queue manager name is not used, appropriate queue manager alias definitions need to be
provided to allow MQSeries to perform queue manager name resolution.

Transmission queue names should be of the form:
AdjacentQueueManagerName|.ClassOf Service]

Examples:
SAIGP1
QMT1
PEPSP2.B

The only class of service defined at thistimeis batch which isindicated by a“.B’ suffixed to the queue
name. The class of service will provide a mechanism for separating message traffic by type and
service level required. For FSA, any traffic not batch in nature will use the default transmission queue
and associated channels.

2.1.8 Dead Letter Queues

A dead-letter queue (also known as an unddlivered-message queue) receives messages that cannot be routed
to their correct destinations. This occurs when, for example:

The dedtination queueisfull

The message cannot be put on the degtination queue
The sender is not authorized to use the destination queue
The dedtination queue does not exist

The following guidelines should be adhered to when naming dead-letter queues:
SYSTEM.DEAD.LETTER.QUEUE will always be used.

6/28/02 80.1.4a 17

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.1.9 Initiation Queues

An initiation queue receives trigger messages, which indicate that a trigger event has occurred. A trigger
event is caused by a message that satisfies the specified conditions being put onto a queue. Messages are
read from the initiation queue by atrigger monitor application that then starts the appropriate application to
process the message. If triggers are active, at least one initiation queue must be defined for each queue
manager. The following guidelines should be adhered to when naming initiation queues:

Initiation queue names should be of the form:
FIRSTNODE.SECONDNODE.THIRDNODE.

- Thefirst node should contain the system name.

- Useof the second node is dependent on the system name.

- Thethird node should be INIT or INITQ, literal standing for the initiation queue.

Example:
CPS.BATCH.INIT
CPT1.CICSDEV2.INITQ

2.1.10 Processes

A process definition object defines an application to an MQSeries queue manager. Typically in MQSeries,
an application puts or gets messages from one or more queues and processes them. A process definition
object is used for defining applications to be started by a trigger monitor. The definition includes the
application 1D, the application type, and application specific data. A process may only be used to servicea
singleloca queue.

The following guidelines should be adhered to when naming processes:
Process names should not include the name of the queue manager or an indication of the platform used.
All process names should be of the form:
LOCALQUEUE.PRC
- Thefirst node isthe local queue served by this process
- Thesecond nodeisthe ‘PRC’ literal indicating this MQSeries object is a process definition.

Examples:

SAIG.GETMAIL.PRC
SAIG.ONLINE.COD.GETMAIL.PRC
SAIG.COD.GETMAIL.PRC

2111 Channels

A channdl provides a communication path. There are two types of channels, message channels and MQI
channdls. A message channel provides a communication path between two queue managers on the same, or
different, platforms. The message channdl is used for the transmission of messages from one queue
manager to another, and shields the application programs from the complexities of the underlying

6/28/02 80.1.4a 18

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

networking protocols. A message channel can transmit messagesin only one direction. If two-way
communication is required between two queue managers, two message channels are required.

An MQI channel connects an MQSeries client to a queue manager on a server machine. Itisfor the
transfer of MQI calls and responses only and is bi-directional. A channd definition exists for each end of
thelink. The following guiddines should be adhered to when naming channels:

Channel names can be up to 20 characterslong.
Channdl names should be of the form:

SendingQM .ReceivingQM[.ClassOf Service]
- SendingQM is the name of the sending queue manager (without the _QM).
- ReceivingQM isthe name of the receiving queue manager (without the _QM).

- ClassOfServiceis optional and is used to distinguish between different classes of service between
the same two queue managers. The only class of service defined at thistime is batch which is
indicated by a‘.B’ suffixed to the channel name. The class of service will provide a mechanism
for separating message traffic by type and service level required.

Based on the above channel -naming convention, channel names can always be interpreted as
FromQueueManager. ToQueueManager without ambiguity.

Examples:
SAIGP1.QMP1
EAIBUSP1.CODP1.B

2.2 MQSeries Application Messaging Interface (AMI) Naming Guidelines

FSA has standardized on the use of Application Messaging Interface (AMI) as aprogramming API. The
AMI isahigher-level programming interface and abstracts many of the messaging specific detailsinto
external repositories, removing them from the programmer’ s responsibility. AMI is organized into three
major categories: Services, Policies, and Messages. That is: “Where”, “How”, and “What” .

The OAG OAMAS messaging standard has been implemented by IBM, resulting in the Application
Messaging Interface (AMI). AMI has three major components requiring naming standards to be applied.
AMI objects exposed to the applications are highly abstracted. Consequently AMI object naming will be
highly logical, exposing no implementation specific details. AMI objects are maintained in externa
repositories. In the interest of maintaining the sanity of MQSeries administrators, asingle AMI repository
will be used requiring objects to be qualified by the system that uses them. This will ensure the capability to
provide different options to different applications requesting the same service.

2.2.1 Service Points

Services are AMI objects that describe the “what” of the request. A service definition contains queue name,
gueue manager and other details related to what queues are to be used for the request and reply.

6/28/02 80.1.4a 19

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Service point names should be of the format:
Calling System.Application Details.Extension
- Cdling system is the name of the system invoking AMI for this request
- Application details describe the function performed by the service
- Extension describes the action within the dialog and can be one of the following:
- REQSDR

Request Sender: This indicates that this service point is used to send requests for a given
service.

- REQRCVR

Request Receiver: Thisindicates that this service point is used to receive requests for a given
service

- REPRCVR

Reply Receiver: Thisindicates that this service point is used to receive repliesto request for a
given service.

Examples of service point names are:
COD.GETMAIL.REQSDR
Thisis the service that would be used by COD to request mail from a SAIG mailbox.

SAIG.GETMAIL.REQRCVR
Thisis the service that would be used by SAIG to receive requests for mailbox data.

SAIG.COD.GETMAIL.REQRCVR
Thisis the service that would be used by SAIG to receive requests for mailbox data from COD.

2.2.2 Policies

Policies are objects that contain “how” the request to AMI isto be executed. Policy objects contain clauses
for connection requests, send and receive requests, as well as publish, subscribe, and policy handler details.
It should be possible to create only one policy per application named per that application. If further
granularity is required, thiswill be revisited and this section revised.

Examples of policy names are:

COD

Thisisthe policy used by COD for al calsto AMI.
SAIG

Thisis the policy used by SAIG for all callsto AMI.

6/28/02 80.1.4a 20

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.3 UsingaMQSeries Object

This section documents when to use each one of the MQSeries objects covered in section 2.1.

2.3.1 Channéds

In order for two machines to communicate via MQSeries, a channel must exist. If two systems must
exchange messages, then two channels are required. Channels are created by system administrators or
dynamically by the MQSeries queue manager. Although used by the M QSeries queue manager to move
messages from one system to another, channels are of little interest to the application developer.

2.3.2 Queues

MQSeries system queues are ssimple FIFO disk-resident buffers that hold messages. Queues can be divided
into local queues and remote queues. Local queues reside on the local system and remote queues reside on
aremote system. |f messages are destined for a remote system, then a remote queue should be used.
Messages destined for applications on the local system are sometimes referred to as destination queues,
application queues, or asloca queues. Loca queues are usualy looked upon as queues from which
applications GET messages. Queues should be created based on application needs and used when
messages need to move between systems or between applications on the same system. Local queues were
used on each FSA legacy system.

Another type of queueis atransmission queue. Messages destined for remote queue managers are placed
in specia queues called transmission queues. Messages reside in the transmission queue until they can be
delivered to the remote system via the sender channel. From the perspective of the local system,
transmission queues hold outbound messages. Again, transmission queues are created by the system
administrator and could be considered background objects. Transmission queues are used when messages
are PUT to aremote queue; the application developer does not write them to directly. At least one
transmission queue must be defined for each remote queue manager to whom the local queue manager isto
send messages directly. Transmission queues were used on each FSA legacy system.

Remote queues and alias queues are adternative logical names, which can be used to address an MQSeries
system queue instead of using the actua queue name. In the case of the remote queue definition, asingle
name is provided for use by an application that relieves the application of needing to know the location
(queue manager name) of the destination queue. Remote queues are used when sending messages to a
destination queue defined on a remote queue manager. Both remote queues and alias queues are used by
the application developer to get and put messages. Remote queues were used on each FSA legacy system.

Alias queues provide a simple one-to-one name substitution capability. An alias associates an adternative
(alias) name with an already defined queue. By defining an alias, the MQSeries system administrator has
the ability to redirect message traffic. By using alias queue definitions, the programmer isinsulated from
changing their application code to fit the changing needs of the network. An alias queueis not a queue, but
an object that one can use to access another queue.

Initiation queues are queues that are used in triggering. A queue manager puts a trigger message on an
initiation queue when atrigger event occurs. A trigger event isalogical combination of conditions that is
detected by a queue manager. Initiation queues are defined by the system administrator for the use of

6/28/02 80.1.4a 21

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

triggering. Initiation queues are not used for the get and put of messages by the application developer.
They are used by the queue manager. Initiation queues were defined and used on each FSA legacy system.

A dead letter queue is a queue that stores messages that cannot be routed to their correct destinations.
There should only be one dead letter queue defined on each queue manager. The dead letter queueis
defined by the system administrator at the time the queue manager is created. Applications can also use the
gueue for messages they cannot deliver. Dead letter queues were created on each FSA legacy system.

A model queue defines a set of queue attributes that are used as a template for creating a dynamic queue.
Dynamic queues are created by the queue manager when an application issues a MQOPEN request
specifying a queue name that is the name of amodel queue. The dynamic queue that is created in this way
isalocal queue whose attributes are taken from the model queue definition. Dynamic queues do not
survive product restarts; use dynamic queues with caution. Model and dynamic queues are used based on
application needs. These were not used for FSA

Processes alow an application to be started without the need for operator intervention. An application
gueue can have a process definition object associated with it that holds details of the application that will
get messages from the application queue. Processes are usually associated with atrigger event: when the
trigger event conditions are met, the application associated with the processisinitiated. For FSA,
processes were used to start the adapters.

24 MQSeries Messaging Implementation Guidelines

Thefollowing isalist of suggestions for MQSeries design and administration:

The MQSeries Administrator is responsible for defining and maintaining M QSeries objects such as
gueues, queue managers, channels, and processes.

The configuration values of MQSeries objects should be selected carefully to satisfy the
requirements of each application. The default value is usually the recommended value. It should
not be changed without careful evaluation.

Include a Dead L etter Queue for every implementation.

Avoid trigger types “DEPTH” and “EVERY”. These triggering methods have the potential to
overload the system.

Long running units of work are detrimental to the performance of the network. Break the work
into small pieces; thistends to have the additional benefit of improved restart capability.

Use verified network port addresses. Every queue manager needs a listener port in order to
negotiate communications and manage the various queues. The default port addressis 1414.
Check with the network engineers to avoid any port address conflicts during implementation.

Always evaluate using clusters of queues for redundancy and load balancing.

Clugters provide a means to distribute the work in a queue among multiple processes. These
processes may be on the same or different physical machines, and the machines may be located in
the same or different locations. The only restriction on the locations of the membersisthat the
members must be able to communicate via TCP/IP. Communications between the queue managers

6/28/02 80.1.4a 22

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

participating in each cluster enable the sending queue manager to route the message to the
appropriate queue manager based on the default load balancing method or user defined cluster
workload exit routine.

25 MQSeriesCluster Design Guidelines

251 Sdecting Queue Managers to Hold Repositories

In each cluster, select at least one, preferably two, or possibly more of the queue managersto hold
repositories. A cluster could work quite adequately with only one repository but using two improves
availability. The repository queue managers are interconnected by defining cluster-sender channels
between them. A repository is a collection of information about queue managers that are members of a
cluster. Thisinformation includes queue manager names, their locations, their channels, what queues they
host, and so on. Typically, two queue managersin acluster hold afull repository. The other queue
managers in a cluster inquire on the information in the full repositories and build up their own subsets of
thisinformation in partial repositories.

The cluster is configured to include the Websphere Application Server and the two Sun Solaris Servers.
The Sun Servers were selected to be the repositories for the cluster.

The most important consideration is that the queue managers chosen to hold repositories need to be
reliable and well managed.

Consider the location of the queue managers and choose ones that arein a central position
geographically or perhaps ones that are located on the same system as a number of other queue
managersin the cluster.

Another consideration might be whether a queue manager aready holds the repositories for other
clusters. If a queue manager were arepository for one cluster, it would be wise to use the same
gueue manager as arepository for other clusters of which it isa member.

When a queue manager sends out some information about itself, or requests some information about
another queue manager, the information or request is sent to two or more repositories. A repository
handles the request whenever possible but if the chosen repository is not available another repository is
used. When the first repository becomes available again, it collects the latest new and changed information
from the others so that the queue managers are kept in synch. The repository queue managers send
messages to each other to be sure that they are both kept up to date with new information about the cluster.
The automatic updating of repositories by queue managers is part of the behavior that isinherent to
clusters and is done behind the scenes without any intervention by the user.

The following cluster-sender and cluster-receiver definitions were taken directly from the IBM MQSeries
Queue Manager Clusters Manual:

“A cluster-sender (CLUSSDR) channel definition defines the sending end of a channel on which a cluster
gueue manager can send cluster information to one of the full repositories. The cluster-sender channdl is
used to notify the repository of any changes to the queue manager’ s status, for example the addition or

6/28/02 80.1.4a 23

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

removal of aqueue. It isaso used to transmit messages. The repository queue managers themselves have
cluster-sender channels that point to each other. They use them to communicate cluster status changes to
each other.*

“A cluster-receiver channel (CLUSRCVR) channel definition defines the receiving end of a channel on
which acluster queue manager can recelve messages from other queue managersin acluster. A cluster-
receiver channel can aso carry information about the cluster-information destined for the repository. The
definition of a cluster-receiver channel has the effect of advertising that a queue manger is available to
receive messages. Y ou need at least one cluster-receiver channel for each cluster queue manager.”

If al the repository queue managers go out of service at the same time, queue managers continue to work
using the information contained in their partial repositories. New information and requests for updates
cannot be processed. When the repository queue managers reconnect to the network, messages are
exchanged to bring all repositories (both full and partial) back up to date.

2.5.2 Organizing acluster

Having selected some queue managers to hold repositories, decide which queue managers should link to
which repository. The CLUSSDR channel definition links a queue manager to a repository from which it
finds out about the other repositoriesin the cluster. From then on, the queue manager sends messages to
any two or more repositories, but it always tries to use the one to which it has a CLUSSDR channel
definition first. It is not significant which repository is chosen.

It is not advisable to use arepository queue manager on an OS/390 system as the repository queue manager
because MQSeries for OS/390 does not have a command server. To ensure that a particular repository
gueue manager is not used by the MQSeries Explorer, include the string ‘ %NOREPOS%' in the
description field of its cluster-receiver channel definition. When the explorer is choosing which repository
to link to, it ignores those channel description containing *%NOREPOS%', and treats them as though the
gueue manager did not hold arepository for the cluster. If there are alarge number of repositories or they
are spread over alarge area, it would be advisable to make a second CLUSSDR channel definition.

Choosing names

When setting up a new cluster, consider a naming convention for the queue managers. Every queue
manager must have a different name, but it may help to remember which queue managers are grouped
where if given aset of smilar names. The queue naming convention of a cluster queue manager follows
the same naming convention of any other queue manager. Please refer to section 2.1.2 for queue manager
naming conventions. It is recommended that the cluster name be descriptive of the function the cluster is
performing. The cluster nameis limited in length to 48 characters. For example, the name given to the
MQSeries cluster for FSA was“EAI”.

Every cluster-receiver channel must have a unique name. One possibility isto use the queue-
manager name preceded by the preposition * TO'. The name would be of the form:

FIRSTNODE.SECONDNODE.

Where:
- FIRSTNODE isreplace with the literal TO.
- SECONDNODE is replaced with the queue manager name.

6/28/02 80.1.4a 24

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

253

Example:
TO.SU35E16
TO.SU35E17

Remember that all cluster-sender channels have the same name as their corresponding cluster-
receiver channel.

Do not use generic connection names on cluster-receiver definitions. If a CLUSRCVR is defined
with a generic CONNAME there is no guarantee that the CLUSSDR channels will point to the
gueue managersintended. Theinitid CLUSSDR may end up pointing to any queue manager in the
gueue-sharing group, not necessarily one that hosts a repository. Furthermore, if a channel goesto
retry status, it may reconnect to a different queue manager with the same generic name and the
flow of messages will be disrupted. Basicaly, the CONNAME should be the network address of
the machine the queue manager resides on.

Overlapping clusters

Create clusters that overlap. There are a number of reasonsto do this, for example:

To allow different organizations to have their own administration.
To alow independent applications to be administered separately.
To create classes of service.

To create test and production environments.

TEAMA

In the figure above, the queue manager QM5 is a member of both the clustersillustrated.

If there is more than one cluster in the network, it is essentia to give them different names. If two clusters
with the same name are ever merged, it will not be possible to separate them again.

6/28/02

80.1.4a 25

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

When defining a cluster, the following objects are included in the set of default objects defined when
creating a queue manager on V5.X of Sun Solaris and Windows NT, and in the customization samples for
MQSeries for OS/390.

SYSTEM.CLUSTER.REPOSITORY QUEUE
SYSTEM.CLUSTER.COMMAND.QUEUE
SYSTEM.CLUSTER. TRANSMIT.QUEUE
SYSTEM.DEF.CLUSSDR
SYSTEM.DEF.CLUSRCVR

Do not dter the default queue definitions. This could alter the default channel definitions in the same way
as any other channel definition, using MQSC or PCF commands.

254 Inthe Unlikely Event of a Repository Failure

Cluster information is carried to repositories (whether full or partial) on alocal queue called
SYSTEM.CLUSTER.COMMAND.QUEUE. If this queue should fill up, perhaps because the queue
manager has stopped working, the cluster-information messages are routed to the dead-letter queue. If this
is observed from the messages on the queue-manager log or OS/390 system console, an application will
need to be executed to retrieve the messages from the dead-l etter queue and reroute them to the correct
destination.

If errors occur on arepository queue manager, messages will appear defining what error has occurred and
how long the queue manager will wait before trying to restart. On MQSeries for OS390 the
SYSTEM.CLUSTER.COMMAND.QUEUE is get-disabled. After identifying and resolving the error, get-
enable the SY STEM.CLUSTER.COMMAND.QUEUE so that the queue manager will be able to restart
successfully.

In the unlikely event of a queue manager’s repository running out of storage, storage alocation errors will
appear on the queue-manager log or OS/390 system console. If this happens, stop and then restart the
gueue manager. When the queue manager is restarted, more storage is automatically allocated to hold all
the repository information.

255 Clugter channels
Although using clusters relieves the need to define channels (because M QSeries defines them by default),
the same channel technology used in distributed queuing is used for communication between queue
managersin a cluster. To understand about cluster channels, become familiar with matters such as:

How channels operate

How to find their status

How to use channel exits

These topics are all discussed in the MQSeries Intercommunication book.
When defining cluster-sender channels and cluster-receiver channels, do not set the “ disconnect interval”

too low (less than about 10 seconds). If it is set too low, the channel may close down between sending a
request to a repository queue manager and receiving the response.

6/28/02 80.1.4a 26

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

If the cluster-sender end of a channdl fails and subsequently tries to restart, the restart is rejected if the
cluster-receiver end of the channel has remained active. To avoid this problem, arrange for the cluster-
receiver channel to be terminated and restarted, when a cluster-sender channel attempts to restart.

On V5.X of MQSeriesfor Sun Solarisand Windows NT

Control this using the AdoptNewMCA, AdoptNewM CATimeout, and AdoptNewM CA Check attributesin
the gm.ini file or the Windows NT Registry. See the MQSeries System Administration book for more
information.

On MQSeriesfor OS/390
Control this using the ADOPTMCA and ADOPTCHK parameters of CSQ6CHIP. See the MQSeries for
05390 System Setup Guide for more information.

All documentation referenced above can be found in appendix A

26 MQSeriesCluster Implementation Guidelines

On OS/390 clustering cannot be used if the system isusing CICS for distributed queuing. In order
to get the most benefit out of using clusters, the queue managers in the network need to be on a
platform that supports clusters. Until al the systems are migrated to a platform that supports
clusters, the system may have queue managers outside a cluster that are not able to access the
cluster queues without extra manual definitions. The clustering facility is available to queue
managers on the following platforms:

MQSeriesfor AIX V5.1
MQSeriesfor AS/400 V5.1
MQSeries for HP-UX V5.1
MQSeries for OS2 Warp V5.1
MQSeriesfor 0OS/390 V2.1
MQSeries for Sun Solaris V5.1
MQSeries for Windows NT V5.1

If two clusters with the same name were merged, it would not be possible to separate them again.
Therefore, it is advisable to give all clusters a unique name.

If amessage arrives at a queue manager but there is no queue there to receive it, the message is put
to the dead-letter queue as usual. (If there is no dead-letter queue, the channel fails and retries, as
described in “ Dead-letter queue Guidelines’ in the MQSeries | ntercommunication book.)

Using clusters reduces system administration. Clusters make it easy to connect larger networks
with many more queue managers than would be possible to contemplate using distributed queuing.
However, as with distributed queuing, there isarisk that the system may consume excessive
network resources if attempting to enable communication between every queue manager in a
cluster.

The purpose of distribution lists, which are supported on V5.1 of MQSeries for Sun Solaris and
Windows NT, isto use asingle MQPUT command to send the same message to multiple
destinations. Distribution lists can be used in conjunction with queue manager clusters. However,
in a clustering environment all the messages are expanded at MQPUT time and so the advantage,

6/28/02 80.1.4a 27

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.7

271

in terms of network traffic, is not so great as in a non-clustering environment. The advantage of
distribution lists, from the administrator’ s point of view, is that the numerous channels and
transmission queues do not need to be defined manualy.

If using clusters to achieve workload balancing, first examine the applications to see whether the
applications require messages to be processed by a particular queue manager or in a particular
sequence. Such applications are said to have message affinities. Applications may need to be
modified before being used in complex clusters.

It is not advisable to use clustering in an environment where | P addresses change on an
unpredictable basis such as on machines where Dynamic Host Configuration Protocol (DHCP) is
being used.

FSA Cluster Specifics

Physical layout of the cluster

The hardware architecture implemented at FSA is shown in the diagram below.

6/28/02

80.1.4a 28

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID EAI CORE ARCHITECTURE RELEASE 3.0

FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (PRELIMINARY)

EAI BUS Architecture Overview (Development/Test)

Cics
DPL
Bridge

Applications

Cics
DPL
Bridge

Applications

bTrade
Adapter
Applications

SU35E16

Applications

eCBS
Adapter
Applications

—
5 Adapter
=| SUSEL7

Web Server

Applications

FMS

Adapter
Applications

PEPS

Adapter
Applications

LO System-eMPN

Adapter
Applications

‘IM-" [Deployment) II

-
Config-
uration

Mgr

I
-

P-Note Imaging

Applications

This diagram is an operational model of the EAI Bus and trading partner systems. Referenced from left to
right this diagram shows 4 logical areas consisting of the WAS Server, EAl Bus Cluster, MQS
Configuration area, and the trading partner systems. The WAS server can be used as a front end for

testing of interfaces with trading partner systems. In addition, two trading partner systems may interface
with each other viathe Bus.

6/28/02 80.1.4a 29

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2711

Cluster configuration — Development/T est

The FSA EAI cluster consists of 2 Sun Solaris Servers named SU35E16 and SU35E17. The Sun Servers
are the repository queue managers for the cluster.

The steps used in creating the cluster are:

1.

2.

Install MQSeries on the system.
Create the queue managers and the default objects with the crtmgm command.

Start the channel initiator and the channel listener. The channdl initiator monitors the system-
defined initiation queue SY STEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channel listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when it
iS needed.

Decide upon the cluster name, in the case of FSA the name of EAI was chosen for the cluster.

Determine which queue managers should hold full repositories. For FSA, both nodes SU35E16
and SU35E17 were chosen to hold full repositories.

Alter the queue manager definitions to add repository definitions. The command ALTER QMGR
REPOS(EAI) was executed on both SU35E16(Development) and SU35E17(Test).

Define the CLUSRCVR channels. For each queue manager in a cluster you need to define a
cluster receiver channel on which the queue manager can receive messages. The command was
executed on SU35E5, SU35E16(Development), and SU35E17(Test) with the command:

For example:

On SU35E5: DEFINE CHANNEL (TO.SU35E5) CHLTY PE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E5) CLUSTER(EAI)

On SU35E16 Development: DEFINE CHANNEL (TO.SU35E16(Devel opment))
CHLTYPE(CLUSRCVR) TRPTY PE(TCP) CONNAME(ip address of SU35E16(Development))
CLUSTER(EALI)

On SU35E17 Test: DEFINE CHANNEL (TO.SU35E17(Test)) CHLTYPE(CLUSRCVR)
TRPTY PE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER(EAI)

8.

Define the CLUSSDR channels. On every queue manager in a cluster, you need to define one
cluster-sender channel on which the queue manager can send messages to one of the repository
gueue managers.

On SU35E5: DEFINE CHANNEL (TO.SU35E16(Development)) CHLTY PE(CLUSSDR)
TRPTY PE(TCP) CONNAME(ip address of SU35E16) CLUSTER (EAI)

6/28/02

80.1.4a 30

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID EAI CORE ARCHITECTURE RELEASE 3.0

FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (PRELIMINARY)

On SU35E16 Development: DEFINE CHANNEL (TO.SU35E17(Test)) CHLTY PE(CLUSSDR)
TRPTY PE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER (EAI)

On SU35E17 Test: DEFINE CHANNEL (TO.SU35E16(Development)) CHLTY PE(CLUSSDR)
TRPTYPE(TCP)

CONNAME(ip address of SU35E16(Development)) CLUSTER(EAI)

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender channel
in the same cluster, the cluster-sender channel is started.

9. Define any cluster queues. For example:
On SU35E16 Development: DEFINE QLOCAL(EAI.FROM.WAS.LOAN) CLUSTER(EALI)

6/28/02 80.1.4a 31

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID EAI CORE ARCHITECTURE RELEASE 3.0

FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (PRELIMINARY)

EAI BUS Architecture Overview (Production)

cics
DPL
Bridge

Applications

NSLDS Cics
DPL
Bridge

Applications

bTrade
Applications

= MQSeries Server

Applications -
eCBS

MQSeries Server
- Applications
Web Server

Applications

Web Server

FMS

Applications
-

Config-
uration
Mgr PEPS

I Deployment
u~| [Desoymett)

Applications

LO System-eMPN

Applications

P-Note Imaging

Applications

2.7.1.2 Cluster configuration — Production

The FSA EAI cluster “EAIPROD” consists of 2 Sun Solaris machines named SU35E3 and SU35E14.
These two machines are the repository queue managers for the cluster.

The steps used in creating the cluster are:

6/28/02 80.1.4a 32

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

1. Ingtall MQSeries on the system.
2. Create the queue managers and the default objects with the crtmgm command.

3. Start the channel initiator and the channel listener. The channel initiator monitors the system-
defined initiation queue SY STEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channdl listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when it
iS needed.

4. Decide upon the cluster name, in the case of FSA the name of EAIPROD was chosen for the
cluster.

5. Determine which queue managers should hold full repositories. For FSA, both nodes SU35E3 and
SU35E14 were chosen to hold full repositories.

6. Alter the queue manager definitionsto add repository definitions. The command ALTER QMGR
REPOS(EAIPROD) was executed on both SU35E3 and SU35E14.

7. Definethe CLUSRCVR channels. For each queue manager in a cluster you need to define a
cluster receiver channe on which the queue manager can receive messages. The command was
executed on SU35E3, SU35E9, SU35E13, and SU35E14 with the command:

For example:

On SU35E3: DEFINE CHANNEL(TO.SU35E3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E3) CLUSTER(EAIPROD)

On SU35E9: DEFINE CHANNEL(TO.SU35E9) CHLTY PE(CLUSRCVR) TRPTYPE(TCP)
CONNAME(ip address of SU35E9) CLUSTER(EAIPROD)

On SU35E13: DEFINE CHANNEL(TO.SU35E13) CHLTYPE(CLUSRCVR) TRPTY PE(TCP)
CONNAME(ip address of SU35E13) CLUSTER(EAIPROD)

On SU35E14: DEFINE CHANNEL(TO.SU35E14) CHLTYPE(CLUSRCVR) TRPTY PE(TCP)
CONNAME(ip address of SU35E14) CLUSTER(EAIPROD)

8. Definethe CLUSSDR channels. On every queue manager in a cluster, you need to define one
cluster-sender channel on which the queue manager can send messages to one of the repository
gueue managers.

On SU35E3: DEFINE CHANNEL (TO.SU35E14) CHLTYPE(CLUSSDR) TRPTY PE(TCP)

CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)

On SU35E9: DEFINE CHANNEL (TO.SU35E14) CHLTYPE(CLUSSDR) TRPTY PE(TCP)

CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)

On SU35E13: DEFINE CHANNEL (TO.SU35E14) CHLTY PE(CLUSSDR) TRPTY PE(TCP)

CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)

On SU35E14: DEFINE CHANNEL(TO.SU35E3) CHLTYPE(CLUSSDR) TRPTY PE(TCP)

CONNAME(ip address of SU35E3) CLUSTER (EAIPROD)

6/28/02 80.1.4a 33

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender channel
in the same cluster, the cluster-sender channel is started.

9. Define any cluster queues. For example:
On SU35E3: DEFINE QLOCAL(EAI.FROM.WAS.LOAN) CLUSTER(EAIPROD)

2.8 MQSeries Security Standards

In general, security can be addressed at many different levels in a messaging environment. These security
levels are identified as the application, middleware, operating system, network, and link levels. Another
way to look at security is to think about providing access control, confidentiality, authentication, non-
repudiation and integrity functionality.

EAI is committed to protecting the EAI framework from illegal or damaging actions by individuals, either
knowingly or unknowingly. The EAI framework isto be used for business purposes in serving the interests
of Federal Student Aid, its clients and customersin the course of normal operations. Effective security isa
team effort involving the participation and support of every Federal Student Aid employee and affiliate who
deals with information and/or information systems.

EAI complies with FSA/CSC policies and procedures. This consists of file-level security and use of a
restricted number of non-published tcp/ip ports. Only users who belong to the mgm group can execute EAI
Services. There is only one communication port used by each system for EAl communication purposes.

Therefore:

1) All EAI binaries will be run behind the DMZ. It means that no messages will be transmitted in
clear text across a public (CSC, TSYS, ACS). This reduces the security exposure of the EAI to the
outside world is not bigger than the likelihood of hacker accessing other FSA resources. Note: See
Data Encryption policy for exception(s).

2) Useof EAI isrestricted to only the users who belong to the mgm group. It serves 2 purposes. First
of al it requires explicit action on behalf of every EAI user to be added to the mgm group. Second,
malicious users will not be able to get access to EAI. EAI users who failed to go through the step
of being added to mgm group as well as malicious users trying to communicate with the “EAI
BUS’ will be returned a MQSeries 2035 error reason code, which means “Not authorized”.

3) On each production system thereis only one tcp/ip port open to alow incoming communication.

2.8.1.1 DataEncryption Policy (internal to FSA)

The data encryption policy defines requirements for encryption algorithms used within the organization.

EAI datathat resides on hardware managed by FSA (CSC) will not be encrypted. This policy is subject to
change depending upon application requirements

6/28/02 80.1.4a 34

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.8.1.2 Data Encryption Policy (external to FSA)

The data encryption policy defines requirements for encryption agorithms used with externa trading
partners. Hardware level encryption is used when exchanging data between FSA managed servers and
external trading partner servers; i.e. servers not hosted by the CSC.

Application level encryption will aso be considered depending on future requirements.

29 EAlI MQSeries Security Implementation Guidelines

Queue Managers need to ensure that they exchange messages with the correct partner Queue Managers.
Note that it is just as important for the sending Queue Manager to be sure of the receiver’s identity asit is
for the receiving Queue Manager to be sure of the sender’ s identify. Such an environment is called mutual
authentication. EAI will develop, test, and implement MQSeries channel exits for mid-tier servers to
authenticate connectivity from authorized servers. Only servers in the authorized list will be permitted to
connect/utilize EAI resources.

2.9.1 EAI Application Consideration

The following table is a guideline of security servicesthat can be provided depending upon application

requirements, the category of requirement (NR — not required, O — optional, M —mandatory, V-Varies by
application) and which levels might be used to satisfy each service (AL-Application Level, OS-Operating
System Level, MW-Middleware Level, LL- Link Level, NW- Network Level, PP-Policy and Procedures).

Service ‘ Category ‘ Applicable Approaches
< ldentification & Authentication (I & A)
» End User M OS, AL
» Application Processes M 0os
» Channel Agent \ 0s, MW
« Authorization (Access Control)
» Application Processes
. Queues 0] oS, MW
. Message Headers \ 0s, MW
» System Processes
. Queues 0] oS, MW
. Message Headers \ MW
» Restricted Commands M OS, MW, AL
» Resource Definitions M OS, MW, AL
< Message Integrity
» Modification Detection (0] LL. NW, MW, AL
% Message Non-Repudiation
» _ Sender O NW, MW, AL
» Receiver O NW, MW, AL
% Message Privacy

6/28/02 80.1.4a 35

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

. Category .
Service Applicable Approaches
(0]
» Entire Message LL, NW, MW, AL
(0]
» _ Selected Fields MW, AL
< Logging
- . M
» _ Changes to security information OS, MW, AL
» _ Security-related events
. Failed access attempts M NW, OS, MW, AL
. Failed message content validation 0] NW, MW, OS, AL

210 MQSeries Websphere Design Guidelines

The Web Application Server communicates with the EAI busto retrieve and put information to different
legacy data sources. WebSphere Application Server is the standard Java Application Server in the
Integrated Technical Architecture (ITA) at FSA. The WebSphere Server will host Web Based applications
that act as middleware between the client browser and FSA’s Legacy Systems via the EAI bus. Using Java
Server Pages, Servlets and Enterprise Java Beans, WebSphere implements FSA’ s business application
logic through Java based Applications. Several methods exist to enable communication between a
WebSphere hosted application and the EAI bus.

2.10.1 WebSphere Connectors

WebSphere Common Connector Framework Classes - IBM java classes provided with WebSphere
Application Server which provide a highly abstract view of multiple middleware products.

Application Messaging Interface Java Classes - IBM provided java classes which implement the Open
Applications Group Open Applications Messaging Standard (OAG OAMAS). These classes provide a
"services' view of middleware, shielding devel opers from the underlying messaging semantics.

IBM Java class for MQSeries - IBM provided java classes which provide a thin java native interface (JNI)
wrapper around the MQSeries native libraries. These classes are provided with the base MQSeries
product.

IBM Java Messaging Service classes - IBM provided java classes which provide an implementation of the

Sun Java Messaging Service specification. These classes alow applications to be devel oped using a vendor
neutral interface which would allow for the messaging layer to be replaced or the programs moved to other
platforms where other IM S services could be used interchangeably.

EAI Messaging components - EAI developed java components to provide an RPC-like interface to FSA
middleware. Two implementations of these components exist, one using AMI and one using the base
MQSeries java classes.

6/28/02 80.1.4a 36

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.10.1.1 Common Connector Framework

The Common Connector Framework is a standard for developing applications using E-Business Patterns.
When aWeb Application Server needs to access a Backend Enterprise Information System, whether it isa
middleware messaging system, Enterprise Database system, or a System 390 Transaction Management
System, several common communication procedures must take place. These procedures may include
starting a transaction, processing data, passing status, and closing the transaction. Whether the backend
system is CICS, IMS, DB2 or an Oracle RDBMS, the actual commands and parameters may be different
but the high level procedures are common. Since these procedures and backend systems have aready been
identified, prebuilt java classes can be written to communicate with these systems. This requires a change
to the parameters and data that is passed to the backend systems.

The Common Connector Framework (CCF) is actually implemented within IBM’ s java development tool,
Visual Agefor Java (VAJ). The needed classes that implement the binding between the Web Application
Server and MQSeries are included within VAJ s Enterprise Access Builder, which is part of VAJ
Enterprise Edition. Programs written using the MQSeries CCF connector classes can communicate with
MQSeries Applications using the standard M QSeries Programming Interface or the MQSeries Client
classesfor javainterface. A programmer can use the SmartGuide Wizard within VAJ to build a program
shell that will communicate with MQSeries and al that is required isto add the application business logic
that will make decisions.

2.10.1.2 Build Your Own Connector

Using MQSeries client classes for Java, a programmer can develop their own interface to MQSeries. This
option should only be used by very experienced programmers that have previoudy implemented Java
interfaces to messaging systems. This option is not recommended because the CCF framework is so readily
available.

6/28/02 80.1.4a 37

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.10.2 Architecture look and fed

Whether using the CCF framework or building a custom connector, it isimportant to have a standard,
reusabl e application component within the Java Application Server that enforces communication and data
transfer standards between the Application Server and EAI Bus. This reusable component can exist asa
Servlet or an Enterprise Java Bean on the WebSphere Application Server. When other applications require
access to the EAI Bus, the applications would make a call to the servlet/EJB, which then forwards the
message to the EAI bus. This reusable servlet/EJB enforces naming standards, queue names and cluster
names before sending message data to the EAI bus. This servlet/EIJB would also control the number of
connections to MQSeries and allow a central place to tune and manage the web application interface to
MQSeries.

To provide reliability and availability of the EAl Bus, the MQSeries Server component should be installed
on all WebSphere Application Server (WAS). If an active MQSeries Server with defined Queue Managers
areinstalled on the WAS Server, this ensures assured delivery of al messagesto the target destination. If
the Queue Manager on the target destination server goes down the sending M QSeries Server will retain the
message data and send once connectivity to the target Queue Manager is restored.

Java Application needs access to the
EAI Bus and makes acall to the EAI
Message Servlet, passing the message

Java Application
Running within
WebSphere

To Ensure Reliabilty MQSeries
Server isinstalled on WAS Box

—

MQSeries Server EAI BUS
EAIl Servlet/EJB Residing on
running with WAS Server
WebSphere
Providing accessto
FAI RuS

6/28/02 80.1.4a 38

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

2.10.3 FSA EAI WebSphere Reusable Component

The EAI Core Architecture team has developed a reusable WebSphere Java component as an aid to FSA
application developers in connecting Internet applications to the EAl Bus. This reusable component is
written in Java. It provides aclass file for putting and getting messages into and out of a MQSeries
message queue. The application incorporates this Java class within the application code to provide a
transparent mechanism for putting messages into a queue to be sent to the EAI Bus for processing, and to
retrieve message data from a queue upon return. The application specific logic must be built into the
application to pass the required message data and to process the message data upon receipt.

2.10.3.1 WebSphere MQ Adapter Overview

The WebSphere MQ Adapter is a Java component that provides a Classfile to put message datainto a

M QSeries message queue and to get message data from a MQSeries message queue. The adapter utilizes
MQSeries MQI calls to perform this functionality. 1n addition, the MQ Adapter provides XML trandation
capability. Thistransforms the input message from the WebSphere server application into the application
specific XML format. The input data can be of any format, as long as the XML mapping is defined in the
application specific MQ Adapter. The message can be passed to the EAI Bus for transformation by MQSI.
This functionality was provided for the PEPS and bTrade validation test.

The developed EAl MQ Adapter resides in the ClearCase repository. Any FSA application development
team can utilize this functionality for putting messages into a M QSeries message queue, transforming into
XML format, and getting the returned message data from the legacy system for processing by the
application.

6/28/02 80.1.4a 39

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

3 DATAINTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES

Data Integrator (DI) isa COTS product that uses MQ messaging to transfer data between different
systems. When sending afile, DI automatically splitsit up into MQ messages, sends it across a channel(s),
and reassembles it at the destination machine. FSA has not previously utilized Data Integrator as part of its
existing middleware infrastructure therefore no standards currently exist. This section will provide
guidance on Data Integrator standards that have been developed in the FSA EAI architecture.

3.1 Datalntegrator Standards

3.1.1 Bi-Directional Sending

Bi-directional sending means that messages can be sent in both directions between queue managers. Every
trading partner that uses Data Integrator is set up to send and receive messages in both directions, even in
cases where the ability to send in one direction is all that is required.

3.1.2 Pool Architecture

Pooled queues are used to support large file transfers. Local queues have size limitations of 1 GB, so
pooling 50 local queues allows each trading partner to receive files up to 50 GB in size. All interfaces on
the Bus use 50 pooled queues, and the default data pool used for sending viathe EAI Busis EAIPOOL.

3.1.3 Scripts

Unix scripts that send data between interfaces using Data I ntegrator are generally named in the following
format: <Destination Name>interface.sh (ex. A script on FM S called PEPSinterface.sh would send data
from FMS to PEPS).

All scripts for Data Integrator reside in the $SEAIDIR/ftf directory

3.1.4 Configuration file

The configuration file contains default settings for Data Integrator, including defaults for its components
(discussed later), logging, and pooled queues. An example is the DefaultPool value of *EAIPOOL’, as
mentioned above. Thereis one .ini configuration file (ftfconfig.ini) that is used across all trading partners.
The .ini files used for al trading partners have the same options specified.

3.2 Datalntegrator |mplementation

Thefollowingisalist of suggestions for the design and administration of Data | ntegrator.
Unix environment variables (i.e. $LQM) should be used whenever possible.

Avoid the use of ‘dirmon’ (directory monitoring) whenever possible. The script that is supposed to
be “kicked off” should be called directly instead.

When scripts are called via cron:

6/28/02 80.1.4a 40

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

0 Ensurethat the owner of the cronjob has permission to execute the DI scripts.
0 Ensurethat ftfenvlist.sh has been sourced in from the EAI build.

Trading partner data for the COD interface is written out to the SEAIDATA directory. If another
interface would prefer data written out to a different directory, ensure that the appropriate users
have read/write access to that directory.

6/28/02 80.1.4a 41

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

4 MQSERIESINTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES

MQSeries Integrator provides data transformation and message routing capability. This section will
provide guidance on naming conventions for using MQSeries Integrator in the FSA EAI architecture. These
guidelines are meant to provide guidance in defining and implementing MQSeries Integrator objects.

4.1 MQSlI Naming Standards

4.1.1 Common Rules

For FSA, there are rules that must be adhered to when providing names or identifiers for message flows,

message sets, messages, message processing nodes, brokers, and execution groups in the MQSI broker
domain:

Use dl upper caseletters
Verson al message flows, message sets, and messages names.

Underscore should be used instead of spaces when naming all message flows, message sets, and
messages.

MRM object identifiers must match the object name. MRM objects include categories, dement
qudifiers, dements, eement lengths, messages, types and dement valid vaues. The reason for thisis that
the objects are referenced by their identifiers and not their names.

A corresponding description should be provided for any objects created.

4.1.2 Brokers

The broker isaMQSI resource that hosts and controls business processes defined in message flows. The
following guiddlines should be followed when naming brokers:

The broker name must be unique within the MQS domain.

Associate each broker with a separate MQSeries Queue Manager. There is aone-to-one correlation
between a broker and a queue manager.

The broker name should have the same name as the Queue Managers they are associated with.

For example a Queue Manager called “MQSI” would have abroker “MQSI” associated with it.

4.1.3 Execution Groups

An execution group provides an isolated execution environment within the broker, and is started asa
separate operating system process. The following guidelines should be followed when naming execution
groups:

The execution group must be unique within a broker.

6/28/02 80.1.4a 42

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Execution group names should be of the form:

FIRSTNODE_SECONDNODE

~ [Thefirgt node should indicate the name of the system that messages are coming from or sent to.
This means that message flows are grouped easly within the broker based on the systemsit
communicates with.

~ [1 The second node should indicate the name of the system that messages are coming from or sent to.
This means that message flows are grouped easly within the broker based on the systemsit
communicates with.

Examples:
COD_FMS

414 Message Flows

A message flow is a sequence of operations on a message, performed by a series of message processing
nodes. The actions are defined in terms of the message format, its content, and the results of individua
actions along the message flow. The following guidelines should be followed when naming message flows:

The name for amessage flow must be unique within abroker domain.

Message flow names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FORTHNODE

- [I Thefirg nodeisthe name of the system that messages are coming from.

~ [1 The second node is the name of the system that messages are sent to.

- [I Thethird node is a short description of asto the function of the message flow.
~ [1 Thefourth node is the current version of the message flow being used.
Examples:

FMS COD_RESPONSE_1

EAl_COD_ERRORS 1

415 Message Sets

A message set isalogical grouping of related messages. The following guidelines should be followed when
naming message sets:

The name for amessage set must be unique within a broker domain.
Message st names should bein the following format:
FIRSTNODE_SECONDNODE_THIRDNODE

~ [I Thefirg nodeisthe name of the system that messages are coming from or sent to.
~ [1 The second node is the name of the system that messages are coming from or sent to.

6/28/02 80.1.4a 43

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

~ [I Thethird nodeisthe current verson of the message flow being used.

Examples:
COD_FMS 1

416 Messages

A message isthelogical representation of data that is exchanged between client applications and MQSeries
Integrator. The following guidelines should be followed when naming messages:

The name for amessage must be unique within a message set.

Message names should be in the following format:

FIRSTNODE_SECONDNODE_THRIDNODE_FORTHNODE
- [I Thefirg node is the name of the system that owns that messages structure.
~ [1 The second node is a short description of asto the function of the message.

~ [Thethird node represents the how the message will be used. Valid vduesare“INPUT” and
“OUTPUT". If the message will be used as both input and output, then this should be left blank.

~ [1 Thefourth node is the current version of the message being used.

Examples:
COD_FINANCIAL_1
COD_VENDOR_INPUT_1
FMS RESPONSE_INPUT_1

417 Message Flow Nodes

A message processing node is a point in the message that represents awell defined processing stage. It can
be one of severa primitive types or can represent a sub flow. Thereis no hard and fast way that message
flow nodes should be named. However there are some guidelines that can be presented here in order to
make the message flow clearer for people trying to understand its business purpose.

4171 Check

The Check node compares the format of a message with a message-type specification that you supply when
you configure the Check node. The message-type specification comprises any combination of the message
domain, message set, and message type. The following guidelines should be followed when naming Check
nodes:

Check node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FORTHNODE

~ [Thefirst node must be CHECK

- [J The second node must be “DOMAIN”, “SET”, and/or “TY PE".
-~ [I Thethird nodeis the short description for the function of the node.

6/28/02 80.1.4a 44

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

- [1 Thefourth node is optional and is the ingtance the Check node within the message flow.

Examples:
CHECK_DOMAIN_XML

4.17.2 Compute

The Compute node constructs a new message or modifies elements of an existing message, or its associated
destination or exception list, or both. These components of the message can be based on elements of both
the input message and data from an external database. The following guidelines should be followed when
naming Compute nodes:

Compute node names should be in the following format:

FIRSTNODE.SECONDNODE.THIRDNODE.FOURTHNODE

- [I Thefird node is the name of the input message format that is sent to the node.

~ [1 The second node is the name of the output message format that is sent from the node.

- [I Thethird node is the short description of asto the function of the node.

- [1 Thefourth node is optiond and is the ingtance the Compute node within the message flow.

Examples:
COD_VENDOR_INPUT_1.COD_FINANCIAL_1.TRANSFORMATION
COD_FINANCIAL_1.COD_FINANCIAL_1.DBLOOKUP.2

4.1.7.3 Database

The Database node allows a database operation in the form of an ESQL statement to be applied to the
specified ODBC data source. The following guidelines should be followed when naming Database nodes:
Database node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

-~ [Thefird node represents the how the database function that will be performed. Vdid vauesare
“INSERT_INTO”, “UPDATE_IN", and “DELETE_FROM”.

- [The second node is the database name that the node connects to.
- [Thethird node is the table name that the node references.
~ [1 Thefourth node is optiond and is the instance the Database node within the message flow.

Examples:
INSERT_INTO_DEV_COD_1
UPDATE_IN_DEV_COD_2
DELETE_FROM_COD _1

6/28/02 80.1.4a 45

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

41.7.4 DataDelete

The DataDelete node is a speciaized form of the Database node that alows deletion of one or more rows
from atable in the specified ODBC data source. The following guidelines should be followed when naming
DataDelete nodes:

DataDel ete node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

- [J Thefirst node must be “DELETE_FROM”.

~ [The second node is the database name that the node connects to.

~) The third node is the table name that the node references.

- [1 Thefourth node is optiond and is the instance the DataDe ete node within the message flow.

Examples:
DELETE_FROM_COD_1

4.1.75 Datalnsert

The Datalnsert node is a specialized form of the Database node that allows insertion of one or more rows
into atable in the specified ODBC data source. The following guidelines should be followed when naming
Datal nsert nodes:

Datal nsert node names should be in the following formet:

FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

- [I Thefirst node must be “INSERT_INTO".

~ [The second node is the database name that the node connects to.

~ [The third node is the table name that the node references.

- [I Thefourth node is optiona and is the instance the Datal nsert node within the message flow.

Examples:
INSERT_INTO_DEV_COD_1

4176 DataUpdate

The DataUpdate node is a specialized form of the Database node that alows the modification of one or
more rowsin atable in specified ODBC data source. The following guidelines should be followed when
naming DatalUpdate nodes:

DatalUpdate node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

- [I Thefirg node must be “UPDATE_IN".

~ [The second node is the database name that the node connects to.

~ [The third node is the table name that the node references.

~ [1 Thefourth node is optiond and is the instance the DatalUpdate node within the message flow.

6/28/02 80.1.4a 46

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Examples:
UPDATE_IN_DEV_COD_1

4.1.7.7 Extract

The Extract node derives an output message from those elements of the input message that you specify for
inclusion. The following guidelines should be followed when naming Extract nodes:

Extract node names should bein the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

~ [Thefirst node must be “EXTRACT”.

~ [1 The second node is the short description of asto the function of the node.

- [I Thethird nodeis optiona and is the instance the Extract node within the message flow

Examples:
EXTRACT_HEADER

41.7.8 Filter

The Filter node routes a message according to message content using afilter expression specified in ESQL.
The following guiddines should be followed when naming Filter nodes:

Filter node names should be in the following format:

FIRSTNODE_SECONDNODE

- [I Thefird node is aquedtion title that represents the functionaity of the node.

~ [1 The second nodeis optiond and is the instance the Filter node within the message flow.
Examples:

IS GL_TRANSACTION

IS AP TRANSACTION_1

4179 FlowOrder

The FlowOrder node enables you to control the order in which amessage is processed by a message flow.

FHowOrder node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

~ [Thefirst node must be “ORDER".

~ [1 The second node is the short description of asto the function of the node,

- [I Thethird nodeis optiond and is the instance the FlowOrder node within the message flow.

6/28/02 80.1.4a 47

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Examples:
ORDER_ DB_INSERT

4.1.7.10 Input Terminal

The Input Terminal provides an in termina for an embedded message flow. The following guidelines
should be followed when naming Input Terminal nodes:

Input Termina node names should be in the following format:

FIRSTNODE_SECONDNODE
- [I Thefirg nodeisthe message flow name.
~ [J The second node must be “IN”.

Examples:
COD_ERROR_IN

41.711 Labe

The Label node is a named destination for a message processed by a RouteTolL abel node. The Label node
isidentified by an entry in adestination list of the message when it is processed by a RouteToL abel node.
The following guidelines should be followed when naming Label nodes:

Labe node names should bein the following format:

FIRSTNODE_SECONDNODE
- [I Thefird node isthe function of the adjacent nodes that are associated with the Labd node.
~ [The second node must be “LABEL”.

Examples:
DB_INSERT_LABEL
FMS LABEL
DEFAULT_LABEL

4.1.7.12 MQInput

The MQInput node reads a message from an M QSeries message queue defined on the broker's queue
manager, and establishes the processing environment for the message. The following guidelines should be
followed when naming MQInput nodes:

The name must be the same name as the underlying M QSeries queue that it references.

Examples:

EAI.COD.FINANCIAL.GET
EAI.FMSFINANCIAL.RESPONSE.GET
EAI.COD.VENDOR.GET

6/28/02 80.1.4a 48

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

4.1.7.13 MQOutput

The MQOutput node writes messages to an M QSeries message queue defined on any queue manager
accessible by the broker's queue manager, or to the destinations identified in the destination list associated
with the message. The following guidelines should be followed when naming MQQOutput nodes:

The name must be the same name as the underlying M QSeries queue that it references.

Examples:
FMS.COD.FINANCIAL.RESPONSE.PUT
COD.FMS.FINANCIAL.RESPONSE.PUT
COD.ERRORS.PUT

41.7.14 MQReply

The MQReply node is a speciaized form of the MQOutput node that sends a response to the originator of
the message by putting a message to the MQSeries queue identified by the ReplyToQueue field of the
message header. The following guidelines should be followed when naming MQReply nodes:

MQReply node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

~ I Thefirst node must be“REPLY_TO".

~ [1 The second node is the name of the system that messages are sent to.

- [J Thethird nodeis optiona and is the instance the M QReply node within the message flow.
Examples:

REPLY TO COD

REPLY TO FMS 1

4.1.7.15 NeonFormatter

The NEONFormatter node is used to transform a message from a known input format to a specified output
format. The message definition and transformations are defined using the NEON Formatter graphical
utility. The following guidelines should be followed when naming NeonFormatter nodes.

NeonFormatter node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

- [I Thefirst node must be“TRANSFORM_TO_NEON”.

~ [1 The second node is the output format that is defined in the NEON Formetter.

- [I Thethird node is optiond and is the ingtance the NEONFormatter node within the message flow

6/28/02 80.1.4a 49

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Examples:
TRANSFORM_TO_NEON_FMS
TRANSFORM_TO_NEON_COD_1

4.1.7.16 NeonRules

The NEONRules node provides an encapsulation of the NEON Rules engine within the MQSeries
Integrator Version 2 environment. The following guidelines should be followed when naming NeonRules
nodes:

NeonRules node names should be in the following format:

FIRSTNODE_SECONDNODE
~ [Thefirst node must be “NEONRULES'.
~ [1 The second nodeis optiona and is the instance the NeonRules node within the message flow.

Examples:
NEONRULES 1

4.1.7.17 Output Terminal

The Output Termina provides an out terminal for an embedded message flow. The following guidelines
should be followed when naming Output Terminal nodes:

Output Termina node names should bein the following format:

FIRSTNODE_SECONDNODE
- [I Thefirg nodeisthe message flow name.
~ [J The second node must be “OUT”.

Examples:
COD_ERROR_OUT

4.1.7.18 Publication

The Publication node filters and transmits the output from a message flow to subscribers who have
registered an interest in a particular set of topics. The following guidelines should be followed when
naming Publication nodes:

Publication node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE

- [J Thefirst node must be “PUBLISH_TO".

~ [1 The sacond node is optiona and represents the subscription point.

- [J Thethird nodeis optiona and is the ingtance the Publication node within the message flow.

6/28/02 80.1.4a 50

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Examples:
PUBLISH_TO_XML
PUBLISH_TO_FIXED_1

4.1.7.19 ResetContentDescriptor

The ResetContentDescriptor node takes the bit stream of the input message and reparses it using a different
message template from the same or a different message dictionary. The node can reset any combination of
message domain, set, type, and format. The following guidelines should be followed when naming
ResetContentDescriptor nodes:

ResetContentDescriptor node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE
- U Thefirst node must be“RESET _TO".
~ [1 The second node is the new message template that the message will follow.

- [I Thethird nodeis optiona and is the instance the ResstContentDescriptor node within the message
flow.

Examples:

RESET_TO_XML
RESET_TO_NEON_1

4.1.7.20 RouteToL abel

The RouteTolL abdl node provides a routing facility based on the contents of the destination list associated
with the message. The destination list contains the identity of one or more target Label nodes. The
following guiddines should be followed when naming RouteToL abel nodes:

RouteToL abel node names should be in the following formeat:

FIRSTNODE_SECONDNODE

- [I Thefirst node must be “ROUTETOLABEL".

~ [1 The second nodeis optiona and isthe ingtance the RouteTolabel node within the message flow.

Examples:
ROUTETOLABEL_1

41.7.21 Throw

The Throw node provides a mechanism for throwing an exception within a message flow. The following
guidelines should be followed when naming Throw nodes:

Throw node names should bein the fallowing format:
FIRSTNODE_SECONDNODE_THIRDNODE
~ [Thefirst node must be “THROW”.

6/28/02 80.1.4a 51

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

~ [1 The second node is a short description of the exception that is thrown.

- [I Thethird nodeis optiona and is the instance the Throw node within the message flow.
Examples:
THROW_INVALID_TRANSACTION_TYPE
THROW_COD_ERROR 1

4.1.7.22 Trace

The Trace node generates trace records that can incorporate text, message content, and date and time
information, to help you to monitor the behavior of the message flow. The following guiddines should be
followed when naming Trace nodes:

Trace node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE

~ [Thefirst node must be “TRACE”.

~ [1 The second node is a short description of the function of the trace node.

- [I Thethird nodeis optiona and is the instance the Trace node within the message flow.
Examples:

TRACE_MESSAGE
TRACE_MESSAGE_HEADERS 1

4.1.7.23 TryCatch

The TryCatch node provides a specia handler for exception processing. The following guidelines should be
followed when naming TryCatch nodes:

TryCatch node names should be in the following format:

FIRSTNODE_SECONDNODE

- [I Thefirst node must be“TRY CATCH".

~ [1 The second node is aptiond and is the instance the TryCatch node within the message flow.

Examples:
TRYCATCH

4.1.7.24 Warehouse

The Warehouse node is a specialized form of the Database node that stores the entire message, or parts of
the message, or both, to the specified ODBC data source. The following guiddines should be followed
when naming Warehouse nodes:

Warehouse node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE

6/28/02 80.1.4a 52

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

- U Thefirgt node must be “HOUSE IN".
- [The second node is the database name that the node connects to.
- [Thethird node is the table name that the node references.

Examples:
HOUSE_IN_DEV_COD

4.2 MQSl Implementation Guidelines

The following isalist of suggestions for designing message flows and message sets in MQSeries
Integrator.

Deveop message flows to be as concise as possible. There isa cost associated with passing through each
of the primitive nodes, so it isbest to develop aflow in asfew nodes as possible.

Use RouteTolL abe and Labd nodes for message flows that routes messagesin several (more than 3)
directions, since they are chegper than severd Filter nodes.

Combine Filter and Compute nodes into a single Compute node with an IF THEN EL SE structure when
possible.

Use non-pers stent messagesinstead of persistent messages. Perd stent messages cauise a greet ded more
logging and therefore the gpeed of the flow is bound by the speed of the disk hardware.

Set Transaction Mode to autometic as a property of the MQInput node, to allow persistent messages to
be treated as transactions while non-persistent messages are not.

Refrain from using nesting loops inside each other since they offer no sgnificant gain because the extra
overhead of the additiond ESQL counters the smal gains from navigating more quickly through the
message structure.

Minimize converting between message XML, MRM and BLOB formets.

Reusable logic should be placed in sub-flow, so that other flows have accesstoit. Exampleswould
include acommon error handling route.

Message dements, eement lengths and types should be automatically crested by using the MQSl
importer. The MQS! importer allowsfor the importing of C structures and COBOL copybooks.

6/28/02 80.1.4a 53

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5 FSA APPLICATION ENABLEMENT GUIDELINES

5.1 Application Programs and Messaging

The IBM MQSeries range of products provides application-programming services that enable application
programs to communicate with each other using messages and queues. This form of communication is
referred to as commercial messaging. It provides assured, once-only delivery of messages. Using MQSeries
means that you can separate application programs, so that the program sending a message can continue
processing without having to wait for areply from the receiver. If the receiver, or the communication
channel to it, is temporarily unavailable, the message can be forwarded later. MQSeries also provides
mechanisms for providing acknowledgements of messages received.

The programs that comprise a MQSeries application can be running on different computers, on different
operating systems, and at different locations. The applications are written using a common programming
interface known as the Message Queue Interface (MQI), so that applications developed on one platform can
be transferred to another.

This figure shows that when two applications communicate using messages and queues, one application
puts a message on a queue, and the other application gets that message from the queue.

Program B (MQGET)

Program A (MQPUT)

5.2 Application Usage Guidelines For MQSeries

A queue isaMQSeries object owned by a queue manager, upon which applications can put or retrieve
messages. Applications access a queue by using the Message Queue Interface (MQI). Before amessage
can be put on a queue, the queue must already exist. Each queue must have a name that is unique to the
owning queue manager. Before an application can use a queue, it must open the queue, specifying what it
wants to do with it. For example, the application can open a queue to:

Browse messages only (do not delete them)
Retrieve messages

6/28/02 80.1.4a 54

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Put messages on the queue
Inquire about the attributes of the queue
Set the attributes of the queue

For acomplete list of the options related to opening a queue, see the description of the MQOPEN call in the
MQSeries Application Programming Reference manual.

There are different types of queues. These typesinclude:

Local: aloca queue is managed by the queue manager to which the application is connected
Remote: aremote queue is managed by a queue manager other than the one to which the
application is connected

Alias; an dias queue points to another queue

Model: amode queue is atemplate for queue definition

Dynamic: adynamic queue is atemporary queue defined based on a model queue

In FSA’stechnical environment, the use of alias queues is discouraged, unless a business need dictates its
use (e.g. limiting security access to certain queues). Applications putting messages to remote queues will
use the remote queue definition. This allows the application to only specify the remote queue name and not
be required to know the remote queue manager name. Model and dynamic queues should be used only
when a business need dictates their use.

5.2.1 Identifying an Application for a Queue Manager

Any MQSeries application must make a successful connection to a queue manager before it can make any
other MQI calls. When the application successfully makes the connection, the queue manager returns a
connection handle. Thisis an identifier that the application must specify each time it issuesaMQI call. An
application can connect to only one queue manager at atime* (known asits local queue manager), so only
one connection handleis valid (for that particular application) at atime. When the application has
connected to a queue manager, that queue manager processes al the MQI calls that the application issues
until the application issues another MQI call to disconnect from that queue manager. Each adapter written
for FSA performs the task of connecting to the queue manager.

* When an application connects to a queue manager, it issuesa MQCONN call. The scope of a
MQCONN call islimited to the thread that issued it within al of the following:

- MQSeriesfor AS400

- MQSeriesfor Compaq (Digital) OpenVMS
- MQSeriesfor OS2 Warp

- MQSerieson UNIX systems

- MQSeriesfor Windows

- MQSeriesfor Windows NT

That is, the connection handle returned from aMQCONN call is valid only within the thread that issued the
cal. Only one call may be made at any one time using the handle. If it is used from a different thread, it
will bergjected asinvalid. If the application has multiple threads and each wishes to use MQSeries calls,
each one must individually issue MQCONN. Each thread can connect to a different queue manager on
0S/2 and Windows NT, but not on OS/400 or UNIX. If the application is running as a client, it may

6/28/02 80.1.4a 55

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

connect to more than one queue manager within athread. This does not apply if the application is not
running as aclient.

5.2.2 Opening and Closing Queues

Before opening a queue using the MQOPEN call, the application must connect to a queue manager. The
application can then use the MQOPEN call to open aqueue. The application can also then use the
MQCLOSE call to close a queue. When an application opens a queue, the application receives an object
handle for that queue. Thishandleis used in subsequent callsto get or put messages. The same queue can
be opened more than once; each open call creates a new object handle. However, most applications will
only need to open a given queue once.

Once an application has opened a queue, the application has access to that queue until it closes the queue.
The MQOPEN cdll is costly in terms of time, so once an application has opened a queue and plansto use it
in the future, keep the queue open, except when an application only needsto ‘put’ one message. The
MQPUT1 call was designed for this case: this call opens a queue, puts the message, and closes the queue,
eliminating the need to use the MQOPEN and MQCLOSE cals.

Queues are automatically closed when an application closes its connection to the queue manager.
However, it isagood practice to close al queues before disconnecting from the queue manager.

Each adapter written for FSA performed MQOPEN and MQCLOSE calls.
It is recommended to use the FAIL_IF_QUIESCING open option for the MQOPEN call. Thiswill allow
the M QSeries administrators more control of the system.

5221 MQOPEN Call

As input to the MQOPEN call, the application must supply:

A connection handle, using the connection handle returned by the MQCONN call.
A description of the object to open, using the object descriptor structure (MQOD).
One or more options that contral the action of the call.

The output from MQORPEN is:

An object-handle that represents access to the queue. Use this as input to any subsequent MQI
callsfor this queue.

A modified object-descriptor structure, if the application is creating a dynamic queue.

A completion code.

A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the cdll failed.

5222 MQCLOSE Call

Asinput to the MQCLOSE call, the application must supply:

A connection handle, using the same connection handle used to open the queue.
The handle of the queue to close. This comes from the output of the MQOPEN call.

The output from MQCLOSE is.

6/28/02 80.1.4a 56

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

A completion code.
A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the cdll failed.

5.2.3 Putting Messages On A Queue

To put messages on a queue, an application must use the MQOO_OUTPUT option when issuing the
MQOPEN call. After the queue has been opened using this option, the application can issue aMQPUT
call to put a message on the open queue. If the application is only putting one message and will not use the
gueue again, use the MQPUT1 call.

It is recommended to use the FAIL_IF_QUIESCING put-message option for the MQPUT and MQPUT1
cals. Thiswill alow the MQSeries administrators more control of the system.MQPUT call.

Asinput to the MQPUT call, the application must supply:

A connection handle, using the connection handle that was returned when the application issued the
MQCONN call.

A queue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

A description of the message the application is putting on the queue. Thisisin theform of a
message descriptor structure.

Control information, in the form of a put-message options structure. This options structure needs
to be redefined for every MQPUT call.

The length of the application data contained within the message.

The application data itself.

The output from the MQPUT call is:

A reason code.

A completion code.

If the call completes successfully, it also returns the put-message options structure and the message
descriptor structure. One or both structures may have modified attributes within them. For more
detail, look at the MQSeries Application Programming Guide.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed.

5.2.4 Getting Messages From A Queue

To open a queue so that the messages on that particular queue can be browsed (does not remove the
message from the queue), use the MQOPEN call with the MQOO_BROWSE option. To get (and remove)
messages from a queue, an application must use the MQOO_INPUT_AS Q DEF,
MQOO_INPUT_SHARED, or MQOO_INPUT_EXCLUSIVE option when issuing the MQOPEN call.
Selection of one of these three optionsis used to specify if the application opens the queue in exclusive, or
shared, mode. Seethe MQSeries Application Programming Guide for more information. After the queue
has been opened using one of these options, the application can issue a MQGET call to get a message from
the open queue.

6/28/02 80.1.4a 57

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

By specifying the Msgld and/or Correlld fields in the message descriptor structure, the application can
search the queue for a particular message. If the application uses MQGET call more than once (for
example, to step through the messages in the queue), it must set the Msgld and Correlld fields of this
structure to null after each call. This preventsthe call from filling these fields with the identifiers of the
message that were retrieved, and therefore getting messages with the same identifiers as the previous
message.

If the fields in the message descriptor structure are not specified to search for a particular message, the
MQGET call will retrieve the first message in the queue.

It is recommended to use the FAIL_IF_QUIESCING get-message option for the MQGET call. Thiswill
allow the MQSeries administrators more control of the system.

5241 MQGET Call

Asinput to the MQGET call, the application must supply:

A connection handle, using the connection handle that was returned when the application issued the
MQCONN call.

A queue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

A description of the message the application wants to get from the queue. Thisisin the form of a
message descriptor structure.

Control information in the form of a get-message options structure. This control information
describes if the application is browsing or removing messages. The control information also
describes if the MQI call waits (and how long it waits) for amessage or if the call returns
immediately.

The size of the buffer you have assigned to hold the message.

The address of the storage location in which the message must be puit.

The output from the MQGET call is:

A reason code

A completion code

The message in the buffer area specified, if the call completed successfully

The options structure, modified to show the name of the queue from which the message was
retrieved.

The message descriptor structure, with the contents of the fields modified to describe the message
that was retrieved

The length of the message

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an
indication as to why the call failed

5.25 Queue Manager Connectivity Guidelines

A queue manager supplies applications with MQSeries services. An application must have a connection to
a queue manager before it can use the services of that queue manager. An application can make this
connection explicitly (using the MQCONN call), or the connection can be made implicitly. For example,
CICSfor MVSESA and CICS/MV'S programs do not need to explicitly connect to a queue manager,

6/28/02 80.1.4a 58

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

because the CICS system itself is connected to a queue manager. However, for portability it is
recommended that CICS for MV SESA and CICS/MV S programs use the MQCONN and MQDISC calls.

5.2.6 Connecting To and Disconnecting From a Queue Manager

To connect to a queue manager, an application must use the MQCONN call. To disconnect from a queue
manager, an application must use the MQDISC call.

MQCONN Call

Asinput to the MQCONN call, the application must supply a queue manager name. To connect to the
default queue manager, specify a queue manager name consisting entirely of blanks or starting with a null
character.

The output from MQCONN is:

A connection handle, using this handle in subsequent MQI calls associated with this queue
manager.

A completion code.

A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed. If the reason code indicates that the application is already connected to that queue
manager, the connection handle that is returned is the same as the one that was returned when the
application first connected. So the application probably should not issue the MQDISC call in this situation
because the calling application will expect to remain connected. The MQCONN call failsif the queue
manager isin a queuing state when issuing the call, or if the queue manager is shutting down.

M QDI SC Call

As input to the MQDISC call, the application must supply the connection handle that was returned by
MQCONN when the application connected to the queue manager.

The output from MQDISC is:

A completion code.
A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication as
to why the call failed.

All adapters written for FSA had to connect to the queue manager, open a queue, perform a MQGET or
MQPUT, close a queue, and disconnect from the queue manager. Each future adapter written for FSA will
also need to perform each of the above in order to get and put messages on a queue.

5.2.7 Passthe Connection Name as a Program Parameter

This allows a program to run unchanged on any Queue Manager. This provides the capability for multiple
concurrent instances; or a queue driven application could be moved to a different queue manager without
impacting the application code.

6/28/02 80.1.4a 59

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.2.8 Messaging Using More Than One Queue Manager

This arrangement is not typical for areal messaging application because both programs are running on the
same computer, and connected to the same queue manager. In acommercial application, the putting and
getting programs would probably be on different computers, and so connected to different queue managers.

This figure shows how messaging works when the program putting the message and the program getting
the message are on the different computers, and are connected to different queue managers.

Program B (MQGET)

Program A
(MQPUT)

Queue Manager

In this situation, it is necessary to create message channels to carry M QSeries messages between the queue
managers.

5.3 Application Usage Guidelinesfor MQSeries Application M essaging I nterface (AMI)

AMI isahighly abstracted interface to MQSeries that externalizes much of the complexity associated with
MQSeries usage into an external repository. Understanding its organization iskey toitsuse. AMI is
organized into three major levels: Service Points, Policies, and Messages. Service Points contain
information related to queues. Policies contain information related to connections, queue interaction,
publish and subscribe and AMI user exits. Messages are not abstracted into the AMI repository and are
the containers that hold the application data to be placed to or received from queues.

The AMI isobject oriented. All errors are reported in the form of thrown exceptions that are caught and
evaluated by the application.

The AMI repository is created, updated, and managed by M QSeries administrators who in each case will
ensure that objects match application requirements and options are appropriate. The use of an external
repository dramatically reduces the amount of middleware knowledge application programmers are
required to possess. Comparing the MQI and AMI guidelines demonstrate this conclusively.

6/28/02 80.1.4a 60

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.3.1 AMI Connectivity Guiddines

Any AMI application must establish a Session before it can make any other AMI calls. An AMI Session
isacontainer object that holds the queue manager connection information.

5.3.2 Establishing and Terminating AMI Sessions

In order to establish an AMI session it is necessary to create an AMI Session object. This object will be
used to establish connections to the underlying queue manager as well as provide the context for other AMI
objects. These Session objects are created with alogical name that must be unique within the application.

Connecting to a Queue M anager

Connecting to a queue manager is aresult of running the “open” method of the previoudly created Session
object. An AMI Policy isprovided asinput. The “Initialization” section of the referenced Policy is used to
determine queue manager name, whether to use client or server binding and whether to run asa
trusted/fastpath application. When successfully opened, the Session contains an active connection to a
gueue manager.

Disconnecting from a Queue M anager

Disconnecting from a queue manager is aresult of running the “close’” method of the previoudly created
Session object. An AMI policy is provided asinput. Information from the policy is used in the case where
users exits are required. All related objects become invalid after having closed the AMI Session through
which they were created.

5.3.3 AMI Sender and AMI Receiver Objects

In order to put messages to and get messages from queues it in necessary to create AMI Sender and AMI
Receiver objects. These objects contain queue information and are used to direct interaction with those
queues.

5.3.3.1 Using AMI Sender objects
When creating a Sender object a Service Point nameis provided asinput. Thisisareference to a Service
Point in the AMI repository. The Service Point contains the queue name that is to be used to put messages.

Once created, the “ open” method is used to establish a handle to the target MQSeries queue. A Policy is
provided asinput. The*Send” section of the policy is used to determine the options related to the
placement of messages including priority, persistence, expiry interval, report options and more.

To then send data using this Sender, the “send” method is used providing a Policy and message data as
input.

When complete, using the “close” method of the Sender invalidates its handle to the underlying MQSeries
gueue and closesiit.

5.3.3.2 Using AMI Receiver objects

When creating a Receiver object a Service Point name is provided asinput. Thisisareference to a Service
Point in the AMI repository. The Service Point contains the queue name that is to be used to get messages.

6/28/02 80.1.4a 61

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Once cresated, the “open” method is used to establish a handle to the target MQSeries queue. A Palicy is
provided asinput. The *Receive’ section of the policy is used to determine the options related to the
receipt of messages including wait interval, message conversion and more.

To then receive data using this Receiver, the “receive’” method is used providing a Policy and message
buffer asinput.

When complete, using the “close” method of the Receiver invalidates its handle to the underlying MQSeries
gueue and closesiit.

5.4 Application Interface Programming Options for M essage Queue I nterface (MQI)

There isawide range of options for communicating with MQSeries programs including new interfaces for
message content as well as message delivery. Programs written using any of these message delivery styles
can communicate with each other and with programs written in any of the other MQSeries delivery styles.

54.1 Message Ddlivery

54.1.1 Message Queue Interface (MQI)

The Message Queue Interface (MQI) isthe common API across al platforms. The calls made by the
applications running on each platform are common. This allows application programmers to focus on the
business logic of the application, rather than the interface differences of each platform. This makesit
much easier to write and maintain applications, as well as facilitate migration of applications from one
platform to another as required by changing business needs. Each adapter written for FSA made use of a
majority of the MQI function calls as shown below. The following figure represents the MQI.

Application Program

L

Z| O 58 — - X

El O
MOI gl 2 <o o Ll 5] 5 S| = o I
ol g8 o Q ol | a o) 0 Zl 0
ol 9 o © ol o Y o o) o o
s| 2 3 = =l B = = =
N~ \J\!J N~ ~ ~ L

Queue Manager

Process
Definition
Object

Message Queue Interface

6/28/02 80.1.4a 62

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

54.1.2 JavaMessage Service (JMYS)

Java Message Service (IMS) is supported by a MQSeries implementation of this Java standard API for
Enterprise Messaging Services. Using IMS, applications can communicate with other MQSeries IMS
applications, with applications written to the MQI, or to the Application Message Interface (AMI).

54.1.3 Application Messaging I nterface (AMI)

The Application Messaging Interface (AMI) provides a simpler and higher-level programming interface
than the MQI. Although it has some limitations compared with the MQlI, its function should be sufficient
for the majority of users. The AMI supports both point-to-point and publish/subscribe messaging models.
The AMI diminates the need for application programmersto understand all of the options and functions
available in the MQI. Thiswas not used at FSA, but is mentioned for future use if the need arises.

The MQSeries AMI can be used to build client applications, and the AMI will automatically build any
required headers as specified using the AMI, including the new RFH2 headers. The AMI isdesigned to
simplify the task of the application programmer, while enabling the more advanced functions and message
broker facilities to be used.

AMI isahigh level API that moves many functions normally performed by messaging applications into the
middleware layer, where a set of policies defined by the enterprise is applied on the application's behalf.
Policies hold details of how messages are to be handled, for example, priority, confirmation of ddlivery,
timed expiry.

5.4.2 Message Content

54.2.1 Extensible Markup Language (XML)

Extensible Markup Language (XML) is an industry-wide standard for self-defining messages. It enables
diverse systems and databases to understand each other's data (for example, to identify fields) by indicating
both the content and the role of the data.

XML is supported in MQSeries Integrator Version 2 and MQSeries Workflow Version 3.2; XML will be
supported within M QSeries Messaging via the Common Messaging Interface.

For FSA, all messages passed into MQSeries Integrator werein XML. IBM is not advocating the use of
XML and the adoption of XML as a standard is outside the scope of this document.

Sample XML Message:

<?ml version ="1.0"?>

<IDOCTY PE Message SY STEM "C:\TestEnvironment\X ML Files\LifeQuote.dtd">

<!--Generated by XML Authority.-->

<Message issuedTime = "string" Authorisation = "string" sessionlD = "string" creationTime = "string"
issueProgram =

"string" issueUser = "string” ID ="id1" issueSystem = "string" txnScope = "string" eventID = "string"
zoneOffset = "string”

language = "string"><!-- (Command.valueQuoteRequest* , Command.valueQuoteResponse*)-->
<Command.valueQuoteRequest responseDTD = "string" echoBack = "string" cmdMode = "always" ID =
"id2"><!--

(%CustomizeAgreement , Systeminfo)-->

6/28/02 80.1.4a 63

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

<LifeAgreement ID ="id3" REFID = "string" status = "string" UUID = "UUID"><!-- (%Agreement ,
Product
-->
<policyNumber>only text</policyNumber>
<effectiveFromDate>only text</effectiveFromDate>
<companyCode>only text</companyCode>
<ratingCompany>only text</ratingCompany>
<policyType>only text</policy Type>
<renewal Date>only text</renewal Date>
<paymentPlan>only text</paymentPlan>
<agreementState>only text</agreementState>
<lineOfBusi nessCode>only text</lineOf BusinessCode>
<effectiveFromDate>only text</effectiveFromDate>
<agentOfRecord>only text</agentOf Record>
<agentCommission>only text</agentCommission>
<PolicyMessage/>
<MoneyObligation ID="id4" REFID="string" status="string" UUID="UUID"><!--(type, amount,
frequency)-->
<type>only text</type>
<amount>only text</amount>
<frequency>only text</frequency>
</MoneyObligation>
<Discount-Surcharge/>
<Underwriting/>
<Applicant ID ="id5" REFID ="string" status = "string" UUID = "UUID"><!-- (Person)-->
<Person ID ="id6" REFID ="string" status = "string" UUID = "UUID"><!-- (%Party , Body
, PartyActivity* , Residency , PartyContactPointUsage?)-->
<id>only text</id>
<uuid>only text</uuid>
<FamilyName/>
<!-- <UnstructuredName>only text</UnstructuredName> -->
<Body ID ="id7" REFID ="string" status = "string" UUID ="UUID"><!-- (gender ,
height , weight , birthdate , Medical Condition+)-->
<gender>Female</gender>
<height>6.2</height>
<weight>250</weight>
<birthdate>01/01/1980</birthdate>
<MedicalCondition ID ="id8" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>High Blood Pressure</description>
<response>Y es</response>
</Medical Condition>
<MedicalCondition ID ="id9" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>Heart Disease</description>
<response>No</response>
</Medical Condition>

</Body>

6/28/02 80.1.4a 64

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.5 EAI Common Error Handling Guidelines

Whenever possible, the queue manager returns any errors as soon asaMQI call ismade. The three most
common errors that the queue manager can report immediately are described in this section.

5.5.1 Failureof aMQI Call

An example of aMQI call failureis being unable to put a message to a queue because the queueis full.
The completion code and return code of the MQI call specify the nature of the failure. Applications should
inspect these codes for every MQI call and be able to handle all possible return codes.

5.5.2 System Interruption

The queue manager is an example of a system component needed by the application and when the queue
manager is interrupted, the application encounters an error. Applications must ensure no dataislost due to
this sort of interruption. To ensure no data loss, applications will get and put messages under syncpoint.
This syncpoint activity can be controlled by the queue manager or by some externa resource coordinator
(e.g. CICS, Encina, €tc.).

5.5.3 Unable to Process Messages

Messages containing data that cannot be processed successfully are known as poisoned messages. When
applications operate under syncpoint, if the application cannot successfully process a message, the

MQGET call is backed out. The queue manager maintains a count (in the BackoutCount field of the
message descriptor) of the number of times this happens for MQGET calls which DO NOT use any of the
Browse type get message options. Messages whose backout counts increase over time are being repeatedly
rejected by the application — the application should be designed to handle such situations. There are many
different tactics to handling poisoned messages. One method would be to write the messages to afile and a
common “poison message application” attempt to process them at alater point in time. Another method is
to have the application itself deal with the message. Messages could aso be written to the dead letter queue
and then be processed by a dead letter handler. Based on your application requirements a method should be
adopted.

5.5.4 Responding to Errors

Applications should respond in a similar manner to errors returned by MQI calls. One possible way to
implement this common error handling methodology is to provide error-handling routines for the
application developer. Use of these common error-handling routines ensures that all application
programmers handle MQSeries errors in the same way and do not have to write their own error handling
routines.

Note: Refer to Section 8.1 - Reusable EAI Functions: EAI Common Log Component for additional
information regarding common error handling. The EAl Common Log Component interface enables
applications to record events to local and centralized logs.

6/28/02 80.1.4a 65

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.6 Triggered queues and applications

5.6.1 Desgning MQSeries Applications

Some MQSeries applications that serve queues run continuously, and are always available to retrieve
messages that arrive on the queues. However, this may not be desirable when the number of messages
arriving on the queues is unpredictable. In this case, applications could be consuming system resources
even when there are no messages to retrieve.

MQSeries provides afacility that enables an application to be started automatically when there are
messages available to retrieve. This facility is known as triggering.

QUEUEMANAGER

- trigger
f; ager message

application | I event
message r—— } _Z _______ 1
I ﬁ
i I Process I
APPLICATION ' | Application I Initiation
| | Queue | Queue
A A S)
|
| application trigger
| message message
| APPLICATION start APPLICATION
| coﬂmm and = TRIGGER
B —_
i F MONITOR
Local or Remote |
System 1 Local System

1. Application A, which can be either local or remote to the queue manager, puts a message on the
application queue. Note that no application has this queue open for input. However, thisfact is
relevant only to trigger type FIRST and DEPTH.

2. The queue manager checks to seeif the conditions are met under which it has to generate a trigger
event. If so, atrigger event is generated. Information that is held within the associated process
definition object is used when cresting the trigger message.

3. The queue manager creates atrigger message and puts it on the initiation queue associated with
this application queue, but only if an application (trigger monitor) has the initiation queue open for
input.

4. Thetrigger monitor retrieves the trigger message from the initiation queue.

6/28/02 80.1.4a 66

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5. Thetrigger monitor issues a command to start application B (the server application).
6. Application B opens the application queue and retrieves the message.

Notes:

1. If the application queue is open for input, by any program, and has triggering set for FIRST or
DEPTH, no trigger event will occur since the queue is already being served.

2. If theinitiation queue is not open for input, the queue manager will not generate any trigger
messages, it will wait until an application opens the initiation queue for input.

3. When using triggering for channels, you are recommended to use trigger type FIRST or DEPTH.

Each adapter created for FSA utilized triggering. The MQSeries object definitions can be seen by viewing
each system script file contained in the Clearcase repository. Specifically, you want to look for the objects
with the “trigger” attribute.

5.6.2 Starting MQSeries Applications

Trigger messages created because of trigger events that are not part of a unit of work are:
- put on theinitiation queue,
- put outside any unit of work, with no dependence on any other messages
- avalablefor retrieval by the trigger monitor immediately

Trigger messages created because of trigger events that are a part of a unit of work are put on the initiation
gueue, as part of the same unit of work. Trigger monitors cannot retrieve these trigger messages until the
unit of work completes. This applies whether the unit of work is committed or backed out. If the queue
manager fails to put atrigger message on an initiation queue, it will be put on the dead-letter (undelivered-

message) queue.

Notes:
1. The queue manager counts both committed and uncommitted messages when it assesses whether
the conditions for atrigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even if the unit of
work is backed out so that atrigger message is aways available when the required conditions are
met. An exampleis a put request within a unit of work for a queue that is triggered with trigger
type FIRST. This causes the queue manager to create atrigger message. If another put-request
occurs from another unit of work, this does not cause another trigger event. Rather, the number of
messages on the application queue has now changed from one to two, which does not satisfy the
conditions for atrigger event. If thefirst unit of work is backed out, but the second is committed, a
trigger message is still created.

However, this does mean that trigger messages are sometimes created when the conditions for a
trigger event are not satisfied. Applications that use triggering must always be prepared to handle
this situation. It is recommended to use the wait option with the MQGET call, setting the
Waitlnterval to a suitable value.

2. For local shared queues (that is, shared queues in a queue-sharing group) the queue manager
counts committed messages only.

6/28/02 80.1.4a 67

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

For FSA, the adapters were triggered on the trigger type of “FIRST”, the queues were then read until
empty.

5.7 Application Usage Guideinesfor Data Integrator

5.7.1 DataIntegrator Components

Three components must be running on each machine that will be using Data Integrator: the Manager,
Sender, and Receiver. Each component performs a different task related to the transfer of datausing MQ
Series. Each component performs common duties such as monitoring its input queue, logging events and
sending status messages. When two components are located on different queue managers, the destination
will be resolved to the appropriate transmission queue and sent to its destination.

5.7.1.1 e-Adapter Manager

The originating queue manager in a transaction acts as the Manager, and is responsible for starting and
ending the transfer unit of work and managing all transfers. The Manager determines the appropriate
Sender, and the message is sent to that Sender’s input queue.

At the end of atransaction, the Manager returns one of the following completion codes: Request completed
successfully, request failed, request expired, or request canceled. In the event of afailure, additional
information, including error codes, is returned as well.

5.7.1.2 e-Adapter Sender

The source queue manager in a transaction acts as the Sender, and is responsible for transforming the data
to be sent into M QSeries messages. Depending on the nature of the transaction, the Sender may send the
message(s) directly to the specified Receiver or move them to a staging area. Once its work is complete, the
Sender will report back to the Manager of the transaction.

5.7.1.3 e-Adapter Receiver

The destination queue manager in atransaction acts as the Receiver, and is responsible for processing the
transfer request from the Sender and transforming the M QSeries messages into the target data. Once
finished it will send areply back to the Manager of the transaction.

5.7.2 Common Script Arguments

A datatransfer using Data Integrator can be performed directly from the command line or typed into a
command script. There are a number of arguments that can be used with the ‘FTF command to
accomplish this. The most commonly used ones are listed below, along with a brief description.

5721 Queue Manager Arguments

Igm — Loca Queue Manager — the queue manager from which the command is issued.

ogm — Originating Queue Manager — the queue manager where the Manager will operate, defaults
to the lgm.

6/28/02 80.1.4a 68

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

sgm — Source Queue Manager — the queue manager where the Sender will operate, defaults to the
Igm.

dgm - Destination Queue Manager — the queue manager where the Receiver will operate.

5.7.2.2 Source/Target File Arguments

spath — Source Path — the full path and filename of the source file to be transmitted.
dpath — Destination Path - the full path and filename of the destination file.

5.7.2.3 Process Arguments

immed — this argument will force the transfer request to be processed synchronously between the
Sender and Receiver. The Receiver will begin processing immediately upon receipt of the
first message, instead of waiting until all messages have arrived (the default method).
This technique requires less queue storage on the destination machine.

5.7.2.4 User Exit Arguments

These arguments are used when a process needs to be started immediately following the completion of a
data transfer. A Unix script, specified using the user exit arguments, will be run once the transaction has
finished. These arguments must be placed together and in order.

exit — Exit Number — the exit number to be invoked.
exitdll — DLLName —the DLL used to invoke the exit module.
exitentry — Entry Point — the name of the function in the DLL that contains the exit module.

exitdata — Data Vaue — the command-line argument that will be executed.

5.7.25 Data Specification Arguments

compr ess— will cause the data to be compressed before it is sent.

pool — Pool Name — the name of the data pool that will be used for transferring between the Sender
and Receiver. This pool must be defined in the configuration file, and will default to the
default pool specified in thisfile.

5.7.2.6 0OS/390 Arguments
These arguments are only necessary when dealing with a target machine running OS390.

blksize — Block Size — the block size for the target file, it is usually specified .

Irecl — Logical Record Length —the logical record length for the target file, it is usually specified.
5.7.2.7 Additional Script Arguments

Additional script arguments may be found in the e-Adapter Technical Reference.

6/28/02 80.1.4a 69

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.8 Application Usage Guidelinesfor Data I ntegrator Status Utility

The Data Integrator product can be configured to generate status and diagnostic messages for each Data
Integrator file transfer. These messages are in XML format and can be used to verify that file transfers
occurred and assist in problem determination when afile could not be transferred.

5.8.1 Storing the status messages

When afileistransferred using Data Integrator, the related status messages are directed to an MQSeries
gueue. An MQSeries Integrator message flow reads messages from the queue and places them into an
Oracle database. These messages are retained in the database awaiting later retrieval and analysis.

5.8.2 Retrieving the status messages

Messages are retrieved from the Oracle database via an MQSeries Integrator message flow. Requests for
information arein XML format and they may contain one of severa search criteria, such as a date/time
range or a unique Data Integrator file transfer identifier. Using MQSeries Integrator as the retrieval
mechanism allows messages to be requested from any platform that has MQSeries access to the EAI bus.

5.9 Application Usage Guidelinesfor MQSeries I ntegrator

5.9.1 Defining Messages

MQSeries Integrator provides a message brokering function that can transform messages from one format
to another. The brokers that manage these transformations need to interpret the structure and content of the
messages they receive to perform the full range of transformation functions available with MQSeries
Integrator.

5.9.1.1 Message domains

The messages supported by MQSeries Integrator are of three broad types that are identified by a property
of the message called the message domain:

A message can be unstructured: its message domain must be set to BLOB.
A message can be sdf-defining: its message domain must be set to XML.

Two additional domains are included in this category to support IMS messages. the domain
JMSMap can be used for jms_map messages and the domain JM SStream can be used for
jms_stream messages.

A message can be predefined. 1ts message domain must be set to one of:
“IUMRM
-~ [NEON

A predefined message has alogica structure and a physical structure:

6/28/02 80.1.4a 70

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

- [IThelogical structure of a predefined message is a tree structure that demonstrates the
hierarchical relationships between the components of a message.

- [1The physical structure of a message, which is aso referred to as its wire format, isjust astring
of bits and bytes. Without the logical structure, the physical structure (the bit-stream) has no
intrinsc meaning.

5.9.1.2 Unstructured messagesin the BLOB domain

An unstructured message must have a message domain of BLOB. It has no known (or defined structure).
These messages can be processed and routed by MQSeries Integrator, but the manipulation that you can
perform is very limited. You can perform some simple manipulation at the message level, and take other
actions on the whole message.

5.9.1.3 Self-defining messagesin the XML domain

A self-defining message must have a message domain of XML. It carries the information about its content
and structure within the message. Its definition is not held anywhere else. When a self-defining message is
received by the broker, it is handled by the XML parser, and atreeis created according to the XML
definitions contained within that message. A self-defining message is also known as a generic XML
message. It does not have a recorded format.

A self-defining message can be handled by every IBM-supplied message processing node. The whole
message can be stored in a database, and headers can be added to or removed from the message as it passes
through the message flow. The message can also be manipulated, constructed, and reformatted by nodesin
the message flow, using a specialized form of standard database Structured Query Language (SQL). This
specialized form is known as Extended SQL, or ESQL, and supports MQSeries Integrator processing of
the message structure. This means that although you do not have to define the message structure to the
Control Center, you do have to understand the definition to be able to construct valid ESQL for message
manipulation.

5.9.1.4 Predefined messagesin the MRM domain

A predefined message in the MRM message domain must have its message domain set to MRM. It must be
defined to the Message Repository Manager, a component of the Configuration Manager. Y ou can define
messages to the MRM domain using the Control Center (Message Sets view). The MRM maintains these
messages in the message repository. Y ou can aso predefine a message to the MRM in the XML message
domain. If you define a message to the XML domain, you can use all the facilities available to MRM
domain messages to manipulate and reference the message in the nodes within your message flowsin the
Control Center.

However, you are not expected to assign these message sets to a broker, nor to deploy them. Because the
domainisset to XML, the XML parser isinvoked by the broker and does not reference any external
message definition. An MRM message can be handled by every IBM-supplied message processing node.
The whole message, or parts of the message, can be stored in a database, and headers can be added to or
removed from the message as it passes through the message flow. The message can be manipulated using
ESQL defined within all message processing nodes that support manipulation (for example, compute and
filter).

You can aso transform any message in the MRM domain into any other format defined to the MRM using
ESQL (in most cases, just one line of ESQL). Thisincludes code page and encoding conversion. It

6/28/02 80.1.4a 71

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

provides the significant benefit that data conversion exists in MQSeries and therefore applications are not
required to provide this function.

Messages with a message domain of MRM have three other characteristics for further classification:
Message format
Three message formats are supported by the MRM:
- [1A message can have a message format of CWF (Custom Wire Format).

These messages are MRM representations of legacy data structures created in the C or
COBOL programming language, and imported into the MRM using the Control Center
facilities. Y ou can aso create new messages using this format.

- [1A message can have a message format of PDF.

Thisisaspeciaized format used predominantly in the finance industry. It does not have any
connection with the Portable Document Format defined by Adobe (also known as PDF). If you
already use messages of this format, you can continue to use them and process them by
specifying this format in the definitions.

- [1A message can have a message format of XML.

These messages are represented as XML documents. They conform to an XML DTD
(Document Type Definition) that can be generated by the Control Center for documentation
purposes.

Message set

This identifies the message set to which each message belongs. This is specified as the message set
identifier, not the message set name. When you define a message in the MRM message domain,
you must define a message set that containsit. A message set can contain one or more related

messages.
Message type

The message type identifies the message definition within the set. It is the unique identifier for each
message of this particular content and format.

5.9.1.4.1 Predefined messagesin the NEON domain

A predefined message in the NEON message domain must have its message domain set to NEON. It must
be defined using the MQSeries Integrator Version 1 graphical utilities that are supplied with MQSeries
Integrator Version 2. Y ou can create new messages and use existing messages defined to the NEON
domain. A NEON message can be handled by every IBM-supplied message processing node. The whole
message can be stored in a database, and headers can be added to or removed from the message as it passes
through the message flow. The NEONFormatter node can be used to transform a NEON message. No other
node can manipulate the message contents.

5.9.2 Designing Message Flows

A message flow is a sequence of operations on a message, performed by a series of message processing
nodes. The actions are defined in terms of the message format, its content, and the results of individua
actions along the message flow. MQSeries Integrator includes a range of message processing nodes, called

6/28/02 80.1.4a 72

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

primitives, that provide most of the function that you will need in most situations. A message flow and the
message processing nodes it contains describes the transformation and routing applied to an incoming
message to transform it into outgoing messages. These actions form the rules by which the messageis
processed. A message flow can also be made up of a sequence of other message flows, that are joined
together. This function alows you to define a message flow containing a specific sequence of message
processing nodes, and reuse that message flow in other message flows wherever that action is needed.
When you complete the creation of your message flow, you can assign it for execution to one or more
brokers. When you do this, the message flow must be operationally complete. That is, it must contain at
least one MQInput node (one of the primitives). Most message flows will also contain at least one
MQOQutput or one Publication node, although thisis not required (both of these nodes are also primitives).

5.9.2.1 Message flows and units of work

A message flow istransactional. 'Y ou can define your message flows to perform al processing within a
single unit of work. Therefore the receipt of every message by the input node, and the database operations
performed as aresult of that message being received and processed by the message flow, are coordinated.
If an error occurs within a transactional message flow, the transaction is rolled back and the message will
be handled according to normal error handling rules. Y ou can aso define a message flow to work outside
of aunit of work if you do not want this support.

5.9.2.2 Parallel processing of message flow instances

When you define, assign, and deploy a message flow, the broker automatically starts an instance of the
message flow for each input node (one or more). Thisis the default behavior. Each instance retrieves a
message from the input node, and runs in parallel with other instances that retrieve a message from other
input nodes. If you want to further increase the throughput of this message flow, you can set a property of
the assigned message flow that defines how many additional instances are to be started by the broker for
that message flow. Y ou can set properties of the input node to exercise control over the order in which
messages are processed.

Y ou can a so increase message flow throughput by assigning more than one copy of the message flow to
the same broker. However, thisis only appropriate if the message order is not important, because the
multiple copies of the message flow are handled independently by the broker, with no correlation between
them. Therefore, if more than one copy of the same message flow is active within the broker, each copy can
be processing a message at the same time, from the same queue. It is possible for the processing time of a
message flow to vary, and multiple message flows accessing the same queue could therefore read the
messages from the queue in arandom order. Also, the order of messages produced by the message flows
might not correspond to the order of the original messages. Y ou can influence the order in which the input
node removes messages from the queue (using the Order Mode property). Y ou are therefore recommended
to increase the instances of a single copy of the message flow if you want to increase throughput and
paralel processing but wish to have control over the message order.

5.9.2.3 Transformation

Most enterprises have applications that have been developed over many years, on different systems, using
different programming languages, and different methods of communication. Standard message queuing
technology can bridge differences like these, but applications still need to be aware of, and negotiate, the
format in which the messages flow. With MQSeries Integrator the knowledge of each application is stored
just oncein the broker and each message is trandated into the receiving application’ s format. Because the

6/28/02 80.1.4a 73

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

broker knows the requirements of each application, it can transform the message to the correct format
without the sending or receiving application needing any modification.

A message flow can completely rebuild a message, convert it from one format to another (whether format
means order of fields, byte order, language, and so on), remove content from the message, or introduce
specific datainto it.

5.9.2.4 Inteligent routing

Intelligent routing encapsul ates business knowledge of how information should be distributed between
sending and receiving applications throughout the enterprise. This knowledge is stored in the broker as a set
of rules that are applied to each message as it passes through the broker. Routing is independent of the
requirement for message transformation, although you will usualy define sets of rules (as message flows)
that combine the two in some way. Messages are distributed according to criteria applied to the values of
fields within the message.

Y ou can a so establish a more dynamic routing option by building additional routing information into the
message when it is processed. Optiona sets of rules are set up to receive messages according to values
(destinations) set into the message. Y ou can establish these rules such that a message is processed by one or
more of the optional sets of rules, in an order determined by the added message content. Y ou can creste,
modify, and use these rules to develop a very flexible approach to the distribution of information. New
ideas and requirements can be stated clearly, and turned into new or changed rules in the broker, and your
business goals are met. Y ou don’t have to rework your applications. Y our business processes range from
the smple to the very complex. Y ou can create rules to cover every case, building new rules, and reusing
and combining existing ones to develop even the most complex solution.

5.9.25 Enriching message content

When amessage is processed by a message flow, it is possible to update and add to the message content.
This alows you to add value between sender and receiver in any way you choose. A typical way inwhich
you can enhance the message content is by adding data from a database. This can be done by appending
fields to the message, or merging information from the two sources. For example, anew field value can be
calculated using the database information.

5.9.3 Using Message Processing Nodes

Message flow nodes are the key components of a message flow. A message processing node is a stand-
alone procedure defined within a message flow that receives a message, performs a specific action against
it, and outputs zero or more messages as a result of the action it has taken. This section describes the types
of nodes, using the primitives included in MQSeries Integrator to illustrate the function they provide. You
can create additional message processing nodes to provide enhanced or replacement function if you choose,
except where noted.

59.31 MQSI Primitives

The MQSeries Integrator 2.0.1 Control Center provides a number of message flow nodes. The table below
identifies the message flow nodes supplied with MQSeries Integrator, which are known as the IBM
Primitives.

6/28/02 80.1.4a 74

US DEPARTMENT OF EDUCATION

FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

IBM Primitive Function

Check node Compares the format of an incoming message with a predefined message
specification.

Compute node Derives an output message from an input message and, optionaly, from data
taken from a external database. A computation can be applied to each element
of the input message before the output message is constructed.

Database node Combines database operations with message processing.

DataDelete node Deletes one or more rows from a database table.

Datal nsert node

Inserts one or more rows in a database table.

DatalUpdate node Updates the contents of one or more rows in a database table.
Extract node Derives an output message from the fields in an input message.
Filter node Evaluates an input message against an ESQL expression.

FlowOrder node

Determines a specific order for the processing of a message.

Input Terminal Provides an in terminal for an embedded message flow.

Label node Receives a message from a RouteT ol abel node.

MQInput node Reads M QSeries messages from a specified message queue.

MQOutput node Writes MQSeries messages to a specified message queue.

MQReply node Sends a response message to the originator of the message that caused this
message flow to be invoked.

NEONFormatter node Transforms an input message using the NEON Formatter engine.

NEONRules node Passes an input message to the NEON Rules engine for evaluation.

Output Terminal

Provides an out termina for an embedded message flow.

Publication node

Publishes a message to subscribers.

ResetContentDescriptor
node

Reparses the bit stream of an input message.

RouteTolLabel node

Routes a message to one or more specific destinations that are identified in the
message.

Throw node Throws an exception within a message flow.

Trace node Generates a trace record.

TryCatch node Catches any exceptions that are thrown by nodes further on in the message
flow.

Warehouse node Stores message data in a data repository.

6/28/02

80.1.4a 75

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.9.3.2 Common node characteristics

Every message processing node has a fixed number of input points and output points. These points are
known as terminals. Each node normally has one input terminal (on which it receives messages), and
multiple output terminals to handle a variety of situations. Output terminals are defined according to the
characteristics of the individual node. For example, afilter node has true, false, failure, and unknown
output terminals.

A Connector joins an output terminal of one node to an input terminal of the next node in the message flow.
Y ou can leave an output terminal unconnected, or you can connect a single output terminal to more than
one target node. After anode has finished processing a message, the connectors defined from the node’ s
output termina s determine which node(s), process the message next. If a node has more than one output
terminal connected to atarget node, the node determines the order in which the different execution paths are
executed. If a single output terminal has more than one connector to atarget node, the broker determines
the order in which the different execution paths are executed. Y ou cannot change the order of processing
determined by the node or broker.

A node does not aways produce an output message for every output terminal. Often it produces one
output for a specific terminal depending on the message received. For example, afilter node will typicaly
send amessage on either the true terminal, or the false terminal, but not both. When the processing
determined by one connector has been completed, the node issues the message again to the next connector,
until all possible paths have been completed. Updates to a message are never propagated to previousy
executed nodes, only to nodes following the node in which the update has been made. The message flow
can only accept a new message for processing when all paths through the message flow (that is, all
connected nodes from al output terminals, as appropriate) have been completed.

5.9.3.3 Input and output nodes

Some message nodes have special characteristics. They define pointsin the message flow to which clients
send messages (input nodes or MQInput), or from which clients receive messages (output nodes or
MQOutput). These specia nodes represent M QSeries queues. Client applications interact with these nodes
by putting messages to, or getting messages from, these queues. A message flow has a set of (one or more)
input nodes to which senders can post their messages, and a set of output nodes from which receivers can
pick up messages.

If amessage is being processed under transactional control, the output node only puts the message to the
destination queue when all processing by the message flow has been successfully completed, unless the
output node is set up to put the message outside the global (message flow) transaction. Before you can use
amessage flow, the input nodes must be associated with queues that represent the sources of messages. An
output node must aso be associated with a queue in most cases. However, you can set an output node
property that causes the node to put the message to every queue in a destination list, which is contained
within the message itself. Y ou must use the primitive MQInput node for every message flow input node.

Y ou cannot replace it with one of your own. Y ou can replace the output node if you choose.

Publication nodes are a special type of output node that use the queues identified by current subscribers
whose subscriptions match the characteristics of the current message. Subscribers provide the identity of
the queue on which they want to receive al matching publications.

6/28/02 80.1.4a 76

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

5.9.3.4 Processing messages

All nodes other than the input and output nodes receive an input message from the previous node in the
message flow and transform it into zero or more output messages to be made available to the next node (or
nodes) in the message flow. Messages passing between nodes are not put to an intermediate queue: each
message is held in local memory. These nodes can perform any kind of processing on a message. For
example, they can:

Reformat the message (NEONFormatter).

Transform the message (Compute).

Subset the data within the message (Extract).

Route the message to one or more targets (NEONRules).

Archive the message in a message warehouse (Warehouse).
Update database information from the message content (Database).

5.9.35 Error handling

All primitive message processing nodes have a failure output terminal, to which a message is transferred if
an error is detected within the node. If the failure termina is not connected to atarget node, an exception is
generated and propagated back towards the MQInput node:

If a TryCatch node is encountered before the exception reaches the MQInput node, the flow of
control proceeds down the catch terminal. The message that is propagated through the catch
terminal is the message originally received by the TryCatch node: any changes made to the
message by later nodes in the message flow are not preserved. However, any external processing
(for example, updates to a database through a Database node) are preserved. It is not possible to
rollback these database updates from within the message flow.

Before the TryCatch node passes on the message to the node connected to the catch terminal, it
adds the exception information to the ExceptionList item in the message tree. Existing information
in the ExceptionList field in the message is written to the local error log, and then overwritten with
the new exception information.

If the message reaches the input node:

— If theinput node’ s catch terminal is connected to another node, the message is propagated
to that node. In this case, an error is not recorded in the loca error log.

— If theinput node’ s catch termind is not connected, and the message is being processed
under transactiona control, the message is returned to the input queue. An error is
recorded in the local error log. The MQInput node will then read the message again for
retry. It first checks to seeif the backout count for this message has now exceeded the

backout threshold:
= |f the backout count has not exceeded the threshold, the message processing is
retried.

= |f the backout count has exceeded the threshold, and the fallure terminal is
connected to another node, the message is propagated to that node.

6/28/02 80.1.4a 7

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

If the failure terminal is not connected, the message is put on the backout queue, if
one is defined for this input queue, or the queue manager’ s dead-letter queue
(DLQ), if abackout queue does not exist.

If the queue manager does not have a DLQ defined, the message is left on the
input queue. (If the broker’ s queue manager has been created by the create broker
command mgsicreatebroker, a DLQ has been defined and enabled for this queue
manager.)

— If the catch terminal is not connected and the message is not being processed under
transactional control, the message is discarded.

You can provide aminimum level of error handling within every message flow you define if you choose.
This minimum level might includes:

Define a dead-letter queue (DL Q) on the broker’ s queue manager (or use the default supplied
DLQ).

Change the queue manager’ s attributes to use this DLQ.

5.9.3.6 Adding or enhancing message processing nodes

MQSeries Integrator provides an external interface that allows you to add new capabilities to the broker by
implementing new node types. The interface comprises a set of callsimplemented in the C language. These
calsare of two kinds:

Calls that the broker makes to the node, for example to initialize the node.
Calls that the node makes to the broker, for example, to inquire about the content of the message
being processed.

5.9.4 Assigning and Deploying Resources to Brokers

The complete process of assigning resources and deploying them to a broker istoo lengthy to be included in
thisguide. The steps are completely documented in Chapter 7 and 8 in the MQSeries Integrator “Using the
Control Center” Manual. The manual can be found at the following url:

http://www-3.ibm.com/software/tsmaseries/library/manual ssyfmanua s'magsiv202.html

6/28/02 80.1.4a 78

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

6 APPLICATION CONNECTIVITY (ADAPTERSAND BRIDGES)

The EAI application will be interfacing with several systems. The interfaces between EAI and other
systems may require special mechanisms called adapters and bridges.

An adapter or abridge is a piece of software that moves data between a message on a queue and an
application or environment. Adapters handle data inbound-to and outbound-from the application or
environment.

6.1 MQSeries Application Adapter

MQSeries provides a mechanism for assured delivery of messages, which can be sent even when the target
is disconnected. It can be used to distribute work around alarge number of disparate systemsin an
environment where trying to propagate transactional two-phase commit is not practical.

6.2 Adapter Classfications

6.2.1 Typeof Message

Adapters may be classified by the type of message that will be processed:

Request/Reply
Anincoming XML request message from the front-end is posted to the back-end. In response, the
adapter always synchronously routes the back-end results in the form of avalid XML document.

Fire& Forget
Anincoming XML request from the front-end is posted to the back-end and no responseis

required.

Notification
The adapter routes an incoming message from the back-end to the front-end in the form of avalid
XML message. This may be the reply to a message received.

All adapters written for FSA were of the Request/Reply type.

6.2.2 Interface Type

Adapters may be classified by interface type:
Java Object - Creates Java objects that corresponds to the XML message elements.
Host structure -

1. Convertsdatafrom valid XML vauesto valid host values. Uses tables for simple cases and
code for complex transformations.

2. Creates host objects that correspond to the host data structures and maps the values from the
XML abjects to the host abjects

XML Message — The input data and the output data are both in XML format. The adapter may
add the standard header and perform other functions, but does not need to transform the message

6/28/02 80.1.4a 79

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

6.3 MQSeries-CICS/ESA Bridge

The MQSeries-CICS/ESA Bridge enables an application, not running in a CICS environment, to run a
program or transaction on CICS/ESA and get a response back. This non-CICS application can be run from
any environment that has access to a MQSeries network that encompasses MQSeries for MVSESA.

A program is a CICS program that can be invoked using the EXEC CICS LINK command. It must
conform to the DPL subset of the CICS AP that is, it must not use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This transaction can use BMS or
TC commands. It can be conversational or part of a pseudo conversation. It is permitted to issue
syncpoints.

6.3.1 Using the CICS Bridge

Only FSA applications that use a CICS commarea to communicate can utilize the CICS Bridge; any
applications that use terminal I/0 CICS commands can use the CICS DPL Bridge.

The CICS Bridge allows an application to run asingle CICS program or a‘set’ of CICS programs (often
referred to as aunit of work). The adapter written for the CPS system utilizes the CICS Bridge. For more
information on the CPS adapter please reference the Technical Specification document. The CICS Bridge
works with the application that waits for a response to come back before it runs the next CICS program
(synchronous processing). It aso works with the application that requests one or more CICS programs to
run, but doesn't wait for a response (asynchronous processing).

The CICS Bridge aso allows an application to run a 3270-based CICS transaction, without knowledge of
the 3270 data stream. The CICS Bridge uses standard CICS and M QSeries security features. It can be
configured to authenticate, trust, or ignore the requestor's user ID.

With this flexibility, there are many instances where the CICS Bridge can be used. For example,

To write anew MQSeries application that needs access to logic or data (or both) that reside on
your CICS server.

Enabling a Lotus Notes application to run CICS programs.
To be able to access CICS applications from a M QSeries Java client application or aweb browser
using the MQSeries Internet gateway.

6.3.2 CICSBridge at Work

This section explains how the CICS Bridge works and the options available when deciding what level of
security to use.

With respect to system setup, note the following:
Ensure that the M QSeries-CICS adapter is enabled.
The CICS Bridge requires that both MQSeries and CICS are running in the same MV S image.

The MQSeries request queue must be local to the CICS Bridge, however the response queue can be
local or remote.

The CICS bridge tasks must run in the same CICS as the bridge monitor. The user programs can
be in the same or a different CICS system.

6/28/02 80.1.4a 80

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

6.4 Running CICSDPL programs

Data necessary to run the program is provided in the MQSeries message. The bridge builds a
COMMAREA from this data, and runs the program using EXEC CICS LINK.

The following shows the components and data flow to run a CICS DPL program.

MVS/ESA

MQSeries CICS/ESA
» cics
2 MQGET pridge
browse monitor
request
3.EXEC
CICS START
—
1.request
message w* \ " 4.MQGET g-llE{FSNK
i=] user
request CICS DPI program
el] bridge task
Request 1dg M 6 EXEC
queue H CIGS RETURN
response -

message ‘ $ T.MQPUT
response

Transmission
qusue

MQSeries
Server or
client

Figure 1 —CICS DPL Transaction

The following takes each step in turn, and explains what takes place:
1. A message, with areguest to run a CICS program, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a * start
unit of work’ message iswaiting (Correll[d=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS DPL Bridge task is started with the
appropriate authority.

The CICS DPL Bridge task removes the message from the regquest queue.

The CICS DPL Bridge task buildsa COMMAREA from the data in the message and issues an
EXEC CICSLINK for the program requested in the message.

6. The program returns the response in the COMMAREA used by the request.

7. The CICS DPL Bridge task reads the COMMAREA, creates a message, and puts it on the reply-to
gueue specified in the request message. All response messages (normal and error, requests and
replies) are put to the reply-to queue with default context.

8. The CICS DPL bridge task ends.

A unit of work can be just a single user program, or it can be multiple user programs. Thereisno limit to
the number of messages you can send to make up a unit of work.

6/28/02 80.1.4a 81

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

6.4.1 Running CICS 3270 transactions

Data necessary to run the transaction is provided in the MQSeries message. The CICS transaction runs as
if it hasareal 3270 terminal, but instead uses one or more M QSeries messages to communicate between
the CICS transaction and the MQSeries application. Unlike traditional 3270 emulators, the bridge does not
work by replacing the VTAM flows with M QSeries messages.

Instead, the message consists of a number of parts called vectors, each of which corresponds to an EXEC
CICSrequest. Therefore, the application is talking directly to the CICS transaction, rather than via an
emulator, using the actual data used by the transaction (known as application data structures or ADSs).

The following shows the components and data flows to run a CICS 3270 transaction.

MYSESA

MO CICSESA

CICS
2MOGET ki
browse el i
ragquash

JEXED
CICS
START

CICE
IZT0 bridge
1. Resquesi a5

meaesags vl - | smoeer
| e MO - CICE
F-FZ""# Hequest s o

queLe

ransaciion

Reaporas B

MEsss)e | *. T MGPUT
I |_|J_ PR

Trarsmisson
quiie

MO Saries
B OF
client

Figure 2 — CICS 3270 Transaction

The following takes each step in turn, and explains what takes place:
1. A message, with arequest to run a CICS transaction, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a ‘ start unit of
work’ message is waiting Correll[d=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS 3270 bridge task is started with the appropriate
authority.

4. The MQ-CICS bridge exit removes the message from the queue and changes task to run a user
transaction.

5. Vectorsin the message provide data to answer all terminal related input EXEC CICS requests in the
transaction.

6. Terminal related output EXEC CICS requests result in output vectors being built.

The MQ-CICS bridge exit builds all the output vectors into a single message and puts this on the reply-
to queue.

6/28/02 80.1.4a 82

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

8. The CICS 3270 bridge task ends.

A traditional CICS application usually consists of one or more transactions linked together as a pseudo
conversation. In generd, the 3270 terminal user entering data onto the screen and pressing an AID key
starts each transaction. This model of application can be emulated by a MQSeries application. A message
is built for the first transaction, containing information about the transaction, and input vectors. Thisis put
on the queue.

The reply message will consist of the output vectors, the name of the next transaction to be run, and a token
that is used to represent the pseudo conversation. The MQSeries application builds a new input message,
with the transaction name set to the next transaction and the facility token set to the value returned on the
previous message. Vectors for this second transaction are added to the message, and the message put on
the queue. This processis continued until the application ends.

An dternative approach to writing CICS applicationsis the conversational model. In this model, the
origina message might not contain all the datato run the transaction. If the transaction issues a request
that cannot be answered by any of the vectors in the message, a message is put onto the reply-to queue
requesting more data. The MQSeries application gets this message and puts a new message back to the
gueue with a vector to satisfy the request.

6/28/02 80.1.4a 83

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

7 APPLICATION INTEGRATION EXAMPLES

This section contains representative examples of interfaces using each of the EAl middleware products
thereby providing guidance on integrating FSA applications with the EAl Core Architecture.

7.1 Datalntegrator Example
Post-Secondary Education Participants System (PEPS)

PEPS sends afile to eCB (eCampus Based) and COD (Common Origination and Disbursement) using the
Data Integrator product via the EAI Bus.

The following steps were used to accomplish this:

| Name Description Object Type

1 | Install Software Install MQSeries and Data Integrator softwareon | System Software
the trading partner systems (PEPS, eCB, COD).

2 | Configure Directory | Configure a directory monitor process on PEPS. Script File
Monitor The directory monitor process (delivered with the
Data Integrator software) polls a directory looking
for the existence of a new file matching certain
naming convention criteria.

3 | DataIntegrator When thefileisfound, afile transfer request is File
submitted and the file is moved from PEPS to the
EAIl Bus. Filesthat are moved via Data Integrator
are dways compressed and delivered once and
only once. Partia files are never sent to the target
system. Data lntegrator ensures that only
complete files are written out.

4 | Java Adapter Once thefile arrives on the EAI Bus, an adapter is
triggered. Data Integrator alows “exit” points at
different stagesin the file transfer. A process can
be run before thefileis sent, or after thefileis
received at the target system. A Java adapter is
triggered after the PEPS file is delivered to the Bus
to extract all the delta records.

6/28/02 80.1.4a 84

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

| Name Description Object Type

5 | DataIntegrator After the deltarecords are written out to a separate
file, another file transfer request is made and the
fileissent to COD. The Data Integrator exit
points also alow the same file to be delivered to
multiple locations. For instance, after the PEPS
fileisreceived on the EAI Bus, but before the Java
adapter is called, the fileis sent to eCB, another
Trading Partner.

6 | Datalntegrator Status | Status messages are returned to the sending Data Integrator
system, so it will get confirmation that the file
transfer was successful.

7.2 MQSeriesIntegrator Example

When eCB has a UTCL fileto send to FMS, eCB places the file in a directory that Data Integrator
monitors. Data Integrator transfers the file to the EAI Bus via MQSeries. At the EAI Bus, the
file is fed into an MQSI message flow as a single message. The message flow performs the
following action on the UTCL file:

a. Performs any necessary FMS validations and transformation.
. Creates an SQL statement to place the message in the appropriate table.
c. Places the SQL statement on MQSeries queues bound for the FMS MQSeries
gueue manager.

The EAI Bus delivers the message to an MQSeries queue, for the FMS-MQSeries Adapter, on
the FMS System. The FMS-MQSeries Adapter, triggered by the MQSeries Trigger Monitor,
retrieves the message from the MQSeries queue and executes the SQL statement contained
therein against the FMS database.

ie || INEITS Description Object Type

1| eCB eCB Application system creates afile. File

2 | DataIntegrator Data Integrator places the file on a queue which MQSeries Message
transfersit to the EAl Bus viaMQSeries.

3 | MQSI Broker eCB UTCL fileis now amessage that is MQSI Message Flow
transformed into multiple SQL statements. First
validations required by FMS are performed.
Next the appropriate SQL statement are created

6/28/02 80.1.4a 85

US DEPARTMENT OF EDUCATION

FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Description

Object Type

and passed to MQSeries.

4 | MQSeries Queue

Message is sent to FMS via MQSeries.

MQSeries Message

FMS-MQSeries
Adapter

The FMS-MQSeries Adapter executes the SQL
Statement contained in the MQSeries Message
against the FM S database. All insert SQL
statements are performed in a single transaction.
This adapter is the same adapter used for the
COD-FMS interface.

SQL Statement

6 | FMSTables

Once the FMS-M QSeries adapter has placed the
detail records from the UTCL fileinto the
appropriate table, it is available for processing by
FMS.

Database Entry

7 | FMS Application

FMS Application retrieves the data from the table
and processesiit.

Database Entry

7.3 Adapter Example

Messages are transferred from COD to FMS viaMQSeries. The messages are put onto the queue on the
COD side by an adapter. On the FM S system messages are retrieved from the queue by an adapter and
written to an FM S database. These two adapters were written in Java and interface to MQSeries via AMI.
Error handling has been built into both adapters.

ie || INEITS Description
1| COD The COD system
2 | COD MQ Adapter A shared library that puts messages on the queue and handles errors.
3 | MQ Series The MQ Series transport mechanism.
4 | FMS MQ Adapter A utility for pulling messages off the queue, posting the message to the FM S data
transition table, and
handling errors.
5| FMS The Financial Management System

6/28/02

80.1.4a

86

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

8 REUSEABLE EAI FUNCTIONS

Reusable EAI functions described in the following section are application services that can be utilized by
applications integrated with the EAI Core Architecture. Additional reusable functions will be included as
they are developed and deployed in future EAI Core Architecture efforts.

8.1 EAI Common Log Function

The following outlines design and implementation information required to utilize the EAl Common Log
Function.

8.1.1 Interface Design Specification

I nterface Name: EAl Common Log Function

Interface Type: Uni-Directional

This interface enables applications to record events to the local and

Interface Short Description: .
. centralized logs.

Source Application: Any

Destination Application: Local and centralized logs.

Functional Requirement References: Message L ogging
Related I nterface Control Document: N/A
Related Unit Test Document: TBD

N/A

Other Related Interfaces:

8.1.2 Interface Overview

Flow Diagram:
—
S
Centralized
Log
S .
Log function (4)
Application (2)
(1)
— -

sS—
(5)

6/28/02 80.1.4a 87

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

| Name Description

1 | Application The source application

2 | Log Function A library function that sends the log entry to the centralized and/or local logs.
3 | MQ Series The MQ Series transport mechanism.

4 | Centralized Log The centralized log repository.

5 | Local Log Thelocal logfile.

8.1.2.1 Detailed Technical Overview

An application (1) generates an event that it needsto record. The application will call the log function
(2) according to the specified function signature. The log function creates a message. It then sends the
message via MQ Series (3) to the Centralized Log (4). The log function also records the event on the
local log (5).

8.1.2.2 Background EAI Logging Objectives

The*logging” framework will help standardize and simplify exception handling for FSA’s application
teams. The standardized exception handling will also help reduce the possibility of uncaught exception
scenarios.

An exception is a code or language construct that indicates when an unusual or unexpected error condition
occurs in an application. Examples of exceptions are hardware, network, 1/0, or memory problems. If an
exception is “handled” in code, it can be dealt with gracefully and will not necessarily have to cause
program termination. Exception handling provides a mechanism for writing robust, resilient code that is
capable of dealing with the unexpected.

In addition to exception logging, the following categories were reviewed for consideration:
Performance Logging

Capture Service Level Agreement Metrics

Provide information for system tuning

Exception Logging

Provide clarity asto where the problem has occurred

Debugging/Tracing

Aid developers in development and testing

Score Card Logging

© © N o g &~ NP

Provide overal transaction status; i.efile X was transferred from server A to server B
10. Alert Logging
11. Provide a mechanism to aert operations of a problem

Empirically it can be observed that information required when satisfying the varied logging requirements
overlap. For example information required to “Alert” operations of a problem will also aide in “Problem
Identification”.

6/28/02 80.1.4a 88

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

8.1.2.3 Logging Thresholds Provided via EAl Logging facility

Each message logged within the framework has a severity. A masking of this value determines whether the
Logger alows the message to continue to the destination.

The severities alowed within a message are:
Debug Logging
- These are debugging messages usudly placed by the programmers for the tracing and debugging
purposes.

Informational Logging
- Theseare ussful informationa messages about what is occurring.

Score Card Logging

- Providesan overdl gatus of the interface request; for example adatagram message that originates from
NSLDS and terminates et COD would produce logging records for use as an audit mechanism (This
featureis not currently implemented).

Warning Logging
- These messages warn that something abnormal has happened, but that the system will attempt to
recover fromit. These messages are usudly used by programmers to show that something is starting to
Qo wrong.

Error Logging

- These messages dtate that something abnormal has occurred, but that it is not severe enough to cause
the sysemtofail in general. A specific task may fail and some users may get an error, but the system
will keep going. Exceptions are generdly logged at thislevd.

- Forexample, if aLoggers mask is st to INFO, then any message that comes in with a severity thet is
below INFO will be sent on to the dedtination. A message that has severity DEBUG will beignored.
With thisLog Mask, al info, warning, error, and fatal messages will show up at the destination.

DEBUG 7
Log Mask > INFO ?
SCORE CARD ?
WARNING {
ERROR v

6/28/02 80.1.4a 89

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

8.1.2.4 Configuration Parameters

The following configuration parameters are required for message logging.

Description

Variable

Example

Environment Variable identifying
location of configuration file and
name of configuration file

EAILOG_PATH

C:\somedirectory\eailog\eail og.ini

Logging Threshold

LOGGING_THRESHOLD

0 (Debug)

Log file path name

LOGGING_PATH_NAME

C:\somedirectory\eailog\
eailog.yyyymmdd.txt

Remote queue

LOGGING REMOTE_QUEUE

EAI.LOG

8.1.25 Component Model

The following function calls form the public interface of the Error logging subcomponent. These public
interfaces will be published on the following platforms:

- Solaris
- HP-UX
- 0S/390
- OpenVMS (no AMI)

1. For AMI enabled platforms, logging will be invoked via AMI’s “Policy Handler Interface”. “Policy
Handler” eliminates the need for EAI BUS developers to invoke the logging facility for interactions that
utilize MQSeries resources. “Policy Handler Post Transport Request Invocations’ will be utilized to

execute the logging mechanism.
Post-transport requests:
Post-MQBACK
Post-MQBEGIN
Post-MQCL OSE
Post-MQCMIT
Post-MQCONN
Post-MQCONNX
Post-MQDISC
Post-MQGET

6/28/02

80.1.4a

90

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Post-MQINQ
Post-MQOPEN
Post-MQPUT
Post-MQPUT1
Post-MQSET.

2. C/C++ function interface:

long EAILog(
long [Severity,

char *msgCode,

char *msgText,

char *interfaceid);

3. A Javainterface (INI).
public class EAIMSGLOG {

public native int eaiLog(long severity,

String msgCode,
String msgText,

String interfaceid);

package gov.ed.eailog;

8.1.3 Desgn Assumptions

| ASSUMPTIONS

1 The application is expected to call the log function whenever an event needs to be logged. At aminimum,
informational logging will occur post-transport request.

2 The application is expected to call the log function according to the specified function signature.

3 Each application using this AP is expected to install and configure MQ Series v5.2 (OpenVMS excluded).

4 EAI BUSFile Transfer product includes alogging mechanism.

5 MQSeries 5.2 is not supported on OpenVMS, therefore al logging must be coded by the devel oper

6 | Applications must use this mechanism within EAl adapters; at a minimum thiswill be called at the start and
end of a adapter

/ All servers must have a C/C++ compiler

8

A COTS mgseries monitoring tool will be utilized

6/28/02 80.1.4a 91

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

8.1.4 Desgn Dependencies

| DEPENDENCIES

1

MQSeries 5.2

2

AMI Support Pack

8.1.5 Detaled Technica Design

Component Name: EAl Common Log Function
Related Interface Control Document: N/A
Technical Design Description: Applications will call the EAI Common Log Function according to the

previoudly specified function signature:

Field Descriptions:

Message logging outpuit file description:

Description

Informationa
Logging

Exception Logging

Score Card Logging

Verson

the version of the
EAILogStruct
definition being
used; currently

1

Severity

the severity of the
message being
logged; valid
vaues are;

00 — Debug

04 — Score Card
08 - Informational
12 —warning

16 —error

msgCode

afreeform field for
error codes;
typicaly a
MQSeries error
code

blank

MQRC=9999

MQRC=9999

MsgText

afreeform field for
the error
description;

function/method
name for
informational

messages

MQRC_XXX_XXX_XXX

MQRC_XXX_XXX_XXX

6/28/02

80.1.4a

92

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

interfaceld interface control Interface Control | Interface Control Id Interface Control 1d
document Id
instance occurrence of a Hash value Hash value Hash Value
transaction
System hostname of the Hostname Hostname Hostname
system generating
the error
programid Program id Program _id Program id Program id
ReturnCode specifies the status

of the function
upon completion;
valid values are;

0 — success

1—unabletolog
message

Message logging functions generate a file delimited as follows:

<Verson> <hosthame> <program_name> <Instance> <date time> <severity> <interface id>
<message text> <return code>

Error Handling:

Reporting/Communication

| Type Method Message

1 Error — continue processing | Return code Unable to locate EAILOG environment
variable.

2 Error — continue processing | Return code Unable to send message to centralized log.

3 Error — continue processing | Return code Unable to read control record information.

4 Error — continue processing | Return code Unable to write to local log.

6/28/02

80.1.4a

93

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

9 COMMITTING AND BACKING OUT UNITSOF WORK

This section describes how to commit and back out any recoverable get and put operations that have
occurred in a unit of work. The following terms, described below, are used in this section:

Commit

Back out

Syncpoint coordination

Syncpoint

Unit of work

Single-phase commit

Two-phase commit

9.1 Committing and Backing Out

When a program puts a message on a queue within a unit of work, that message is made visible to other
programs only when the program commits the unit of work. To commit a unit of work, al updates must be
successful to preserve data integrity. If the program detects an error and decides that the put operation
should not be made permanent, it can back out the unit of work. When a program performs a back out,
MQSeries restores the queue by removing the messages that were put on the queue by that unit of work.
The way in which the program performs the commit and back out operations depends on the environment in
which the program is running.

When a program gets a message from a queue within a unit of work, that message remains on the queue
until the program commits the unit of work, but the message is not available to be retrieved by other
programs. The message is permanently deleted from the queue when the program commits the unit of work.
If the program backs out the unit of work, MQSeries restores the queue by making the messages available
to be retrieved by other programs. Changes to queue attributes (either by the MQSET call or by
commands) are not affected by the committing or backing out of units of work.

9.2 Syncpoint Coordination, Syncpoint, Unit of Work

Syncpoint coordination is the process by which units of work are either committed or backed out with data
integrity. The decision to commit or back out the changes is taken, in the smplest case, at the end of a
transaction. However, it can be more useful for an application to synchronize data changes at other logical
points within a transaction. These logical points are called syncpoints (or synchronization points) and the
period of processing a set of updates between two syncpointsis called a unit of work. Several MQGET
calsand MQPUT calls can be part of a single unit of work. The maximum number of messages within a
unit of work can be controlled by the DEFINE MAXSMSGS command on OS/390, or by the
MAXUMSGS attribute of the ALTER QMGR command on other platforms. See the MQSeries Command
Reference book for details of these commands.

9.3 Syncpoint Guidelines

A MQSeries application can specify on every put and get call whether the call isto be under syncpoint
control. To make a put operation operate under syncpoint control, use the MQPMO_SYNCPOINT value
inthe Options field of the MQPMO structure when calling MQPUT. For a get operation, use the

6/28/02 80.1.4a 94

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

MQGMO_SYNCPOINT value in the Options field of the MQGMO structure. If not explicitly choosing an
option, the default action depends on the platform. The syncpoint control default on OS/390 and Tandem
NSK is‘yes’; for all other platforms, itis‘no’.

If aprogram issues the MQDISC call while uncommitted requests exist, an implicit syncpoint occurs,
except on OS/390 batch with RRS. If the program ends abnormally, an implicit backout occurs. On
0S/390, an implicit syncpoint occurs if the program ends normally without first calling MQDISC.

For MQSeries for OS390 programs, use the MQGMO_MARK_SKIP_BACKOUT option to specify that
amessage should not be backed out if backout occurs (in order to avoid an ‘MQGET -error-backout’ loop).

9.3.1 Syncpointsin MQSeries for Windows NT, MQSeries on UNIX systems

Syncpoint support operates on two types of units of work: local and global. A local unit of work isonein
which the only resources updated are those of the MQSeries queue manager. Here syncpoint coordination is
provided by the queue manager itself using a single-phase commit procedure.

A global unit of work is one in which resources bel onging to other resource managers, such as databases,
are aso updated. MQSeries can coordinate such units of work itself or the units of work can also be
coordinated by an external commitment controller such as another transaction manager.

For full integrity, a two-phase commit procedure must be used. Two-phase commit can be provided by XA-
compliant transaction managers and databases such as IBM’s TX Series and UDB. MQSeries Version 5
products (except MQSeries for OS/390) can coordinate global units of work using a two-phase commit
process.

9.3.2 Local units of work

Units of work that involve only the queue manager are called local units of work. Syncpoint coordination
is provided by the queue manager itself (internal coordination) using a single-phase commit process. To
start alocal unit of work, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the
appropriate syncpoint option. The unit of work is committed usng MQCMIT or rolled back using
MQBACK. However, the unit of work aso ends when the connection between the application and the
gueue manager is broken, whether intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a unit of work is still active, the unit
of work is committed. If, however, the application terminates without disconnecting, the unit of work is
rolled back as the application is deemed to have terminated abnormally.

9.3.3 Global units of work

Use global units of work when needing to include updates to resources belonging to other resource
managers. Here the coordination may be internal or external to the queue manager:

9.3.4 Internal syncpoint coordination

Queue manager coordination of global units of work is supported only on MQSeries Version 5 products
except for MQSeries for OS/390. It is not supported in a MQSeries client environment. Here, the
coordination is performed by MQSeries. To start agloba unit of work, the application issues the
MQBEGIN call.

6/28/02 80.1.4a 95

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Asinput to the MQBEGIN call, supply the connection handle (Hconn), which is returned by the
MQCONN or MQCONNX call. This handle represents the connection to the MQSeries queue manager.

Again, the application issues MQGET, MQPUT, or MQPUT1 requests specifying the appropriate
syncpoint option. This means that MQBEGIN can be used to initiate a global unit of work that updates
local resources, resources belonging to other resource managers, or both. Updates made to resources
belonging to other resource managers are made using the API of that resource manager. However, it is not
possible to use the MQI to update queues that belong to other queue managers. MQCMIT or MQBACK
must be issued before starting further units of

work (local or glabal).

The globa unit of work is committed using MQCMIT; thisinitiates a two-phase commit of all the resource
managers involved in the unit of work. A two-phase commit process is used whereby resource managers
(for example, XA-compliant database managers such as DB2, Oracle, and Sybase) are firstly al asked to
prepare to commit. If any resource manager signals that it cannot commit, each is asked to back out
instead. Alternatively, MQBACK can be used to roll back the updates of al the resource managers.

If an application disconnects (MQDISC) while aglobal unit of work is still active, the unit of work is
committed. If, however, the application terminates without disconnecting, the unit of work isrolled back as
the application is deemed to have terminated abnormally. The output from MQBEGIN is a completion code
and a reason code. When MQBEGIN is used to start a global unit of work, all the external resource
managers that have been configured with the queue manager are included. If there are no participating
resource managers (that is, no resource managers have been configured with the queue manager) or one or
more resource managers are not available, the call starts a unit of work and completes with a warning.

In these cases, the unit of work should include updates to only those resource managers that were available
when the unit of work was started. 1f one of the resource managers is unable to commit its updates, al of
the resource managers are instructed to roll back their updates, and MQCMIT completes with a warning.
In unusual circumstances (typically, operator intervention), aMQCMIT call may fail if some resource
managers commit their updates but others roll them back; the work is deemed to have completed with a
‘mixed’ outcome. Such occurrences are diagnosed in the error log of the queue manager so remedial action
may be taken. A MQCMIT of aglobal unit of work succeedsif al of the resource managers involved
commit their updates. For a description of the MQBEGIN call, see the MQSeries Application
Programming Reference manual.

9.3.5 Externa syncpoint coordination

External syncpoint coordination occurs when a syncpoint coordinator other than MQSeries (e.g. CICS,
Encina, and Tuxedo) has been selected. MQSeries on a UNIX system or MQSeries for Windows NT will
register its interest in the outcome of the unit of work, with the syncpoint coordinator. This happensin
order to commit or roll back any uncommitted get or put operations as required. The external syncpoint
coordinator determines whether one- or two-phase commitment protocols are provided. When an external
coordinator isused MQCMIT, MQBACK, and MQBEGIN may not be issued. Callsto these functions
fail with the reason code MQRC_ENVIRONMENT_ERROR. The way in which an externally coordinated
unit of work is started is dependent on the programming interface provided by the syncpoint coordinator.
An explicit call may, or may not, be required. If an explicit call isrequired, and the MQPUT call
specifying the MQPMO_SYNCPOINT option is specified when a unit of work is not started, the
completion code MQRC_SYNCPOINT_NOT_AVAILABLE isreturned.

6/28/02 80.1.4a 96

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

The syncpoint coordinator determines the scope of the unit of work. The state of the connection between the
application and the queue manager affects the success or failure of MQI calls that an application issues,

not the state of the unit of work. It is, for example, possible for an application to disconnect and reconnect
to a queue manager during an active unit of work and perform further MQGET and MQPUT operations
insde the same unit of work. Thisis known as a pending disconnect.

9.3.6 Interfacesto external syncpoint managers

MQSeries on UNIX systems and MQSeries for Windows NT support coordination of transactions by
external syncpoint managers which utilize the X/Open XA interface. This support is available only on
server configurations. The interface is not available to client applications.

Some XA transaction managers (not CICS on Open Systems or Encina) require that each XA resource
manager supply its name. Thisisthe string called name in the XA switch structure. The resource manager
for MQSeries on UNIX systemsis named “MQSeries XA_RMI”. For further details on XA interfaces
refer to XA documentation CAE Specification Distributed Transaction Processing: The XA Specification,
published by The Open Group.

In an XA configuration, MQSeries on UNIX systems and MQSeries for Windows NT fulfill the role of an
XA Resource Manager. An XA syncpoint coordinator can manage a set of XA Resource Managers, and
synchronize the commit or backout of transactions in both Resource Managers.

For a statically-registered resource manager:
1. An application notifies the syncpoint coordinator that it wishesto start a transaction.

2. The syncpoint coordinator issues a call to any resource managers that it knows of, to notify them
of the current transaction.

3. Theapplication issues calls to update the resources managed by the resource managers associated
with the current transaction.

4. The application requests that the syncpoint coordinator either commits or rolls back the
transaction.

5. The syncpoint coordinator issues calls to each resource manager using two-phase commit protocols
to complete the transaction as requested. The XA specification requires each Resource Manager to
provide a structure called an XA Switch. This structure declares the capabilities of the Resource
Manager, and the functions that are to be called by the syncpoint coordinator.

There are two versions of this structure;

MQRMIXASwitch
Static XA resource management

MQRMIXASwitchDynamic
Dynamic XA resource management

The structure is found in the following libraries:
mgmxa.lib

6/28/02 80.1.4a 97

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Windows NT XA library for Static resource management

mgmenc.lib

Sun Solaris and Windows NT Encina XA library for Dynamic resource management

libmgmxa.a

UNIX systems XA library (non-threaded) for both Static and Dynamic

resource management

libmgmxa_r.a

UNIX systems (except Sun Solaris) XA library (threaded) for both Static and Dynamic resource
management. The method that must be used to link them to an XA syncpoint coordinator is defined by the
coordinator. Also, consult the documentation provided by that coordinator to determine how to enable
MQSeries to cooperate with the XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint coordinator should be the name
of the queue manager that isto be administered. This takes the same form as the queue manager name
passed to MQCONN or MQCONNX, and may be blank if the default queue manager isto be used.

9.4 MQSeries Syncpoint Callsfor OS/390

MQSeries for OS/390 provides the MQCMIT and MQBACK calls. Use these callsin OS/390 batch
programsto tell the queue manager that all the MQGET and MQPUT operations since the last syncpoint
are to be made permanent (committed) or are to be backed out. To commit and back out changesin other
environments:

CICS use commands such as EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK.

IMS use the IMS syncpoint facilities, such as the GU (get unique) to the IOPCB,
CHKP (checkpoint), and ROLB (rollback) calls.

RRS use MQCMIT and MQBACK or SRRCMIT and SRRBACK as appropriate.

Note: SRRCMIT and SRRBACK are ‘native’ RRS commands, and are not
MQI calls.

For backward compatibility, the CSQBCMT and CSQBBAK calls are available as synonyms for
MQCMIT and MQBACK. These are described fully in the MQSeries Application Programming
Reference manual .

9.5 MQSeries Syncpoint Callson Windows NT and UNIX systems
The following products provide the MQCMIT and MOQBACK calls:
MQSeries for Windows NT
MQSeries on UNIX systems

Use syncpoint callsin programsto tell the queue manager that all the MQGET and MQPUT operations
since the last syncpoint are to be made permanent (committed) or are to be backed out. To commit and

6/28/02 80.1.4a 98

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

back out changes in the CICS environment, use commands such as EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK.

9.6 Single-phase Commit

A single-phase commit process is one in which a program can commit updates to a queue without
coordinating its changes with other resource managers.

9.7 Two-phase Commit

A two-phase commit processis one in which updates that a program has made to M QSeries queues can be
coordinated with updates to other resources (for example, databases under the control of DB2). Under such
aprocess, updatesto all resources are committed or backed out together. To help handle units of work,
MQSeries provides the BackoutCount attribute. Thisis incremented each time a message, within a unit of
work, is backed out. If the message repeatedly causes the unit of work to abend, the value of the
BackoutCount finally exceeds that of the BackoutThreshold. Thisvalueis set when the queue is defined.
In this situation, the application can choose to remove the message from the unit of work and put it onto
another queue, as defined in BackoutRequeueQName . When the message is moved, the unit of work can
commit.

Transaction managers (such as CICS, IMS, Encina, and Tuxedo) can participate in two-phase commit,
coordinated with other recoverable resources. This means that the queuing functions provided by MQSeries
can be brought within the scope of a unit of work, managed by the transaction manager.

6/28/02 80.1.4a 99

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

10 APPENDIX A: REFERENCE M ATERIAL

For more information on the software and hardware prerequisites for the OS/390, please refer to the
“MQSeries for 05390 v5.2 Program Directory” and the “MQSeries for OS/390 v5.2 Concepts and
Planning Guide’ books on the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manual s&/

For more information on WebSphere Application Server prerequisites, please refer to the “MQSeries for
Windows NT and 2000 Quick Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/tsmaseried/library/manual sa/

For more information on EAI BUS prerequisites, please refer to the “MQSeries for Windows NT and 2000
Quick Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manual s&/

For more information on DL SS prerequisites, please refer to the “MQSeries for Compag (DIGITAL)
OpenVMS System Management” book on the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manual s&/

For more information on PEPS prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manual s/

For more information on BTrade prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manual sa.

For more information on how to customize M QSeries objects for application specific requirements, please
refer to the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manual s/

For more information on MQSeries application error handling, event monitoring and MQS! error handling,
please refer to the following books:

“MQSeries Application Programming Reference”

“MQSeries Event Monitoring”

“MQSeries Integrator Introduction and Planning”

on the IBM website: http://www-4.ibm.com/software/ts'mgseries/library/manual sa/

6/28/02 80.1.4a 100

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

For more information on managing clusters and developing a custom cluster workload exit, please refer to
the “MQSeries Queue Manager Clusters’ book on the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manuals

For more information on the MQSeries Integrator Control Center and the M QSeries commands and control
commands, please refer to the following books:

“MQSeries Integrator Using the Control Center”

“MQSeries MQSC Command Reference’

“MQSeries Systems Administration”

“MQSeries for Compaq (DIGITAL) OpenVMS System Management”

“MQSeries for 05390 System Administration Guide”

on the IBM website: http://www-4.ibm.com/software/ts'mgseries/library/manual sa/

For more information on the MQSI configuration manger, please refer to the “MQSeries Integrator Using
the Control Center” book on the IBM website:
http://www-4.ibm.com/software/tsmgseries/library/manual s/

MQSeries Application Programming Guide can be found at:
http://www-4.ibm.com/software/ts/mqseried/library/manualsa/ - Latest family books

MQSeries Application Programming Reference can be found at:
http://www-4.ibm.com/software/ts/mqseried/library/manualsa/ - Latest family books

MQSeries Application Messaging Interface manual can be found at:
http://www-4.ibm.com/software/ts/mqseried/library/manualsa/ - Latest family books

MQSeries Using C++ manual can be found at:
http://www-4.ibm.com/software/ts/magseries/library/manualsa/ - Latest family books

MQSeries Using Java manual can be found at:
http://www-4.ibm.com/software/ts'mgseried/|library/manualsa/ - Latest family books

6/28/02 80.1.4a 101

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

11 APPENDIX B: GLOSSARY

A

ACS
Affiliated Computer Systems. The company that manages the DL SS system located in Rockville, MD.

activelog
See recovery log.

AlIS
Application Information Services

adapter
An adapter is an attachment facility (program) that enables applications to access MQSeries services.
More specifically an adapter is used to isolate an application implementing an interface which manages
format conversions and application specific behavior.

alias queue object
A MQSeries abject, the name of which is an alias for a base queue defined to the local queue manager.
When an application or a queue manager uses an dias queue, the alias name is resolved and the
requested operation is performed on the associated base queue.

alternate user security
A security feature in which the authority of one user 1D can be used by another user ID; for example,
to open a MQSeries object.

AMI
Application Message Interface. An MQSeries term.

API
Application Programming I nterface.

archivelog
Seerecovery log.

asynchronous messaging
A method of communication between programs in which programs place messages on message queues.

With asynchronous messaging, the sending program proceeds with its own processing without waiting
for areply to its message. Contrast with synchronous messaging.

authorization service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a service
that provides authority checking of commands and MQI calls for the user identifier associated with the
command or call.

B
BLOB
An MQSI message domain where al unstructured messages are contained.

bootstrap data set (BSDS)
A VSAM data set that contains:

6/28/02 80.1.4a 102

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

An inventory of al active and archived log data sets known to MQSeries for OS/390
A wrap-around inventory of all recent MQSeries for OS/390 activity
The BSDS isrequired if the MQSeries for OS390 subsystem has to be restarted.

browse
In message queuing, to use the MQGET call to copy a message without removing it from the queue.
See also get.

browse cursor
In message queuing, an indicator used when browsing a queue to identify the message that is next in
sequence.

BSDS
Bootstrap data set.

bTrade
A 3 party vendor to FSA that provides a product to send files across the internet and allows the data
to be compressed and encrypted.

C

CCF
Custom Connector Framework

channel
See message channel.

channd definition file (CDF)
In MQSeries, afile containing communication channel definitions that associate transmission queues
with communication links.

channel event
An event indicating that a channel instance has become available or unavailable. Channel events are
generated on the queue managers at both ends of the channel.

checkpoint
A time when significant information is written on the log. Contrast with syncpoint. In MQSeries on
UNIX systems, the point in time when a data record described in the log is the same as the data record
in the queue. Checkpoints are generated automatically and are used during the system restart process.

circular logging
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping all restart datain aring of log files. Logging fills the first file in the ring and then
moves on to the next, until al the files are full. At this point, logging goes back to the first file in the
ring and starts again, if the space has been freed or is no longer needed. Circular logging is used during
restart recovery, using the log to roll back transactions that were in progress when the system stopped.
Contrast with linear logging.

CIsC
Customer Information Control System. A subsystem of the OS/390 computing platform.

client
A run-time component that provides access to queuing services on a server for local user applications.

6/28/02 80.1.4a 103

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

The queues used by the applications reside on the server. See a'so MQSeries client.

client application
An application, running on aworkstation and linked to a client, that gives the application accessto
gueuing Sservices on a servey.

cluster
A network of queue managers that are logically associated in some way.

CPS
Central Processing System.
COD

Common Origination and Distribution System.

command
In MQSeries, an administration instruction that can be carried out by the queue manager.

command server
The MQSeries component that reads commands from the system-command input queue, verifies them,
and passes valid commands to the command processor.

connect
To provide a queue manager connection handle, which an application uses on subsequent MQI calls.
The connection is made either by the MQCONN call, or automatically by the MQOPEN call.

context
Information about the origin of a message.

context security
In MQSeries, amethod of alowing security to be handled such that messages are obliged to carry
details of their origins in the message descriptor.

control command
In MQSeries on UNIX systems, MQSeries for OS2 Warp, and MQSeries for Windows NT, a
command that can be entered interactively from the operating system command line. Such a command
requires only that the MQSeries product be installed; it does not require a special utility or program to
runit.

COTS
Custom Off The Shelf. Usually used in reference to software.

CsC
Computer Sciences Corporation. Company which hosts and manages the systems located in Meriden,
CT.

CWF
Custom Wire Format

D
data bag
In the MQAI, abag that allows you to handle properties (or parameters) of objects.

data conversion interface (DCI)
The MQSeries interface to which customer- or vendor-written programs that convert application data

6/28/02 80.1.4a 104

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

between different machine encodings and CCSIDs must conform. A part of the MQSeries Framework.

DB2
A relational database marketed by IBM. Also known as UDB or Universal Database.

DCI
Data conversion interface.

dead-letter queue (DLQ)
A gueue to which a queue manager or application sends messages that it cannot deliver to their correct
destination.

dead-letter queue handler
A MQSeries-supplied utility that monitors a dead-l etter queue (DL Q) and processes messages on the
gueue in accordance with a user-written rules table.

DHCP
Dynamic Host Configuration Protocol

DI
Data Integrator. Product used for file transfer utilizing M QSeries as the message transport.

distributed queue management (DQM)
In message queuing, the setup and control of message channels to queue managers on other systems.

DLSS
Direct Loan Servicing System.

DMZ
Demilitarized Zone

DPL
Distributed Program Load

DTD
Document Type Definition —an MQSI component.

DLQ
Dead-letter queue.

dual logging
A method of recording MQSeries for OS/390 activity, where each change is recorded on two data sets,
so that if arestart is necessary and one data set is unreadable, the other can be used. Contrast with
single logging.

dynamic queue
A local queue created when a program opens a model queue object. See also permanent dynamic queue
and temporary dynamic queue.

6/28/02 80.1.4a 105

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

E
EAI
Enterprise Application Integration

ECB
ECampus Based System

EID - Enterprise Integration Domain

One of five domains within |AFeB developed to provide an enterprise-wide scalable framework that
allows multiple front-end applications (such as web and call centers) to inter-operate with back-end
applications (such as policy administration and claims systems) in an effective and efficient manner.

EJB
Enterprise Java Bean

ESQL
Extended Structured Query Language

event data
In an event message, the part of the message data that contains information about the event (such asthe
queue manager name, and the application that gave rise to the event). See aso event header.

event message
Contains information (such as the category of event, the name of the application that caused the event,
and queue manager statistics) relating to the origin of an instrumentation event in a network of
MQSeries systems.

event queue
The queue onto which the queue manager puts an event message after it detects an event. Each
category of event (Queue manager, performance, or channel event) has its own event queue.

F
FIFO
First In First Out

FMS
Financial Management System

Framework
In MQSeries, acollection of programming interfaces that allow customers or vendors to write
programs that extend or replace certain functions provided in MQSeries products. The interfaces are:
MQSeries data conversion interface (DCI)
M QSeries message channel interface (MClI)
MQSeries name service interface (NSI)
MQSeries security enabling interface (SEI)
MQSeries trigger monitor interface (TMI)
FSA

Federal Student Aid

6/28/02 80.1.4a 106

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

G
get
In message queuing, to use the MQGET call to remove a message from a queue. See also browse.

H

HACMP
High Availability Cluster Multi-Processing - IBM's high availahility offering for AlIX platformsto
provide dynamic fail-over within a cluster of separate AlX systems.

I
IAA
Insurance Application Architecture. Insurance business object model.

IAFeB
Insurance architecture for e-business. Framework of common insurance specific functionality built on
top MQSeries and MQSeries Integrator. Used by insurance companies to build eBusiness/integration
systems.

IBM
International Business Machines

in-doubt unit of recovery
In MQSeries, the status of a unit of recovery for which a syncpoint has been requested but not yet
confirmed.

initiation queue
A local queue on which the queue manager puts trigger messages.

installable services
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, additional
functiondity provided as independent components. The installation of each component is optional: in-

house or third-party components can be used instead. See also authorization service, name service,
and user identifier service.

instrumentation event
A facility that can be used to monitor the operation of queue managersin a network of MQSeries
systems. MQSeries provides instrumentation events for monitoring queue manager resource definitions,
performance conditions, and channel conditions. Instrumentation events can be used by a user-written
reporting mechanism in an administration application that displays the events to a system operator.

ITA
Integrated Technical Architecture

J
IMS
Java Messaging Service

L
LDAP
Lightweight directory access protocol.

linear logging

6/28/02 80.1.4a 107

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping restart data in a sequence of files. New files are added to the sequence as necessary.
The space in which the datais written is not reused until the queue manager is restarted. Contrast with
circular logging.

listener
In MQSeries distributed queuing, a program that monitors for incoming network connections.

local definition
A MQSeries object belonging to alocal queue manager.

local definition of aremote queue
A MQSeries abject belonging to aloca queue manager. This object defines the attributes of a queue
that is owned by another queue manager. In addition, it is used for queue-manager aliasing and reply-
to-queue aliasing.

local queue
A queue that belongs to the local queue manager. A local queue can contain alist of messages waiting
to be processed. Contrast with remote queue.

local queue manager
The queue manager to which a program is connected and that provides message queuing services to the
program. Queue managers to which a program is not connected are called remote queue managers,
even if the queue managers are running on the same system as the program.

log
In MQSeries, afile recording the work done by queue managers while the queue managers receive,
transmit, and deliver messages. The log fileis used to recover in the event of failure.

log control file
In MQSeries on UNIX systems, MQSeries for OS2 Warp, and MQSeries for Windows NT, the file
containing information needed to monitor the use of log files (for example, their size and location, and
the name of the next availablefile).

log file
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, afilein
which al significant changes to the data controlled by a queue manager are recorded. If the primary log
files become full, MQSeries alocates secondary log files.

M

message
In message queuing applications, a communication sent between programs. See also persistent
message and nonpersistent message. In system programming, information intended for the terminal
operator or system administrator.

message channel
In distributed message queuing, a mechanism for moving messages from one queue manager to
another. A message channel comprises two message channel agents (a sender at one end and a receiver
at the other end) and a communication link. Contrast with MQI channel.

message channel agent (MCA)
A program that transmits prepared messages from a transmission queue to a communication link, or
from acommunication link to a destination queue. See also message queue interface.

6/28/02 80.1.4a 108

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

message channel interface (MCI)
The MQSeries interface to which customer- or vendor-written programs that transmit messages
between a MQSeries queue manager and another messaging system must conform. A part of the
MQSeries Framework.

message descriptor
Control information describing the message format and presentation that is carried as part of a
MQSeries message. The format of the message descriptor is defined by the MQMD structure.

message priority
In MQSeries, an attribute of a message that can affect the order in which messages on a queue are
retrieved, and whether a trigger event is generated.

message queue
Synonym for queue.

message queue interface (MQI)
The programming interface provided by the MQSeries queue managers. This programming interface
allows application programs to access message queuing services.

message queuing
A programming technique in which each program within an application communicates with the other
programs by putting messages on queues.

messaging
See synchronous messaging and asynchronous messaging.

model queue object
A set of queue attributes that act as a template when a program creates a dynamic queue.

MQOD

MQSeries Object Descriptor. The MQOD structure is used to specify an object by name. The
structure is an input/output parameter on the MQOPEN and MQPUT1 calls.
The following types of object are valid:

Queue or distribution list
Namedlist

Process definition

Queue manager

MQSeries — Message Queue Series
A family of IBM licensed programs that provides message queuing services across a broad array of
operating system platforms and network protocols.

MQSeries Administration Interface (MQAI)
A programming interface to MQSeries.
MQSeries client
Part of a MQSeries product that can be installed on a system without installing the full queue manager.

The MQSeries client accepts MQI calls from applications and communi cates with a queue manager on
aserver system.

M QSeries commands (MQSC)
Human readable commands, uniform across al platforms, that are used to manipulate MQSeries

6/28/02 80.1.4a 109

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

objects. Contrast with programmable command format (PCF).

MQSI - MQSeries Integrator
Second generation message broker product the provides basic message routing and data trandation
capabilities.

MQWF
MQSeries Workflow. A workflow product built to executed long running transactions and other
workflow functions over a M QSeries foundation.

MRM
Message Respository Manager. A component of the Configuration Manager that manages MQSI

Messages.

MVS
Multiple Virtual System

N

namelist
A MQSeries object that contains alist of names, for example, queue names.

name service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
facility that determines which queue manager owns a specified queue.

name service interface (NSI)
The MQSeries interface to which customer- or vendor-written programs that resolve queue-name
ownership must conform. A part of the MQSeries Framework.

NEON
New Eraof Networks. MQSI interface available through the Control Center.

nonpersistent message
A message that does not survive arestart of the queue manager. Contrast with persistent message.

NSLDS
National Student Loan Data System

O

OAMAS
Open Applications Group Middleware APl Specifications

OAG
Open Applications Group. The Open Applications Group is a non-profit consortium focusing on best
practices and processes based on XML content for eBusiness and Application Integration.

object
In MQSeries, an object is a queue manager, a queue, a process definition, a channel, anamelist, or a
storage class (0OS/390 only).

object authority manager (OAM)
In MQSeries on UNIX systems, MQSeries for AS400, and MQSeries for Windows NT, the default
authorization service for command and object management. The OAM can be replaced by, or runin

6/28/02 80.1.4a 110

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

combination with, a customer-supplied security service.

output log-buffer
In MQSeries for 0S/390, a buffer that holds recovery log records.

P
page set
A VSAM data set used when MQSeries for OS/390 moves data (for example, queues and messages)
from buffers in main storage to permanent backing storage (DASD).

PCF

Programmable Command Format. The purpose of MQSeries programmable command format (PCF)
commands is toallow administration tasks to be programmed into an administration program. In

this way you can create queues and process definitions, and change queue managers, from a program.

PDF
Specialized message format used in MQSI and predominately found in the finance industry.

PEPS
Post-Secondary Education Participants System

performance event
A category of event indicating that alimit condition has occurred.

persistent message
A message that survives arestart of the queue manager. Contrast with nonpersistent message.

platform
In MQSeries, the operating system under which a queue manager is running.

point of recovery
In MQSeries for OS/390, the term used to describe a set of backup copies of MQSeries for 05390
page sets and the corresponding log data sets required to recover these page sets. These backup copies
provide a potential restart point in the event of page set loss (for example, page set 1/0 error).

principal
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, aterm
used for a user identifier. Used by the object authority manager for checking authorizations to system
resources.

process definition object
A MQSeries object that contains the definition of a MQSeries application. For example, a queue
manager uses the definition when it works with trigger messages.

programmable command format (PCF)
A type of MQSeries message used by:
User administration applications, to put PCF commands onto the system command input queue
of aspecified queue manager
User administration applications, to get the results of a PCF command from a specified queue
manager
A gueue manager, as a notification that an event has occurred

6/28/02 80.1.4a 111

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

Contrast with MQSC.

Q

queue
A MQSeries object. Message queuing applications can put messages on, and get messages from, a
gueue. A queue is owned and maintained by a queue manager. Loca queues can contain alist of
messages waiting to be processed.

gueue manager
A system program that provides queuing services to applications. It provides an application
programming interface so that programs can access messages on the queues that the queue manager
owns. See aso local queue manager and remote queue manager. A MQSeries object that definesthe
attributes of a particular queue manager.

queuing
See message queuing.

R

recovery log
In MQSeries for OS/390, data sets containing information needed to recover messages, queues, and the
M QSeries subsystem. MQSeries for OS/390 writes each record to a data set called the active log.
When the active log is full, its contents are off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

remote queue
A gueue belonging to a remote queue manager. Programs can put messages on remote queues, but
cannot get messages from remote queues. Contrast with local queue.

remote queue manager
To aprogram, a queue manager that is not the one to which the program is connected.

remote queue object
Seelocal definition of a remote queue.
remote queuing
In message queuing, the provision of servicesto enable applications to put messages on queues
belonging to other queue managers.
reply message
A type of message used for replies to request messages.

request message
A type of message used to request a reply from another program.

RESLEVEL
In MQSeries for OS/390, an option that controls the number of CICS user I1Ds checked for API-
resource security in MQSeries for OS/390.

return codes
The collective name for completion codes and reason codes.

RRS
Resource Recovery Service

6/28/02 80.1.4a 112

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

S
SAIG
Student Aid Internet Gateway

security enabling interface (SEI)
The MQSeries interface to which customer- or vendor-written programs that check authorization,
supply a user identifier, or perform authentication must conform. A part of the MQSeries Framework.

server
(1) In MQSeries, a queue manager that provides queue services to client applications running on a
remote workstation. (2) The program that responds to requests for information in the particular two-
program, information-flow model of client/server. See aso client.

signaling
In MQSeries for OS/390 and MQSeries for Windows 2.1, a feature that allows the operating system to
notify a program when an expected message arrives on a queue.

singlelogging
A method of recording MQSeries for OS/390 activity where each change is recorded on one data set
only. Contrast with dual logging.

SQL
Structured Query Language. A database language used to query databases.

synchronous messaging
A method of communication between programs in which programs place messages on message queues.
With synchronous messaging, the sending program waits for areply to its message before resuming its
own processing. Contrast with asynchronous messaging.

system.command.input queue
A loca queue on which application programs can put MQSeries commands. The commands are
retrieved from the queue by the command server, which validates them and passes them to the
command processor to be run.

T
TCP/IP
Transmission Control Protocol / Internet Protocol.

thread
In MQSeries, the lowest level of parallel execution available on an operating system platform.

trace
In MQSeries, afacility for recording MQSeries activity. The destinations for trace entries can include
GTF and the system management facility (SMF). See also global trace and performance trace.

transmission queue
A local queue on which prepared messages destined for a remote queue manager are temporarily
stored.

trigger event
An event (such as a message arriving on a queue) that causes a queue manager to create atrigger
message on an initiation queue.

triggering
In MQSeries, afacility allowing a queue manager to start an application automatically when

6/28/02 80.1.4a 113

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

predetermined conditions on a queue are satisfied.

trigger message
A message containing information about the program that a trigger monitor isto start.

trigger monitor
A continuoudly-running application serving one or more initiation queues. When a trigger message
arrives on an initiation queue, the trigger monitor retrieves the message. It uses the information in the
trigger message to start a process that serves the queue on which atrigger event occurred.

trigger monitor interface (TMI)
The MQSeries interface to which customer- or vendor-written trigger monitor programs must conform.
A part of the MQSeries Framework.

TSYS
Total System. A vendor which manages the COD environment.

U
undelivered-message queue
See deadH etter queue.

unit of recovery
A recoverable sequence of operations within a single resource manager. Contrast with unit of work.

unit of work
A recoverable sequence of operations performed by an application between two points of consistency.
A unit of work begins when a transaction starts or after a user-requested syncpoint. It ends either at a
user-requested syncpoint or at the end of a transaction. Contrast with unit of recovery.

URL
Uniform Resource Locator.

UTCL
Unpaid Teacher Cancellation Policies.

user identifier service (U1S)
In MQSeries for OS2 Warp, the facility that allows MQI applications to associate a user 1D, other
than the default user 1D, with MQSeries messages.

utility
In MQSeries, asupplied set of programs that provide the system operator or system administrator with
facilities in addition to those provided by the MQSeries commands. Some utilities invoke more than one
function.

V
VAJ
Visua Agefor Java. A Java programming development environment offered by IBM.

VTAM
Virtual Terminal Access Manager.

6/28/02 80.1.4a 114

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (PRELIMINARY)

W
WAS
WebSphere Application Server.

X

XA
XA interface is a specification that describes the protocol for transaction coordination, commitment,
and recovery between a transaction manager and one or more resource managers.

XML
Extensible markup language

6/28/02 80.1.4a 115

