B FEDERAL
STUDENT AID

We .Ilnru_s.'lp Put America F'lrrr.-lrr::;'n'lr School

FSA Modernization Partner
Enterprise Application Integration (EAI)
Core Release 3.0

Application Enablement Guide (Final)

Version 1.0

Task Order 80
Deliverable 80.1.4b

October 30, 2002

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

TABLE OF CONTENTS
1 EXECUTIVE SUMMARY 5
L1 PURPOSE. ... et r e R aR e ae e R Re e e R e R R e e n e ne e renneenn 5
1.2 APPROACH ..o 5
1.3 DESCRIPTION OF SECTIONSooiiiiiiiieesre e e s ens 5
1.4 MAPPING OF ENABLEMENT GUIDE OBJECTIVESTO SECTIONS........coooeiririninie 7
T O | PP PRRR 7
1.6 INTENDED AUDIENCEc.co ittt 8
2 MQSERIESARCHITECTURE CONVENTIONSAND GUIDELINES 9
2.1 PROCESS STEPS FOR BUILDING AN EAI INTERFACE.........ccooiiiinineeeeeeseee 9
22 MQSERIESNAMING GUIDELINES........co oot 10
23 MQSERIES APPLICATION MESSAGING INTERFACE (AMI) NAMING GUIDELINES .19
24 USING A MQSERIES OBJECTocceiiiiieeienieseesre s s sessre s sre s snesseensssnesnes 20
25 MQSERIESMESSAGING IMPLEMENTATION GUIDELINES. ... 22
26 MQSERIES CLUSTER DESIGN GUIDELINES.........cccoiiiiieeeeeeees e 22
2.7 MQSERIES CLUSTER IMPLEMENTATION GUIDELINES..........cccooiiinieeeieininee 26
2.8 FSA CLUSTER SPECIFICS..... oo e 27
29 MQSERIES SECURITY STANDARDS ..ot 33
210 EAI MQSERIES SECURITY IMPLEMENTATION GUIDELINES.........cccoviiiiiiieeeeee, 34
211 MQSERIESWEBSPHERE DESIGN GUIDELINES.........cccooiiiinee s 35
3 DATA INTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES 39
3.1 DATA INTEGRATOR STANDARDS.......c.coi ittt 39
3.2 DATA INTEGRATOR IMPLEMENTATION ..ot e 39

4 MQSERIESINTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES 41

41 MQSI NAMING STANDARDS ...t e sne s 41
4.2 MQSI IMPLEMENTATION GUIDELINES........ccoooiiiie e 52
5 FSA APPLICATION ENABLEMENT GUIDELINES 53
10/30/02 80.1.4b 2

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

51 APPLICATION PROGRAMS AND MESSAGING.......ovvcceeereeeeeeseeeeeeessseesseeeessseesseesesseeee 53
52 APPLICATION USAGE GUIDELINES FOR MQSERIESvccceereeeeereseesseeeesssssssseesssseeees 53
53 APPLICATION USAGE GUIDELINES FOR MQSERIES APPLICATION MESSAGING
INTERFACE (AMI) ovveeeoeeeeeeeeeeeeeeeeeeeeseesseeeeessessseesessesssesssesseesseeeessesseeesesseesseeseesesseeeeseseesseeesseee 59
54 APPLICATION INTERFACE PROGRAMMING OPTIONS FOR MESSAGE QUEUE
INTERFACE (MQI) rvvveeoeeeeeeeeseeeeeseeesseseessesesessessssessesssssssesessessssssssesssssseseessesssssssessssssssesssssssessene 61
55 EAI COMMON ERROR HANDLING GUIDELINES.........oereeeeeeeeeeeeeessseeeeeeeeseseesseessessenee 63
56 TRIGGERED QUEUES AND APPLICATIONScivveeeeeeeseeeeessesesseessseessesessesssssessssseeees 64
57 APPLICATION USAGE GUIDELINES FOR DATA INTEGRATORoovevveeeerereereeeersenenee 67

58 APPLICATION USAGE GUIDELINES FOR DATA INTEGRATOR STATUSUTILITY69

59 APPLICATION USAGE GUIDELINES FOR MQSERIES INTEGRATOR........cccccvvinininnne 69
6 APPLICATION CONNECTIVITY (ADAPTERS AND BRIDGES) 78
6.1 MQSERIESAPPLICATION ADAPTERccoooiiiiiiiies e 78
6.2 ADAPTER CLASSIFICATIONS.......ooii et nne e 78
6.3 MQSERIES-CICHESA BRIDGEcocoiiiiiiiiiieiinieinretsre st 79
6.4 RUNNING CICSDPL PROGRAMS........ooiiiieeitiee et e 80
7 APPLICATION INTEGRATION EXAMPLES 83
71 EXAMPLE OF AN INTERFACE USING DATA INTEGRATOR ..o 83
7.2 EXAMPLE OF AN INTERFACE USING MQSERIES INTEGRATOR........ccooiiiriiiniieins 84
7.3 CUSTOM EAI ADAPTER.....co oo 86
8 REUSEABLE EAI FUNCTIONS 89
81 EAI COMMON LOG FUNCTIONcoiiiieiiisiieeeseiee e ssnesre e sreene s ssee s snesnes 89
9 COMMITTING AND BACKING OUT UNITSOF WORK 96
9.1 COMMITTING AND BACKING OUTccciiieeeiiieere e 96
9.2 SYNCPOINT COORDINATION, SYNCPOINT, UNIT OF WORKcooiieieirinininennens 96
9.3 SYNCPOINT GUIDELINES........coi oo 96
9.4 MQSERIES SYNCPOINT CALLSFOR OS/390.......cccciiiiiiinieinieisreesree e 100
95 MQSERIES SYNCPOINT CALLS ON WINDOWS NT AND UNIX SYSTEMS................. 100

10/30/02 80.1.4b 3

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

9.6 SINGLE-PHASE COMMIT ..ottt e 101
9.7 TWO-PHASE COMMIT ..ottt nn e nne s 101
10 APPENDIX A: REFERENCE MATERIAL 102
11 APPENDIX B: GLOSSARY 104
12 APPENDIX C: CORE SERVICES QUESTIONNAIRE 118
121 HIGH LEVEL SYSTEM AND INTERFACE INFORMATION......cccoiiireiereese e 118
122 APPLICATION ..ottt e 118
12.3 INTERFACGES...... .ottt r e n e n e e r e nr e e e nnenne e 118
12.4 DETAIL SYSTEM AND INTERFACE OVERVIEW ..o 122
125 DETAIL SYSTEM INFORMATION ...oeoiiiiieeieeeese et 122
12.6 DETAIL INTERFACE INFORMATIONcoccoiiiiiiiiiiinene s 125
10/30/02 80.1.4b 4

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

1 EXECUTIVE SUMMARY

1.1 PURPOSE

The EAI Application Enablement Guide was developed in support of the Department of Education’s
Federal Student Aid (FSA) Modernization Program, to provide an overview of the MQSeries Messaging
functionality being implemented as part of the Enterprise Application Integration (EAI) project. The EAI
provides a standard reusabl e architecture for connecting disparate, heterogeneous systems through
common middleware architecture. The EAI architectureis built using the following middleware
products: M QSeries Messaging, MQSeries Integrator, and Data Integrator. This deliverable defines the
guidelines for enabling FSA application developersto design and implement applications utilizing the
features of the EAI Core architecture. Thisincludes work donein Release 1.0, 2.0, and 3.0 of EAI.

The deliverable also servesto provide a high level overview of the features and capabilities of the FSA
EAI Messaging infrastructure architecture and product capabilities. This deliverable should be the initia
reading for all application devel opers who will be developing applications to interface to the EAl Bus at
FSA.

The document is intended to be aliving document and a repository of MQSeries best practices and
guidelines, which can be adopted by FSA for the implementation of EAI applications.

1.2 APPROACH
The following approach was used to develop the EAI Application Enablement Guide deliverable:
Review and modify industry best practices to meet the FSA EAI Core Architecture requirements

Incorporate additional steps required for applications to integrate and utilize the FSA EAI Core
Architecture

Update Release 2.0 Enablement Guide sections where necessary

Add sections pertinent to Release 3.0

1.3 DESCRIPTION OF SECTIONS

This deliverable is divided into the following sections:
Section 1 — Executive Summary

This section provides an introduction and overview of the EAl Application Enablement Guide.

Section 2 — MQSeries Architecture Conventions and Guidelines

This section will provide guidance on naming conventions for using MQSeriesin the FSA EAI
architecture. The guidelines provide guidance in defining and implementing M QSeries objects.

Section 3 — Data Integrator Architecture Conventions and Guidelines

This section will discussthe Data Integrator standards that have been developed and provide suggestions
for design and implementation of Data Integrator.

10/30/02 80.1.4b 5

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Section 4 — MQSeriesIntegrator Architecture Conventions and Guidelines

This section will provide guidance on naming conventions for using MQSeries Integrator in the FSA EAI
architecture.

Section 5— FSA Application Enablement Guidelines

This section provides an overview of messaging and provides specific steps an application needsto
performin order to connect to a queue manager and to send and receive messages.

Section 6 -- Application Connectivity (Adapters and Bridges)

This section discusses the use of adapters and bridges. Adapters handle datainbound-to and outbound-
from the application or environment. A bridge is a software component that moves data between a
message on a queue and an application or environment.

Section 7 — Application Integration Examples
This section will provide guidance on integrating FSA Applicationsto utilize the EAl Core Architecture

through illustrative examples.
Section 8 — Reusable EAI Functions

This section describes reusable EAI functionsthat can be utilized by applications integrated with the EAI
Core Architecture.

Section 9 — Committing and Backing Out Units of Work

This section describes how to commit and back out any recoverable get and put operations. It also
describes applications and their use of operating under syncpoint control.

Section 10 — Appendix A: Reference Material
This section provides URL links to on-line documentation referenced within this document.
Section 11 — Appendix B: Glossary

This section provides a glossary of MQSeries related terms and abbreviations. In addition, it
includes terms and abbreviations found in this document.

Section 12 — Appendix C: Core Services Questionnaire

This section serves as a questionnaire for application teams to provide information regarding all the
interfaces for each EAI initiative.

10/30/02 80.1.4b 6

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

1.4 MAPPING OF ENABLEMENT GUIDE OBJECTIVESTO SECTIONS

This section was added to provide the user of this document with a reference section between the
objectives of this document and the document contents.

Objective Maps To: Description/Comments
Defines the procedures to enable | Section 2.1 This section was added to
FSA business applicationsto provide a high-level view of the
connect to the EAI Core process stepsinvolved in
Architecture. developing an interface.

Section 6.0 This section describes

connecting applicationsto the
EAI Bus using adapters.

Section 8.0 This section describes how to
take advantage of application
logging functions. These
functionsassist in
troubleshooting to the EAI Bus.

Documents the steps to design Section 5.0 These sections contain

and build interfaces between Section 7.0 representative examples of

FSA business applications and ' interfaces using each of the EAI

legacy systems. Section 9.0 middleware products thereby
providing guidance on
integrating FSA applications
with the EAI Core Architecture.

| dentifies the procedures to Appendix C Core Services Questionnaire

identify the business rules for the
interface between FSA business
applications and legacy systems.

15 SCOPE

The scope of this deliverable isto provide guidelines and best practices for designing and implementing
interfaces between applications using the EAI Bus (EAI core architecture). The guidelines defined in
this deliverable are based on best practices. They provide a structured approach for defining a consistent
and maintainable environment.

10/30/02 80.1.4b 7

US DEPARTMENT OF EDUCATION EAI CORE ARCHITECTURE RELEASE 3.0

FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (FINAL)

1.6 [INTENDED AUDIENCE

The EAI Application Enablement Guide document is intended for application teams who need to
understand the services and capabilities provided by the EAI Core Architecture. The contents of this
document should be utilized and built upon in accordance with requirements for applications integrating
with the EAI Core Architecture.

10/30/02 80.1.4b

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

2 MQSERIESARCHITECTURE CONVENTIONSAND GUIDELINES

Prior to Modernization Partner’s EAl implementation, FSA had not previoudly utilized MQSeries as part
of its existing middleware infrastructure. During Release 1.0 of thisimplementation standards were
implemented and documented in the Release 1.0 version of the Enablement Guide. With each
subsequent EAI Release, the Enablement Guide has been updated. This section provides guidance on
naming conventions for using MQSeriesin the FSA EAI architecture. These guidelines are meant to
provide guidance in defining and implementing M QSeries objects.

These standards have been developed in conjunction with the AIS group from Computer Science
Corporation, which will be responsible for monitoring FSA gueue managers.

2.1 Process Stepsfor Building an EAI Interface

The steps for building an EAI interface vary greatly. There are anumber of factors that impact the
involvement and necessary steps. Key factors are:

Install Platform/OS
Type of interface (Data Integrator, MQ Server, MQ Client, Custom)
EAI team involvement (EAI does not ways have accessto all systems/processes for interface)
Type of processing (batch/transactional/pub-sub/real-time)
Business Logic Required (Transformations, Workflow, Error Handling)
However, there are core steps that can be taken to ensure an interface can be built in a repeatable fashion.

The following procedures are used to enable FSA business applications to connect to the EAI Core
Architecture:

1. EAI conducts a core kick-off meeting with the Application Team.

2. Application Team completes the EAl Questionnaire. (Please see Appendix C: EAI Core Services
Questionnaire)

3. EAI Team reviews the EAI Questionnaire with the Application Team as input for the Interface
Estimate.

EAl Team completes the Interface Estimate.

EAI Team and Application Team review the Interface Estimate.
EAI Team completes the Interface Partner Agreement (1PA).
EAI Team and Application Team sign the IPA.

© N o g &

EAI Team completes the design documentation.
a. EAI Team completes Interface Control Document (ICD)
b. EAI Team completes Internal Interface Design (11D)

9. EAI Team ingtalls the MQSeries Infrastructure on the application system in the devel opment
environment.

a. MQSeries softwareisinstalled and configured on the application system

10/30/02 80.1.4b 9

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Connectivity test is performed between the EAI Bus and the application system.

Queue Managers are defined on the application system. (Please see section 2.2.2 and
2.4.2 for Queue Manager details)

Channels are defined between the application system and the EAI Bus. (Please see
section 2.2.11 and 2.4.1 for Channel details)

Local Queues are defined on the application system. (Please see section 2.2.3 and 2.4.2
for Local Queue details)

Message delivery test is performed between the EAl Bus and the application system
using sample programs provided by the M QSeries software.

10. EAI Team builds application interface based on the design documentation.

a

b.

MQSeries Code is baselined in ClearCase repository

Codereview is performed by EAI Team

11. EAI Team installs the MQSeries I nfrastructure on the application system in the test environments
(see step 8).

12. EAI Team tests the application interface.

13. EAI Team logs testing I ssues and reviews/resolves them with the Application Team.

14. Using ClearQuest, the EAI Team coordinates the deployment procedures and timeline with the
application host.

a

EAl Team installs the MQSeries Infrastructure on the application system in the
production environment (see step 8).

Code is deployed to production
Application Team performs Production Readiness Test

2.2 MQSeriesNaming Guidelines

This section defines M QSeries M essaging naming guidelines for MQSeries objects within FSA’s
enterprise technical architecture.

221 Common Rules

All MQSeries names should follow MQSeries naming conventions, rather than the standard for object
names on each supported platform. Key standards and guidelines:

Usedl upper case letters (some platforms default text to upper case and MQSeries names are case

sengitive)

- MQSeriesalows both upper and lower caselettersin its names. However, MQSeries names are
case-senditive. Using lower and uppercase characters for object namesisacommon source for naming

errors.

Refrain from using % in names

10/30/02

80.1.4b 10

US DEPARTMENT OF EDUCATION EAI CORE ARCHITECTURE RELEASE 3.0

FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (FINAL)

- Thischaracter isvalid in dl MQSeries names, athough it is not commonly used in other names
across platforms.

Limit names to alpha—nhumeric characters
- Exceptionsare the specid characters| /.]

Choose meaningful names within the congtraint of the standard.

- Using meaningful names aids the MQSeries Administrator in maintaining the MQSeries
environment.

- Thereisno required structure, or hierarchy, in an object name, such as may be found on many
sysems file names. MQSeries only compares the name strings.

- These standards recommend using hierarchical names under certain conditions. One such exampleis
to use a suffix where there are multiple “instances’ of an object.

Document object names and dwaysinclude a description.

- All objects have a DESCR attribute for this purpose. MQSeries does not act on the value, but it
provides additiona information as to the function of the queue.

Choose meaningful names for new MQSeries interfaces.

- Each application to be integrated using M QSeries creates one or more MQSeriesinterfaces. The
MQSeriesinterface defines or exposes some gpplication to the outside world. Implied in aninterfaceis
alevd of reliability and performance commonly referred to as acontract. Any other component can
request and receive a service by awareness and compliance with a defined interface. The application
does not need to know how or wherethe service is performed. The interface becomesa DMZ between
an application and the outside world, so changes to the interface may cause repercussions across all
users of theinterface. XML has become one solution to the static nature of interfaces because it
allowsfor self-defining and extensible interfaces. Still XML does not solve dl issues and problems
with interface definitions.

Name an interface for what it does and is, because M QSeries interface names tend to surface in the
naming of MQSeries components related to the interface.

Save the definitions
There are anumber of reasons for saving the definitions:

- Inthecase of asystem failure, objects may need to berecreated. To perform thisfunction, the
definitions need to be saved separately from the queue manager.

- They can be used to reset the attributes to aknown state. For exampleif triggering has been turned
off, or GET or PUT disabled, it is helpful to be able to restore the objectsto their initia state.

- Thedefinitions can supplement the M QSeries documentation.

2.2.2 Queue Manager

A gueue manager provides the messaging and queuing services to application programs through Message
Queue Interface (MQI) program calls. Queue manager names are created at the sole discretion of
MQSeries administrators. The following guidelines should be followed when naming queue managers:

10/30/02 80.1.4b 11

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Assign unique namesto al queue managers

- Thisrecommendation can often cause significant problemsif queue manager names are not unique.
(On MV, the queue manager name must also be distinct from other subsystem names on the same
MVS)

- A queue manager can be understood asa* container” for queues and related objects. Thereis
typically one per system, but additional queue managers can be defined.

- Queue Managers with the same name can be configured to exchange messages - by using Queue
Manager dliases. Thisisstrongly discouraged. There are some exampleswhere this can lead to
ambiguity, and messages can then be sent to the wrong queue manager.

0 If ReplyToQMgr isleft blank in the M essage Descriptor, MQSeriesinserts the actual
loca Queue Manager name, not itsalias.

0 Dead Letter Queue messages identify the real Queue Manager, not any dias.
Do not copy documentation examples

- Copying the documentation examples provided with the installation filesis an easy way to produce
gueue managers with duplicate names. Plan for the names of queue managers ahead of time.

K eep the queue manager name short and meaningful

A recommendation would be to make queue manager names the same as the network host name.
However, keep the following pointsin mind:

- OnMVS, the queue manager name corresponds to the MV S subsystem name. Therefore, the queue
manager name s restricted to four characters.

- Many queue managers use the first eight characters when generating unique message identifiers.

- Channel names, which by convention are derived from queue manager names, are limited to 20
characters.

- If there were no obvious name, most users would adopt a convention for constructing a queue
manager name. Make sure that the convention provides for further expansion, particularly wherethe
restricted names on MV S are concerned.

For a Queue Manager dias, use the naming conventions for the specific platform
- Thisfeatureisusually reated to defining multiple channels between a pair of queue managers.

2221 Naming Convention for M QSeries Queue Manager for Mainframe (CPS and NSL DS on OS/390)

Naming examples for M QSeries queue managers on the OS/390 are illustrated below. OS/390 queue
manager names are limited to 4 charactersin length.

Examples:
QMP1
QM —Indication that STC(Started Task) isfor a queue manager

10/30/02 80.1.4b 12

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

P — Production (D(development), P(production), or T(test))
1 - First instance
QMP2
QM —Indication that STC(Started Task) isfor a queue manager
T —Test (D(development), P(production), or T(test))
2 — Second instance

2.2.2.2 Naming convention of the M QSeries Queue Managersfor all other platforms

On Non-MV S platforms the queue manager name should not exceed 8 characters. Queue manager names
on distributed platforms will be based on the nature of the work performed, with indicators for
environment and distance. For example, EAIBUSPL isthe first instance of a production queue manager
on the EAI Bus. PEPSD1 would be the first instance of a queue manager in the PEPS devel opment
environment.

Examples:

SAIGT1
SAIG — Student Aid Internet Gateway queue manager
T — Test(D(development), P(production), or T(test))
1 - First instance

Queue Manager Names can also have aliases. This adds another layer of “insulation and abstraction”
from the underlying object name. Message routing using alias queue manager names is an exampl e of
their use. Consolidation of multiple queue managers to one queue manager is also away to make use of
gueue manager alias names to minimize the impact of the consolidation on MQSeries application
programs and the MQ Administrator. Although queue manager alias objects are defined via remote queue
definitions, they should be named according to queue manager naming guidelines.

2.2.3 Loca Queues

Asarule, applications will never reference local queues directly but will always access them viaaias
queues.

A local queue object definesaloca queue belonging to the gueue manager to which applications are
connected. The following guidelines should be adhered to when naming local queues:

Local gueue names can be up to 48 characterslong. They should be short, but long enough to be
meaningful.

Local gueue names should not include the name of the queue manager or an indication of the
platform used.

Local gueue names should not indicate that the queue islocal.

10/30/02 80.1.4b 13

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Local gueue hames should not include the words local or queue (unless relevant in the context of the
application).

Local queue names should be of the form:
FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

- Thefirst nodeisfive or six characters indicating the name of the system that owns the object.
Thiswill be useful when applications from multiple business units share the same machine/queue
manager.

- The second node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

- Thethird node is optional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

- Thefourth node is any humber of characters, such that entire queue name does not exceed 48
charactersin length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

Examples:

SAIG.GETMAIL
SAIG.ONLINE.COD.GETMAIL
SAIG.COD.GETMAIL

2.2.4 Remote Queues

Asarule, applications will never reference remote queues directly but will always access them via alias
queues.

A remote queue object identifies a queue belonging to another queue manager. The remote queueis
usually given alocal definition. The definition specifies the name of the remote queue manager where
the queue exists as well as the name of the remote queueitself. The information specified when defining
aremote queue object enables the queue manager to find the remote queue manager, so that any
messages destined for the remote queue go to the correct queue manager. The following guidelines
should be adhered to when naming remote queues:

Remote queue hames can be up to 48 characterslong. They should be short, but long enough to be
meaningful.

Remote queue names should be of the form:
TARGETQM.TARGETLOCALQUEUE

- Thefirst node indicates which queue manager owns the local queue that it references.
- The second node is the name of the local queue referenced by this remote queue.

Thisis done to provide operations with a clear view of message flow. Since applications never
reference remote queues directly, a change in remote queue name or properties would not have any
adverse effect nor require any modifications.

10/30/02 80.1.4b 14

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Examples:

SAIGP1L.SAIG.GETMAIL
SAIGP1.SAIG.ONLINE.COD.GETMAIL
SAIGP1.SAIG.COD.GETMAIL

2.25 AliasQueues

An alias queue object enables applications to access queues by referring to them indirectly in MQI calls.
When an alias queue nameis used in an MQI call the name is resolved to the name of a message queue at
run time. This enables changes to the queues that applications use without changing the application itself
inany way. The following guidelines should be adhered to when naming alias queues:

Alias queue names can be up to 48 characterslong. They should be short, but long enough to be
meaningful.

Alias queue names should not include the name of the queue manager or an indication of the
platform used.

Alias queue names should not indicate that the queue is an alias.

Alias queue names should not include the words alias or queue (unless relevant in the context of the
application).

Alias queue names can be of the form:

TARGETQUEUE.[MODE]

- Thefirst node isthe name of the local or remote queue referenced by this alias queue.
- The second nodeis an indicator or whether this queue isto be enqueued (.PUT) or dequeued
(.GET).

Examples:

SAIG.GETMAIL.PUT
SAIG.ONLINE.COD.GETMAIL.GET
SAIG.COD.GETMAIL.PUT

Alias queues which are to be used to enqueue will be GET(DISABLED), while alias queues which
are to be used to dequeue will be PUT(DISABLED).

2.2.6 Model and Dynamic Queues

The model queue object defines a set of queue attributes that are used as a template for a dynamic queue.
The queue manager creates dynamic queues when an application makes an open queue request specifying
aqueue that isamodel queue. The dynamic queue that is created in thisway isaloca queue whose
name is specified by the application and whose attributes are the same as the model queue.

2.26.1 Modd Queue Naming Conventions

Generally, model queue names should be of the form:
FIRSTNODE.[SECONDNODE].[THIRDNODE].FOURTHNODE

10/30/02 80.1.4b 15

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Thefirst nodeisfive or six characters indicating the name of the system that owns the object.
Thiswill be useful when applications from multiple business units share the same machine/queue
manager.

- The second nodeisoptional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

- Thethird nodeisoptional and may contain five or six characters. This may be used to define
which system the queue is going to or from or some other detail of the interface this queue
supports.

- Thefourth node is any number of characters, such that entire queue name does not exceed 48
charactersin length, that is a unique and descriptive term for the application or business-specific
function performed by the queue.

2.2.7 Transmission Queues

A transmission queue temporarily stores messages that are destined for a remote queue manager.
Transmission queues must be defined for each remote queue manager that alocal queue manager will
send messagesto. It is possibleto associate several transmission queues with different characteristics
with aremote queue manager. This allows different classes of transmission service. The following
guidelines should be adhered to when naming transmission queues:

Transmission queue names will include the name of the adjacent (i.e. directly connected) queue
manager. The transmission queue name will be the name of the destination queue manager only in
the case where the destination queue manager is directly connected with the sending queue manager.
Otherwise, the transmission queue name will be the name of some other queue manager that will play
the middle party in a multi-hop message transfer to the destination queue manager.

If there is only one channel to the queue manager, use the exact name of the adjacent queue manager.

If there will be multiple channels to the queue manager, use the adjacent queue manager name
followed by a dot and some class of service.

If the exact queue manager name is not used, appropriate queue manager alias definitions need to be
provided to allow MQSeries to perform queue manager name resol ution.

Transmission queue names should be of the form:
AdjacentQueueM anagerName[.ClassOf Service]

Examples:
SAIGPL
QMT1
PEPSP2.B

The only class of service defined at thistime is batch which isindicated by a‘.B’ suffixed to the
gueue name. The class of service will provide a mechanism for separating message traffic by type
and service level required. For FSA, any traffic not batch in nature will use the default transmission
gueue and associated channels.

10/30/02 80.1.4b 16

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

2.2.8 Dead Letter Queues

A dead-letter queue (also known as an undelivered-message queue) receives messages that cannot be
routed to their correct destinations. This occurs when, for example:

The degtination queue isfull

The message cannot be put on the destination queue
The sender is not authorized to use the destination queue
The degtination queue does not exist

The following guidelines should be adhered to when naming dead-letter queues:
SYSTEM.DEAD.LETTER.QUEUE will always be used.

2.2.9 Initiation Queues

Aninitiation queue receives trigger messages, which indicate that atrigger event has occurred. A trigger

event is caused by a message that satisfies the specified conditions being put onto a queue. Messages are
read from the initiation queue by atrigger monitor application that then starts the appropriate application

to process the message. If triggers are active, at least one initiation queue must be defined for each queue
manager. The following guidelines should be adhered to when naming initiation queues:

Initiation queue names should be of the form:

FIRSTNODE.SECONDNODE.THIRDNODE.
- Thefirst node should contain the system name.
- Use of the second node is dependent on the system name.
- Thethird node should be INIT or INITQ, literal standing for the initiation queue.

Example:
CPS.BATCH.INIT
CPT1.CICSDEV2INITQ

2.2.10 Processes

A process definition object defines an application to an MQSeries queue manager. Typically in
MQSeries, an application puts or gets messages from one or more queues and processes them. A process
definition object is used for defining applications to be started by atrigger monitor. The definition
includes the application ID, the application type, and application specific data. A process may only be
used to service asingle local queue.

The following guidelines should be adhered to when naming processes:

Process names should not include the name of the queue manager or an indication of the platform
used.

All process names should be of the form:
LOCALQUEUE.PRC

10/30/02 80.1.4b 17

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

- Thefirst nodeisthe local queue served by this process
- The second nodeisthe ‘PRC’ literal indicating this MQSeries object is a process definition.

Examples:

SAIG.GETMAIL.PRC
SAIG.ONLINE.COD.GETMAIL.PRC
SAIG.COD.GETMAIL.PRC

2.211 Channds

A channel provides acommunication path. There are two types of channels, message channels and MQI
channels. A message channel provides a communication path between two queue managers on the same,
or different, platforms. The message channel is used for the transmission of messages from one queue
manager to another, and shields the application programs from the complexities of the underlying
networking protocols. A message channel can transmit messagesin only one direction. If two-way
communication is required between two queue managers, two message channels are required.

An MQI channel connects an MQSeries client to a queue manager on a server machine. Itisfor the
transfer of MQI calls and responses only and is bi-directional. A channel definition exists for each end
of thelink. The following guidelines should be adhered to when naming channels:

Channel names can be up to 20 characterslong.
Channel names should be of the form:

SendingQM .ReceivingQM|[.ClassOf Service]
- SendingQM is the name of the sending queue manager (without the _QM).
- ReceivingQM is the name of the receiving queue manager (without the _QM).

- ClassOfServiceis optional and is used to distinguish between different classes of service
between the same two queue managers. The only class of service defined at thistimeis batch
whichisindicated by a‘.B’ suffixed to the channel name. The class of service will provide a
mechanism for separating message traffic by type and service level required.

Based on the above channel-naming convention, channel names can always be interpreted as
FromQueueManager. ToQueueManager without ambiguity.

Examples:
SAIGP1.QMP1
EAIBUSP1.CODP1.B

10/30/02 80.1.4b 18

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

2.3 MQSeries Application Messaging I nterface (AMI) Naming Guidelines

FSA has standardized on the use of Application Messaging Interface (AMI) as a programming API. The
AMI isahigher-level programming interface and abstracts many of the messaging specific details into
external repositories, removing them from the programmer’ s responsibility. AMI is organized into three
major categories. Services, Policies, and Messages. That is: “Where”, “How”, and “What” .

The OAG OAMAS messaging standard has been implemented by IBM, resulting in the Application
Messaging Interface (AMI). AMI has three major components requiring naming standards to be applied.
AMI objects exposed to the applications are highly abstracted. Consequently AMI object naming will be
highly logical, exposing no implementation specific details. AMI objects are maintained in external
repositories. In the interest of maintaining the sanity of MQSeries administrators, asingle AMI
repository will be used requiring objects to be qualified by the system that uses them. Thiswill ensure
the capability to provide different optionsto different applications requesting the same service.

2.3.1 ServicePoints

Services are AMI objects that describe the “what” of the request. A service definition contains queue
name, queue manager and other details related to what queues are to be used for the request and reply.

Service point names should be of the format:
Calling System.Application Details.Extension
- Cadlling system is the name of the system invoking AMI for this request
- Application details describe the function performed by the service
- Extension describes the action within the dialog and can be one of the following:
- REQSDR

Request Sender: Thisindicates that this service point is used to send requests for agiven
service.

- REQRCVR

Request Receiver: Thisindicates that this service point is used to receive requests for a given
service

- REPRCVR

Reply Receiver: Thisindicates that this service point is used to receive replies to request for
agiven service.

Examples of service point names are:
COD.GETMAIL.REQSDR
Thisisthe service that would be used by COD to request mail from a SAIG mailbox.

10/30/02 80.1.4b 19

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

SAIG.GETMAIL.REQRCVR
Thisisthe service that would be used by SAIG to receive requests for mailbox data.

SAIG.COD.GETMAIL.REQRCVR
Thisisthe service that would be used by SAIG to receive requests for mailbox data from COD.

2.3.2 Policies

Policies are objects that contain “how” the request to AMI isto be executed. Policy objects contain
clauses for connection requests, send and receive requests, as well as publish, subscribe, and policy
handler details. It should be possible to create only one policy per application named per that application.
If further granularity isrequired, thiswill be revisited and this section revised.

Examples of policy names are:

COD

Thisisthe policy used by COD for all callsto AMI.
SAIG

Thisisthe policy used by SAIG for all callsto AMI.

24 UsingaMQSeries Object

This section supplements the build steps outlined in 2.1. It provides detailed information about two
critical components of MQSeries infrastructure, the channels and queues.

241 Channels

In order for two machines to communicate via MQSeries, achannel must exist. If two systems must
exchange messages, then two channels are required. Channels are created by system administrators or
dynamically by the MQSeries queue manager. Although used by the MQSeries queue manager to move
messages from one system to another, channels are of little interest to the application developer.

2.4.2 Queues

M QSeries system queues are simple FIFO disk-resident buffers that hold messages. Queues can be
divided into local queues and remote queues. Loca queues reside on the local system and remote queues
reside on aremote system. If messages are destined for aremote system, then a remote queue should be
used. Messages destined for applications on the local system are sometimes referred to as destination
gueues, application queues, or as local queues. Local queues are usually looked upon as queues from
which applications GET messages. Queues should be created based on application needs and used when
messages need to move between systems or between applications on the same system. Local queues
were used on each FSA legacy system.

Another type of queueis atransmission queue. Messages destined for remote queue managers are placed
in special queues called transmission queues. Messages reside in the transmission queue until they can
be delivered to the remote system viathe sender channel. From the perspective of the local system,

10/30/02 80.1.4b 20

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

transmission queues hold outbound messages. Again, transmission queues are created by the system
administrator and could be considered background objects. Transmission queues are used when
messages are PUT to aremote queue; the application developer does not write them to directly. At least
one transmission queue must be defined for each remote queue manager to whom the local queue
manager isto send messages directly. Transmission queues were used on each FSA legacy system.

Remote gueues and alias queues are aternative logical names, which can be used to address an MQSeries
system queue instead of using the actual queue name. In the case of the remote queue definition, asingle
name is provided for use by an application that relieves the application of needing to know the location
(queue manager name) of the destination queue. Remote queues are used when sending messagesto a
destination queue defined on a remote queue manager. Both remote queues and alias queues are used by
the application devel oper to get and put messages. Remote queues were used on each FSA legacy
system.

Alias queues provide a simple one-to-one name substitution capability. An alias associates an alternative
(alias) name with an already defined queue. By defining an alias, the MQSeries system administrator has
the ability to redirect message traffic. By using alias queue definitions, the programmer is insulated from
changing their application code to fit the changing needs of the network. An alias queue is not a queue,
but an object that one can use to access another queue.

Initiation queues are queues that are used in triggering. A queue manager puts atrigger message on an
initiation queue when atrigger event occurs. A trigger event isalogical combination of conditions that
is detected by a queue manager. Initiation queues are defined by the system administrator for the use of
triggering. Initiation queues are not used for the get and put of messages by the application developer.
They are used by the queue manager. Initiation queues were defined and used on each FSA legacy
system.

A dead letter queue is a queue that stores messages that cannot be routed to their correct destinations.
There should only be one dead letter queue defined on each queue manager. The dead letter queueis
defined by the system administrator at the time the queue manager is created. Applications can also use
the queue for messages they cannot deliver. Dead letter queues were created on each FSA legacy system.

A model queue defines a set of queue attributes that are used as a template for creating a dynamic queue.
Dynamic gqueues are created by the queue manager when an application issues a MQOPEN request
specifying a queue name that is the name of amodel queue. The dynamic queue that is created in this
way isalocal queue whose attributes are taken from the model queue definition. Dynamic queues do not
survive product restarts; use dynamic queues with caution. Model and dynamic queues are used based on
application needs. These were not used for FSA

Processes allow an application to be started without the need for operator intervention. An application
gueue can have a process definition object associated with it that holds details of the application that will
get messages from the application queue. Processes are usually associated with atrigger event: when the
trigger event conditions are met, the application associated with the processisinitiated. For FSA,
processes were used to start the adapters.

10/30/02 80.1.4b 21

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

25 MQSeries Messaging | mplementation Guidelines

Thefollowing isalist of suggestions for MQSeries design and administration:

The MQSeries Administrator is responsible for defining and maintaining M QSeries objects such
as queues, queue managers, channels, and processes.

The configuration values of MQSeries objects should be selected carefully to satisfy the
requirements of each application. The default value is usually the recommended value. It should
not be changed without careful evaluation.

Include a Dead L etter Queue for every implementation.

Avoid trigger types “DEPTH” and “EVERY”. These triggering methods have the potential to
overload the system.

Long running units of work are detrimental to the performance of the network. Break the work
into small pieces; this tends to have the additional benefit of improved restart capability.

Use verified network port addresses. Every queue manager needs a listener port in order to
negotiate communications and manage the various queues. The default port addressis 1414.
Check with the network engineersto avoid any port address conflicts during implementation.

Always evaluate using clusters of queues for redundancy and load balancing.

Clusters provide a means to distribute the work in a queue among multiple processes. These
processes may be on the same or different physical machines, and the machines may be located
in the same or different locations. The only restriction on the locations of the membersis that
the members must be able to communicate via TCP/IP. Communications between the queue
managers participating in each cluster enable the sending queue manager to route the message to
the appropriate queue manager based on the default load balancing method or user defined
cluster workload exit routine.

26 MQSeriesCluster Design Guidelines

2.6.1 Selecting Queue Managersto Hold Repositories

In each cluster, select at least one, preferably two, or possibly more of the queue managersto hold
repositories. A cluster could work quite adequately with only one repository but using two improves
availability. The repository queue managers are interconnected by defining cluster-sender channels
between them. A repository isacollection of information about queue managers that are members of a
cluster. Thisinformation includes queue manager names, their locations, their channels, what queues
they host, and so on. Typically, two queue managersin acluster hold afull repository. The other queue
managers in a cluster inquire on the information in the full repositories and build up their own subsets of
thisinformation in partial repositories.

The cluster is configured to include the Websphere Application Server and the two Sun Solaris Servers.
The Sun Servers were selected to be the repositories for the cluster.

The most important consideration is that the queue managers chosen to hold repositories need to
be reliable and well managed.

10/30/02 80.1.4b 22

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Consider the location of the queue managers and choose ones that are in a central position
geographically or perhaps ones that are located on the same system as a number of other queue
managers in the cluster.

Another consideration might be whether a queue manager already holds the repositories for other
clusters. If aqueue manager were arepository for one cluster, it would be wise to use the same
gueue manager as arepository for other clusters of which it is a member.

When a queue manager sends out some information about itself, or requests some information about
another queue manager, the information or request is sent to two or more repositories. A repository
handles the request whenever possible but if the chosen repository is not available another repository is
used. When the first repository becomes available again, it collects the latest new and changed
information from the others so that the queue managers are kept in synch. The repository queue
managers send messages to each other to be sure that they are both kept up to date with new information
about the cluster. The automatic updating of repositories by queue managersis part of the behavior that
isinherent to clusters and is done behind the scenes without any intervention by the user.

The following cluster-sender and cluster-receiver definitions were taken directly from the IBM MQSeries
Queue Manager Clusters Manual:

“A cluster-sender (CLUSSDR) channel definition defines the sending end of a channel on which a cluster
gueue manager can send cluster information to one of the full repositories. The cluster-sender channel is
used to notify the repository of any changes to the queue manager’ s status, for exampl e the addition or
removal of aqueue. Itisalso used to transmit messages. The repository queue managers themselves
have cluster-sender channels that point to each other. They use them to communicate cluster status
changes to each other.”

“A cluster-receiver channel (CLUSRCVR) channel definition defines the receiving end of a channel on
which acluster gqueue manager can receive messages from other queue managersin acluster. A cluster-
receiver channel can also carry information about the cluster-information destined for the repository.
The definition of a cluster-receiver channel has the effect of advertising that a queue manger is available
to receive messages. Y ou need at least one cluster-receiver channel for each cluster queue manager.”

If al the repository queue managers go out of service at the same time, queue managers continue to work
using the information contained in their partial repositories. New information and requests for updates
cannot be processed. When the repository queue managers reconnect to the network, messages are
exchanged to bring all repositories (both full and partial) back up to date.

2.6.2 Organizing acluster

Having selected some queue managers to hold repositories, decide which queue managers should link to
which repository. The CLUSSDR channel definition links a queue manager to arepository from which it
finds out about the other repositoriesin the cluster. From then on, the queue manager sends messages to
any two or more repositories, but it always tries to use the one to which it has a CLUSSDR channel
definition first. It is not significant which repository is chosen.

It is not advisable to use arepository queue manager on an OS/390 system as the repository queue
manager because M QSeries for OS/390 does not have a command server. To ensure that a particular
repository queue manager is not used by the MQSeries Explorer, include the string ‘ %NOREPOS%’ in

10/30/02 80.1.4b 23

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

the description field of its cluster-receiver channel definition. When the explorer is choosing which
repository to link to, it ignores those channel description containing ‘%NOREPOS%’, and treats them as
though the queue manager did not hold arepository for the cluster. If there are alarge number of
repositories or they are spread over alarge area, it would be advisable to make a second CLUSSDR
channel definition.

Choosing names

When setting up a new cluster, consider a naming convention for the queue managers. Every queue
manager must have a different name, but it may help to remember which queue managers are grouped
whereif given aset of similar names. The queue naming convention of a cluster queue manager follows
the same naming convention of any other queue manager. Please refer to section 2.1.2 for queue manager
naming conventions. It isrecommended that the cluster name be descriptive of the function the cluster is
performing. The cluster nameislimited in length to 48 characters. For example, the name given to the
MQSeries cluster for FSA was “EAI”.

Every cluster-receiver channel must have a unique name. One possibility isto use the queue-
manager name preceded by the preposition ‘ TO’. The name would be of the form:

FIRSTNODE.SECONDNODE.

Where:
- FIRSTNODE isreplace with the literal TO.
- SECONDNODE isreplaced with the queue manager name.

Example:
TO.SU35E16
TO.SU35EL7

Remember that all cluster-sender channels have the same name as their corresponding cluster-
receiver channel.

Do not use generic connection names on cluster-receiver definitions. If a CLUSRCVR is defined
with a generic CONNAME there is no guarantee that the CLUSSDR channels will point to the
gueue managers intended. Theinitial CLUSSDR may end up pointing to any queue manager in
the queue-sharing group, not necessarily one that hosts a repository. Furthermore, if a channel
goesto retry status, it may reconnect to a different queue manager with the same generic name
and the flow of messages will be disrupted. Basically, the CONNAME should be the network
address of the machine the queue manager resides on.

2.6.3 Overlapping clusters

Create clusters that overlap. There are a number of reasons to do this, for example:
To alow different organizations to have their own administration.
To allow independent applications to be administered separately.
To create classes of service.
To create test and production environments.

10/30/02 80.1.4b 24

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

In the figure above, the queue manager QM5 is a member of both the clustersillustrated.

If there is more than one cluster in the network, it is essential to give them different names. If two
clusters with the same name are ever merged, it will not be possible to separate them again.

When defining a cluster, the following objects are included in the set of default objects defined when
creating a queue manager on V5.X of Sun Solaris and Windows NT, and in the customization samples
for MQSeries for OS/390.

SYSTEM.CLUSTER.REPOSITORY QUEUE
SYSTEM.CLUSTER.COMMAND.QUEUE
SYSTEM.CLUSTER. TRANSMIT.QUEUE
SYSTEM.DEF.CLUSSDR
SYSTEM.DEF.CLUSRCVR

Do not alter the default queue definitions. This could ater the default channel definitions in the same
way as any other channel definition, using MQSC or PCF commands.

2.6.4 IntheUnlikely Event of a Repository Failure

Cluster information is carried to repositories (whether full or partial) on alocal queue called
SYSTEM.CLUSTER.COMMAND.QUEUE. If this queue should fill up, perhaps because the queue
manager has stopped working, the cluster-information messages are routed to the dead-letter queue. If
thisis observed from the messages on the queue-manager 1og or OS/390 system console, an application
will need to be executed to retrieve the messages from the dead-letter queue and reroute them to the
correct destination.

If errors occur on arepository queue manager, messages will appear defining what error has occurred and
how long the queue manager will wait before trying to restart. On MQSeries for 0S/390 the

10/30/02 80.1.4b 25

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

SYSTEM.CLUSTER.COMMAND.QUEUE is get-disabled. After identifying and resolving the error,
get-enable the SY STEM.CLUSTER.COMMAND.QUEUE so that the queue manager will be able to
restart successfully.

In the unlikely event of a queue manager’s repository running out of storage, storage allocation errors
will appear on the queue-manager log or OS/390 system console. If this happens, stop and then restart the
gueue manager. When the queue manager is restarted, more storage is automatically allocated to hold all
the repository information.

2.6.5 Cluster channels

Although using clusters relieves the need to define channels (because M QSeries defines them by default),
the same channel technology used in distributed queuing is used for communication between queue
managers in a cluster. To understand about cluster channels, become familiar with matters such as:

How channels operate

How to find their status

How to use channel exits

These topics are al discussed in the MQSeries Intercommunication book.

When defining cluster-sender channels and cluster-receiver channels, do not set the “ disconnect interval”
too low (less than about 10 seconds). If it is set too low, the channel may close down between sending a
reguest to arepository queue manager and receiving the response.

If the cluster-sender end of a channel fails and subsequently triesto restart, the restart isrejected if the
cluster-receiver end of the channel has remained active. To avoid this problem, arrange for the cluster-
receiver channel to be terminated and restarted, when a cluster-sender channel attempts to restart.

On V5.X of MQSeriesfor Sun Solarisand Windows NT

Control this using the AdoptNewMCA, AdoptNewM CATimeout, and AdoptNewM CACheck attributes
in the gm.ini file or the Windows NT Registry. See the MQSeries System Administration book for more
information.

On MQSeriesfor OS/390
Control this using the ADOPTMCA and ADOPTCHK parameters of CSQ6CHIP. See the MQSeries for
05390 System Setup Guide for more information.

All documentation referenced above can be found in appendix A

2.7 MQSeriesCluster Implementation Guidelines

On 0OS/390 clustering cannot be used if the system is using CICS for distributed queuing. In
order to get the most benefit out of using clusters, the queue managers in the network need to be
on aplatform that supports clusters. Until all the systems are migrated to a platform that
supports clusters, the system may have queue managers outside a cluster that are not able to
access the cluster queues without extra manual definitions. The clustering facility is available to
gueue managers on the following platforms:

MQSeriesfor AIX V5.1

10/30/02 80.1.4b 26

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

MQSeriesfor AS/400 V5.1
MQSeriesfor HP-UX V5.1
MQSeries for 0S/2 Warp V5.1
MQSeriesfor 0S/390 V2.1
MQSeriesfor Sun Solaris V5.1
MQSeriesfor Windows NT V5.1

If two clusters with the same name were merged, it would not be possible to separate them again.
Therefore, it is advisable to give al clusters a unique name.

If amessage arrives at a queue manager but there is no queue there to receive it, the messageis
put to the dead-letter queue as usual. (If there is no dead-letter queue, the channel fails and
retries, as described in “ Dead-letter queue Guidelines’ in the M QSeries Intercommunication
book.)

Using clusters reduces system administration. Clusters make it easy to connect larger networks
with many more queue managers than would be possible to contemplate using distributed
gueuing. However, as with distributed queuing, there is arisk that the system may consume
excessive network resourcesif attempting to enable communication between every queue
manager in a cluster.

The purpose of distribution lists, which are supported on V5.1 of MQSeries for Sun Solaris and
Windows NT, isto useasingle MQPUT command to send the same message to multiple
destinations. Distribution lists can be used in conjunction with queue manager clusters. However,
in a clustering environment all the messages are expanded at MQPUT time and so the advantage,
in terms of network traffic, is not so great as in a non-clustering environment. The advantage of
distribution lists, from the administrator’s point of view, is that the numerous channels and
transmission queues do not need to be defined manually.

If using clusters to achieve workload balancing, first examine the applications to see whether the
applications require messages to be processed by a particular queue manager or in a particular
sequence. Such applications are said to have message affinities. Applications may need to be
modified before being used in complex clusters.

It is not advisable to use clustering in an environment where | P addresses change on an
unpredictable basis such as on machines where Dynamic Host Configuration Protocol (DHCP) is
being used.

2.8 FSA Cluster Specifics

2.8.1 Physical layout of the cluster
The hardware architecture implemented at FSA is shown in the diagram below.

10/30/02 80.1.4b 27

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID EAI CORE ARCHITECTURE RELEASE 3.0

FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (FINAL)

EAI BUS Architecture Overview (Development/Test)

Cics
DPL
Bridge

Applications

NSLDS Cics

DPL
Bridge
Applications

bTrade

SU3SE16

Applications
7
= Adapter
=| SU3SEL7
eCBS

Web Server
Applications

FMS

Applications

Config-

uration PEPS

. Applications

iy Deployment II
D) o)

(il
Il|

LO System-eMPN

Adapter

P-Note Imaging

Applications

10/30/02 80.1.4b 28

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Thisdiagram is an operational model of the EAl Bus and trading partner systems. Referenced from | eft
to right this diagram shows 4 logical areas consisting of the WAS Server, EAl Bus Cluster, MQSI
Configuration area, and the trading partner systems. The WAS server can be used as afront end for
testing of interfaces with trading partner systems. In addition, two trading partner systems may interface
with each other viathe Bus.

28.1.1 Cluster configuration — Development/Test

The FSA EAI cluster consists of 2 Sun Solaris Servers named SU35E16 and SU35E17. The Sun Servers
are the repository queue managers for the cluster.

The steps used in creating the cluster are:
1. Instal MQSeries on the system.
2. Create the queue managers and the default objects with the crtmgm command.

3. Start the channel initiator and the channel listener. The channel initiator monitors the system-
defined initiation queue SY STEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channel listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when
it is needed.

4. Decide upon the cluster name, in the case of FSA the name of EAI was chosen for the cluster.

5. Determine which queue managers should hold full repositories. For FSA, both nodes SU35E16
and SU35E17 were chosen to hold full repositories.

6. Alter the queue manager definitions to add repository definitions. The command ALTER
QMGR REPOS(EAI) was executed on both SU35E16(Development) and SU35EL7(Test).

7. Definethe CLUSRCVR channels. For each queue manager in a cluster you need to definea
cluster receiver channel on which the queue manager can receive messages. The command was
executed on SU35E5, SU35E16(Development), and SU35E17(Test) with the command:

For example:

On SU35E5: DEFINE CHANNEL (TO.SU35E5) CHLTY PE(CLUSRCVR) TRPTY PE(TCP)
CONNAME(ip address of SU35E5) CLUSTER(EALI)

On SU35E16 Development: DEFINE CHANNEL (TO.SU35E16(Devel opment))
CHLTYPE(CLUSRCVR) TRPTYPE(TCP) CONNAME(ip address of SU35E16(Development))
CLUSTER(EALI)

On SU35E17 Test: DEFINE CHANNEL (TO.SU35E17(Test)) CHLTY PE(CLUSRCVR)
TRPTYPE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER(EALI)

10/30/02 80.1.4b 29

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

8. Definethe CLUSSDR channels. On every queue manager in acluster, you need to define one
cluster-sender channel on which the queue manager can send messages to one of the repository
gueue managers.

On SU35E5: DEFINE CHANNEL (TO.SU35E16(Development)) CHLTY PE(CLUSSDR)
TRPTYPE(TCP) CONNAME(ip address of SU35E16) CLUSTER (EALI)

On SU35E16 Development: DEFINE CHANNEL (TO.SU35E17(Test)) CHLTY PE(CLUSSDR)
TRPTYPE(TCP) CONNAME(ip address of SU35E17(Test)) CLUSTER (EAI)

On SU35E17 Test: DEFINE CHANNEL (TO.SU35E16(Devel opment)) CHLTY PE(CLUSSDR)
TRPTYPE(TCP)

CONNAME(ip address of SU35E16(Development)) CLUSTER(EAI)

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender
channel in the same cluster, the cluster-sender channel is started.

9. Defineany cluster queues. For example:
On SU35E16 Development: DEFINE QLOCAL (EAI.FROM.WAS.LOAN) CLUSTER(EAI)

10/30/02 80.1.4b 30

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

EAI BUS Architecture Overview (Production)

Ccics
DPL
Bridge

Applications

NSLDS Cics

DPL
Bridge
Applications

bTrade
Adapter
Applications

MQSeries Server
‘Web Server - -
Applications
Applications

eCBS

MQSeries Server
Applications

Web Server

Applications
PP FMS

Adapter
Applications
— 3
Config-

uration
Mgr PEPS

5

£|

3|

(al

—
=

Adapter
Applications

LO System-eMPN
Adapter

Applications

P-Note Imaging

Applications

Oracle

28.1.2 Cluster configuration — Production

The FSA EAI cluster “EAIPROD” consists of 2 Sun Solaris machines named SU35E3 and SU35E14.
These two machines are the repository queue managers for the cluster.

The steps used in creating the cluster are:

10/30/02 80.1.4b 31

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

For

Install MQSeries on the system.
Create the queue managers and the default objects with the crtmgm command.

Start the channel initiator and the channel listener. The channel initiator monitors the system-
defined initiation queue SY STEM.CHANNEL.INITQ which is the initiation queue for all
transmission queues. The channel listener must be run on each system. A channel listener
program ‘listens’ for incoming network requests and starts the appropriate receiver channel when
it is needed.

Decide upon the cluster name, in the case of FSA the name of EAIPROD was chosen for the
cluster.

Determine which queue managers should hold full repositories. For FSA, both nodes SU35E3
and SU35E14 were chosen to hold full repositories.

Alter the queue manager definitions to add repository definitions. The command ALTER
QMGR REPOS(EAIPROD) was executed on both SU35E3 and SU35E14.

Define the CLUSRCVR channels. For each queue manager in a cluster you need to define a
cluster receiver channel on which the queue manager can receive messages. The command was
executed on SU35E3, SU35E9, SU35E13, and SU35E14 with the command:

example:

On SU35E3: DEFINE CHANNEL (TO.SU35E3) CHLTY PE(CLUSRCVR) TRPTY PE(TCP)
CONNAME(ip address of SU35E3) CLUSTER(EAIPROD)

On SU35E9: DEFINE CHANNEL (TO.SU35E9) CHLTY PE(CLUSRCVR) TRPTY PE(TCP)
CONNAME(ip address of SU35E9) CLUSTER(EAIPROD)

On SU35E13: DEFINE CHANNEL (TO.SU35E13) CHLTY PE(CLUSRCVR) TRPTY PE(TCP)
CONNAME(ip address of SU35E13) CLUSTER(EAIPROD)

On SU35E14: DEFINE CHANNEL (TO.SU35E14) CHLTY PE(CLUSRCVR) TRPTY PE(TCP)
CONNAME(ip address of SU35E14) CLUSTER(EAIPROD)

8.

Define the CLUSSDR channels. On every queue manager in a cluster, you need to define one
cluster-sender channel on which the queue manager can send messages to one of the repository
gueue managers.

On SU35E3: DEFINE CHANNEL (TO.SU35E14) CHLTY PE(CLUSSDR) TRPTY PE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)

On SU35E9: DEFINE CHANNEL (TO.SU35E14) CHLTY PE(CLUSSDR) TRPTY PE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)

On SU35E13: DEFINE CHANNEL (TO.SU35E14) CHLTY PE(CLUSSDR) TRPTY PE(TCP)
CONNAME(ip address of SU35E14) CLUSTER (EAIPROD)

On SU35E14: DEFINE CHANNEL (TO.SU35E3) CHLTY PE(CLUSSDR) TRPTY PE(TCP)
CONNAME(ip address of SU35E3) CLUSTER (EAIPROD)

Once the queue manager has definitions for both a cluster-receiver channel and a cluster-sender
channel in the same cluster, the cluster-sender channel is started.

10/30/02

80.1.4b 32

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

9. Defineany cluster queues. For example:
On SU35E3: DEFINE QLOCAL (EAI.FROM.WAS.LOAN) CLUSTER(EAIPROD)

29 MQSeries Security Standards

In general, security can be addressed at many different levels in a messaging environment. These
security levels are identified as the application, middleware, operating system, network, and link levels.
Another way to look at security isto think about providing access control, confidentiality, authentication,
non-repudiation and integrity functionality.

EAI is committed to protecting the EAI framework from illegal or damaging actions by individuals,
either knowingly or unknowingly. The EAI framework isto be used for business purposes in serving the
interests of Federal Student Aid, its clients and customersin the course of normal operations. Effective
security is ateam effort involving the participation and support of every Federal Student Aid employee
and affiliate who deals with information and/or information systems.

EAI complies with FSA/CSC policies and procedures. This consists of file-level security and use of a
restricted number of non-published tcp/ip ports. Only users who belong to the mgm group can execute
EAI Services. Thereis only one communication port used by each system for EAI communication
purposes.

Therefore:

1) All EAI binarieswill be run behind the DMZ. It means that no messages will be transmitted in
clear text across a public (CSC, TSYS, ACS). This reduces the security exposure of the EAI to
the outside world is not bigger than the likelihood of hacker accessing other FSA resources.
Note: See Data Encryption policy for exception(s).

2) Useof EAI isrestricted to only the users who belong to the mgm group. It serves 2 purposes.
First of all it requires explicit action on behalf of every EAI user to be added to the mgm group.
Second, malicious users will not be able to get accessto EAI. EAI users who failed to go through
the step of being added to mgm group as well as malicious users trying to communi cate with the
“EAl BUS’ will be returned a MQSeries 2035 error reason code, which means “Not
authorized”.

3) On each production system there is only one tcp/ip port open to allow incoming communication.

29.1.1 DataEncryption Palicy (internal to FSA)

The data encryption policy defines requirements for encryption algorithms used within the organization.

EAI datathat resides on hardware managed by FSA (CSC) will not be encrypted. This policy is subject
to change depending upon application requirements

10/30/02 80.1.4b 33

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

29.1.2 DataEncryption Palicy (external to FSA)

The data encryption policy defines requirements for encryption algorithms used with external trading
partners. Hardware level encryption is used when exchanging data between FSA managed servers and
external trading partner servers; i.e. servers not hosted by the CSC.

Application level encryption will also be considered depending on future requirements.

210 EAI MQSeries Security Implementation Guidelines

Queue Managers need to ensure that they exchange messages with the correct partner Queue Managers.
Notethat it isjust asimportant for the sending Queue Manager to be sure of the receiver’sidentity asitis
for the receiving Queue Manager to be sure of the sender’s identify. Such an environment is called
mutual authentication. EAI will develop, test, and implement MQSeries channel exits for mid-tier
servers to authenticate connectivity from authorized servers. Only servers in the authorized list will be
permitted to connect/utilize EAI resources.

2.10.1 EAI Application Consideration

The following tableis a guideline of security services that can be provided depending upon application
reguirements, the category of requirement (NR — not required, O —optional, M —mandatory, V-Varies by
application) and which levels might be used to satisfy each service (AL-Application Level, OS-Operating
System Level, MW-Middleware Level, LL- Link Level, NW- Network Level, PP-Policy and Procedures).

Service ‘ Category | Applicable Approaches
< Identification & Authentication (I & A)
» End User M OS, AL
» Application Processes M (O8]
» Channel Agent \ oS, MW
% Authorization (Access Control)
» Application Processes
. Queues @) oS, MW
. Message Headers \ 0Ss, MW
» System Processes
- Queues [®) OS, MW
= Message Headers V MW
» Restricted Commands M OS, MW, AL
» Resource Definitions M OS, MW, AL
% Message Integrity
» Modification Detection ®) LL. NW, MW, AL
% Message Non-Repudiation
> _ Sender 0] NW, MW, AL
» Receiver O NW, MW, AL
% Message Privacy

10/30/02 80.1.4b 34

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Service Category Applicable Approaches
» Entire Message o LL, NW, MW, AL
»> Selected Fields © MW, AL
Logging
» Changes to security information M 0S, MW, AL
» Security-related events
. Failed access attempts M NW, OS, MW, AL
. Failed message content validation (@) NW, MW, OS, AL

211 MQSeries Websphere Design Guidelines

The Web Application Server communicates with the EAI busto retrieve and put information to different
legacy data sources. WebSphere Application Server is the standard Java Application Server in the
Integrated Technical Architecture (ITA) at FSA. The WebSphere Server will host Web Based
applications that act as middleware between the client browser and FSA’s Legacy Systems viathe EAI
bus. Using Java Server Pages, Servlets and Enterprise Java Beans, WebSphere implements FSA’s
business application logic through Java based Applications. Several methods exist to enable
communication between a WebSphere hosted application and the EAI bus.

2.11.1 WebSphere Connectors

WebSphere Common Connector Framework Classes - IBM java classes provided with WebSphere
Application Server which provide a highly abstract view of multiple middleware products.

Application Messaging Interface Java Classes - IBM provided java classes which implement the Open
Applications Group Open Applications Messaging Standard (OAG OAMAYS). These classes provide a
"services' view of middleware, shielding developers from the underlying messaging semantics.

IBM Javaclass for MQSeries - IBM provided java classes which provide athin java native interface
(INI) wrapper around the MQSeries native libraries. These classes are provided with the base MQSeries
product.

IBM Java Messaging Service classes - IBM provided java classes which provide an implementation of
the Sun Java M essaging Service specification. These classes allow applications to be developed using a
vendor neutral interface which would allow for the messaging layer to be replaced or the programs
moved to other platforms where other IMS services could be used interchangeably.

EAI Messaging components - EAl developed java components to provide an RPC-like interface to FSA
middleware. Two implementations of these components exist, one using AMI and one using the base
MQSeries java classes.

10/30/02 80.1.4b 35

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

2.11.1.1 Common Connector Framework

The Common Connector Framework is a standard for devel oping applications using E-Business Patterns.
When a Web Application Server needs to access a Backend Enterprise Information System, whether it is
amiddleware messaging system, Enterprise Database system, or a System 390 Transaction Management
System, several common communication procedures must take place. These procedures may include
starting atransaction, processing data, passing status, and closing the transaction. Whether the backend
system is CICS, IMS, DB2 or an Oracle RDBMS, the actual commands and parameters may be different
but the high level procedures are common. Since these procedures and backend systems have already
been identified, prebuilt java classes can be written to communicate with these systems. Thisrequiresa
change to the parameters and data that is passed to the backend systems.

The Common Connector Framework (CCF) is actually implemented within IBM’ s java devel opment
tool, Visual Agefor Java (VAJ). The needed classes that implement the binding between the Web
Application Server and MQSeries are included within VAJ s Enterprise Access Builder, which is part of
VAJEnterprise Edition. Programs written using the MQSeries CCF connector classes can communicate
with MQSeries Applications using the standard M QSeries Programming Interface or the MQSeries
Client classes for javainterface. A programmer can use the SmartGuide Wizard within VAJto build a
program shell that will communicate with MQSeries and all that is required isto add the application
business logic that will make decisions.

2.11.1.2 Build Your Own Connector

Using MQSeries client classes for Java, a programmer can develop their own interface to MQSeries. This
option should only be used by very experienced programmers that have previously implemented Java
interfaces to messaging systems. This option is not recommended because the CCF framework is so
readily available.

10/30/02 80.1.4b 36

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

2.11.2 Architecture look and feel

Whether using the CCF framework or building a custom connector, it isimportant to have a standard,
reusabl e application component within the Java Application Server that enforces communication and
datatransfer standards between the Application Server and EAl Bus. This reusable component can exist
as a Servlet or an Enterprise Java Bean on the WebSphere Application Server. When other applications
require access to the EAl Bus, the applications would make a call to the servlet/EJB, which then forwards
the message to the EAI bus. This reusable servlet/EJB enforces naming standards, queue names and
cluster names before sending message data to the EAI bus. This servlet/EJB would also control the
number of connectionsto MQSeries and allow a central place to tune and manage the web application
interface to MQSeries.

To providereliability and availability of the EAI Bus, the MQSeries Server component should be
installed on all WebSphere Application Server (WAYS). If an active MQSeries Server with defined Queue
Managers are installed on the WAS Server, this ensures assured delivery of all messages to the target
destination. If the Queue Manager on the target destination server goes down the sending MQSeries
Server will retain the message data and send once connectivity to the target Queue Manager is restored.

Java Application needs access to the
EAI Bus and makes acall to the EAI
Message Servlet, passing the message

Java Application
Running within
WebSphere

To Ensure Reliabilty MQSeries
Server isinstalled on WAS Box

/

MQSeries Server EAI BUS
EAI Servlet/EIB Residing on
running with WAS Server
WebSphere
Providing accessto
FAl RuS

10/30/02 80.1.4b 37

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

2.11.3 FSA EAIl WebSphere Reusable Component

The EAI Core Architecture team has devel oped a reusable WebSphere Java component as an aid to FSA
application devel opers in connecting Internet applications to the EAI Bus. This reusable component is
written in Java. It provides aclassfile for putting and getting messages into and out of a MQSeries
message queue. The application incorporates this Java class within the application code to provide a
transparent mechanism for putting messages into a queue to be sent to the EAl Busfor processing, and to
retrieve message data from a queue upon return. The application specific logic must be built into the
application to pass the required message data and to process the message data upon receipt.

211.3.1 WebSphere MQ Adapter Overview

The WebSphere MQ Adapter is a Java component that provides a Classfile to put message datainto a

M QSeries message queue and to get message data from a M QSeries message queue. The adapter utilizes
MQSeries MQI callsto perform this functionality. In addition, the MQ Adapter provides XML
tranglation capability. This transforms the input message from the WebSphere server application into the
application specific XML format. The input data can be of any format, aslong as the XML mapping is
defined in the application specific MQ Adapter. The message can be passed to the EAl Busfor
transformation by MQSI. This functionality was provided for the PEPS and bTrade validation test.

The developed EAl MQ Adapter resides in the ClearCase repository. Any FSA application development
team can utilize this functionality for putting messages into a M QSeries message queue, transforming
into XML format, and getting the returned message data from the legacy system for processing by the
application.

10/30/02 80.1.4b 38

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

3 DATAINTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES

Data Integrator (DI) isa COTS product that uses MQ messaging to transfer data between different
systems. When sending afile, DI automatically splitsit up into MQ messages, sends it across a
channel(s), and reassemblesiit at the destination machine. FSA has not previously utilized Data Integrator
as part of its existing middleware infrastructure therefore no standards currently exist. This section will
provide guidance on Data Integrator standards that have been developed in the FSA EAI architecture.

3.1 Datalntegrator Standards

3.1.1 Bi-Directional Sending

Bi-directional sending means that messages can be sent in both directions between queue managers.
Every trading partner that uses Data Integrator is set up to send and receive messages in both directions,
even in cases where the ability to send in one direction is all that is required.

3.1.2 Pool Architecture

Pooled queues are used to support large file transfers. Local queues have size limitations of 1 GB, so
pooling 50 local queues allows each trading partner to receive files up to 50 GB in size. All interfaces on
the Bus use 50 pooled queues, and the default data pool used for sending viathe EAl Busis EAIPOOL.

3.1.3 Scripts

Unix scripts that send data between interfaces using Data Integrator are generally named in the following
format: <Destination Name>interface.sh (ex. A script on FM S called PEPSinterface.sh would send data
from FMS to PEPS).

All scripts for Data Integrator reside in the SEAIDIR/ftf directory

3.1.4 Configuration file

The configuration file contains default settings for Data Integrator, including defaults for its components
(discussed later), logging, and pooled queues. An example is the DefaultPool value of ‘EAIPOOL’, as
mentioned above. Thereisone .ini configuration file (ftfconfig.ini) that is used across all trading
partners. The .ini files used for al trading partners have the same options specified.

3.2 Datalntegrator Implementation

Thefollowing isalist of suggestions for the design and administration of Data Integrator.
Unix environment variables (i.e. $L QM) should be used whenever possible.

Avoid the use of ‘dirmon’ (directory monitoring) whenever possible. The script that is supposed
to be “kicked off” should be called directly instead.

When scripts are called via cron:

0 Ensurethat the owner of the cronjob has permission to execute the DI scripts.

10/30/02 80.1.4b 39

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

o Ensurethat ftfenvlist.sh has been sourced in from the EAI build.

Trading partner data for the COD interface is written out to the SEAIDATA directory. If another
interface would prefer data written out to a different directory, ensure that the appropriate users
have read/write access to that directory.

10/30/02 80.1.4b 40

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

4 MQSERIESINTEGRATOR ARCHITECTURE CONVENTIONSAND GUIDELINES

MQSeries Integrator provides data transformation and message routing capability. This section will
provide guidance on naming conventions for using MQSeries Integrator in the FSA EAI architecture.
These guidelines are meant to provide guidance in defining and implementing M QSeries I ntegrator
objects.

41 MQS Naming Standards

411 Common Rules

For FSA, there are rules that must be adhered to when providing names or identifiers for message flows,
message Ssets, messages, message processing nodes, brokers, and execution groups in the MQSI broker
domain:

Usedll upper case letters
Version al message flows, message sets, and messages names.

Underscore should be used instead of spaces when naming all message flows, message sets, and
messages.

MRM aobject identifiers must match the object name. MRM abjectsinclude categories, e ement
qualifiers, eements, ement lengths, messages, types and e ement valid values. Thereason for thisis
that the objects are referenced by their identifiers and not their names.

A corresponding description should be provided for any objects created.

41.2 Brokers

The broker isaMQSI resource that hosts and controls business processes defined in message flows. The
following guidelines should be followed when naming brokers:

The broker name must be unique within the MQSI domain.

Associate each broker with a separate M QSeries Queue Manager. Thereisaone-to-one correlaion
between abroker and a queue manager.

The broker name should have the same name as the Queue Managersthey are associated with.

For example a Queue Manager cdled “MQSI” would have abroker “MQSI” associated withit.

4.1.3 Execution Groups

An execution group provides an isolated execution environment within the broker, and is started asa
separate operating system process. The following guidelines should be followed when naming execution
groups:

The execution group must be unique within a broker.

10/30/02 80.1.4b 41

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Execution group names should be of the form:

FIRSTNODE_SECONDNODE

- [I Thefirst node should indicate the name of the system that messages are coming from or sent to.
This means that message flows are grouped easily within the broker based on the systemsiit
communicates with.

~ [1 The second node should indicate the name of the system that messages are coming from or sent to.
This means that message flows are grouped easily within the broker based on the systemsiit
communicates with.

Examples:
COD_FMS

414 Message Flows

A message flow is a sequence of operations on a message, performed by a series of message processing
nodes. The actions are defined in terms of the message format, its content, and the results of individual
actions along the message flow. The following guidelines should be followed when naming message
flows:

The name for amessage flow must be unique within a broker domain.

Message flow names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FORTHNODE

- [I Thefirst node is the name of the system that messages are coming from.

~ [1 The second node is the name of the system that messages are sent to.

- [I Thethird node is a short description of asto the function of the message flow.
- [1 Thefourth node is the current version of the message flow being used.
Examples:

FMS COD_RESPONSE 1

EAl_COD_ERRORS 1

415 Message Sets

A message set isalogical grouping of related messages. The following guidelines should be followed
when haming message sets:

The name for amessage set must be unique within abroker domain.

Message set names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE
- [I Thefirst node is the name of the system that messages are coming from or sent to.

-~ [1 The second node is the name of the system that messages are coming from or sent to.

10/30/02 80.1.4b 42

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

- 0 Thethird node is the current version of the message flow being used.

Examples:
COD_FMS 1

416 Messages

A messageisthelogical representation of datathat is exchanged between client applications and
MQSeries Integrator. The following guidelines should be followed when naming messages:

The name for a message must be unique within amessage st.

Message names should bein the following format:

FIRSTNODE_SECONDNODE_THRIDNODE_FORTHNODE
- 0 Thefirst node isthe name of the system that owns that messages structure.
~ [The second node is ashort description of asto the function of the message.

~ I Thethird node represents the how the message will be used. Vaid valuesare“INPUT” and
“OUTPUT". If the message will be used as both input and output, then this should be left blank.

- [Thefourth node is the current version of the message being used.

Examples:
COD_FINANCIAL_1
COD_VENDOR_INPUT_1
FMS RESPONSE INPUT_1

4.1.7 Message Flow Nodes

A message processing node is a point in the message that represents awell defined processing stage. It
can be one of severa primitive types or can represent a sub flow. Thereisno hard and fast way that
message flow nodes should be named. However there are some guidelines that can be presented herein
order to make the message flow clearer for people trying to understand its business purpose.

4171 Check

The Check node compares the format of a message with a message-type specification that you supply
when you configure the Check node. The message-type specification comprises any combination of the
message domain, message set, and message type. The following guidelines should be followed when
naming Check nodes:

Check node names should bein the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FORTHNODE

~ [Thefirst node must be CHECK

~ [The second node must be “DOMAIN”, “SET”, and/or “TYPE".

- 0 Thethird node isthe short description for the function of the node.

10/30/02 80.1.4b 43

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

- 0 Thefourth nodeis optiond and is the instance the Check node within the message flow.

Examples:
CHECK_DOMAIN_XML

4172 Compute

The Compute node constructs a new message or modifies elements of an existing message, or its
associated destination or exception list, or both. These components of the message can be based on
elements of both the input message and data from an external database. The following guidelines should
be followed when naming Compute nodes:

Compute node names should be in the following format:

FIRSTNODE.SECONDNODE.THIRDNODE.FOURTHNODE

- [I Thefirst node isthe name of the input message format that is sent to the node.

~ [1 The second node is the name of the output message format that is sent from the node.

- [I Thethird node isthe short description of asto the function of the node.

- [I Thefourth node is optional and is the instance the Compute node within the message flow.

Examples:
COD_VENDOR_INPUT_1.COD_FINANCIAL_1.TRANSFORMATION
COD_FINANCIAL_1.COD_FINANCIAL_1.DBLOOKUP.2

4.1.7.3 Database

The Database node allows a database operation in the form of an ESQL statement to be applied to the
specified ODBC data source. The following guidelines should be followed when naming Database
nodes:

Database node names should bein the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

- 0 Thefirst node represents the how the database function that will be performed. Vdid vauesare
“INSERT_INTO”, “UPDATE_IN", and “DELETE_FROM”.

~ [The second node is the database name that the node connectsto.

~ [1 Thethird node is the table name that the node references.

- 0 Thefourth node is optional and is the instance the Database node within the message flow.
Examples:

INSERT_INTO_DEV_COD 1

UPDATE_IN_DEV_COD 2

DELETE_FROM_COD 1

10/30/02 80.1.4b 44

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

4174 DataDelete

The DataDelete node is a specialized form of the Database node that allows deletion of one or more rows
from atable in the specified ODBC data source. The following guidelines should be followed when
naming DataDel ete nodes:

DataDel ete node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE_FOURTHNODE

- [I Thefirst node must be*DELETE_FROM”.

~ [The second node is the database name that the node connectsto.

~ [The third nodeis the table name that the node references.

- [I Thefourth node is optiona and is the instance the DataDel ete node within the message flow.

Examples:
DELETE_FROM_COD_1

4175 Datalnsert

The Datalnsert node is a specialized form of the Database node that allows insertion of one or more rows
into atable in the specified ODBC data source. The following guidelines should be followed when
naming Datal nsert nodes:

Datal nsert node names should bein the following format:

FIRSTNODE_SECONDNODE _THIRDNODE_FOURTHNODE

- O Thefirst node must be “INSERT _INTO".

~ [The second node is the database name that the node connectsto.

~ [1 Thethird node is the table name that the node references.

- 0 Thefourth node is optional and is the instance the Datal nsert node within the message flow.

Examples:
INSERT_INTO_DEV_COD_1

4.1.7.6 DataUpdate

The DataUpdate node is a specialized form of the Database node that allows the modification of one or
more rowsin atable in specified ODBC data source. The following guidelines should be followed when
naming DatalUpdate nodes:

DataUpdate node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE _FOURTHNODE

- Thefirst node must be“UPDATE IN".

~ [The second node is the database name that the node connects to.

~ [Thethird nodeis the table name that the node references.

- [I Thefourth node is optiona and isthe instance the DatalUpdate node within the message flow.

10/30/02 80.1.4b 45

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Examples:
UPDATE_IN_DEV_COD_1

4177 Extract

The Extract node derives an output message from those elements of the input message that you specify
for inclusion. The following guidelines should be followed when naming Extract nodes:

Extract node names should bein the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

- [Thefirst node must be“EXTRACT”.

~ [The second node is the short description of asto the function of the node.

- 0 Thethird nodeis optiona and is the instance the Extract node within the message flow

Examples:
EXTRACT_HEADER

4178 Filter

The Filter node routes a message according to message content using afilter expression specified in
ESQL. The following guidelines should be followed when naming Filter nodes:

Filter node names should be in the following format:

FIRSTNODE_SECONDNODE

- [I Thefirst node is a question title that represents the functionality of the node.

~ [1 The second nodeis optional and isthe ingtance the Filter node within the message flow.
Examples:

IS GL_TRANSACTION
IS AP_TRANSACTION_1

4179 FlowOrder

The FlowOQrder node enables you to control the order in which amessage is processed by a message
flow.

FlowOrder node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE
- [J Thefirst node must be “ORDER".
~ [The second node is the short description of asto the function of the node.

- 0 Thethird nodeis optiona and isthe instance the FlowQrder node within the message flow.

10/30/02 80.1.4b 46

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Examples:
ORDER_DB_INSERT

4.1.7.10 Input Terminal

The Input Terminal provides an in terminal for an embedded message flow. The following guidelines
should be followed when naming Input Termina nodes:

Input Terminal node names should bein the following format:

FIRSTNODE_SECONDNODE
- 0 Thefirst node is the message flow name.
~ [The second node must be “IN”.

Examples:
COD_ERROR_IN

41711 Labe

The Label node is a named destination for a message processed by a RouteTolL abel node. The Label node
isidentified by an entry in adestination list of the message when it is processed by a RouteToL abel node.
The following guidelines should be followed when naming Label nodes:

Label node names should be in the following format:

FIRSTNODE_SECONDNODE
- [I Thefirst node isthe function of the adjacent nodes that are associated with the Label node.
~ [J The second node must be“LABEL".

Examples:
DB_INSERT_LABEL
FMS LABEL
DEFAULT_LABEL

41.7.12 MQInput

The MQInput node reads a message from an M QSeries message queue defined on the broker's queue
manager, and establishes the processing environment for the message. The following guidelines should
be followed when naming MQInput nodes:

The name must be the same name as the underlying MQSeries queue that it references.

Examples:

EAI.COD.FINANCIAL.GET

EAI.FMS FINANCIAL.RESPONSE.GET
EAI.COD.VENDOR.GET

10/30/02 80.1.4b 47

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

4.1.7.13 MQOutput

The MQOutput node writes messages to an M QSeries message queue defined on any queue manager
accessible by the broker's queue manager, or to the destinations identified in the destination list
associated with the message. The following guidelines should be followed when naming M QOutput
nodes:

The name must be the same name as the underlying M QSeries queue that it references.

Examples:
FMS.COD.FINANCIAL.RESPONSE.PUT
COD.FMS.FINANCIAL.RESPONSE.PUT
COD.ERRORS.PUT

41.7.14 MOQReply

The MQReply node is a specialized form of the MQQOutput node that sends a response to the originator
of the message by putting a message to the MQSeries queue identified by the ReplyToQueue field of the
message header. The following guidelines should be followed when naming MQReply nodes:

MQReply node names should bein the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

~ O Thefirst node must be“REPLY_TO".

~ [The second node is the name of the system that messages are sent to.

- 0 Thethird node is optional and is the instance the MQReply node within the message flow.
Examples:

REPLY_TO_COD

REPLY_TO_FMS 1

4.1.7.15 NeonFormatter

The NEONFormatter node is used to transform a message from a known input format to a specified
output format. The message definition and transformations are defined using the NEON Formatter
graphical utility. The following guidelines should be followed when naming NeonFormatter nodes:

NeonFormatter node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE

- [I Thefirst node must be* TRANSFORM_TO_NEON”.

~ [1 The second node is the output format that is defined in the NEON Formatter.

- [I Thethird nodeis optional and is the instance the NEONFormatter node within the message flow

Examples:
TRANSFORM_TO_NEON_FMS

10/30/02 80.1.4b 48

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

TRANSFORM_TO NEON_COD_1

4.1.7.16 NeonRules

The NEONRules node provides an encapsulation of the NEON Rules engine within the MQSeries
Integrator Version 2 environment. The following guidelines should be followed when naming NeonRules
nodes:

NeonRules node hames should be in the following format:

FIRSTNODE_SECONDNODE

- [I Thefirst node must be *“NEONRULES'.

~ [1 The second node is optional and is the instance the NeonRules node within the message flow.

Examples:
NEONRULES 1

4.1.7.17 Output Terminal

The Output Terminal provides an out terminal for an embedded message flow. The following guidelines
should be followed when naming Output Terminal nodes:

Output Terminal node names should be in the following format:
FIRSTNODE_SECONDNODE

- 0 Thefirst node is the message flow name.

~ [The second node must be“OUT”.

Examples:
COD_ERROR_OUT

4.1.7.18 Publication

The Publication node filters and transmits the output from a message flow to subscribers who have
registered an interest in a particular set of topics. The following guidelines should be followed when
naming Publication nodes:

Publication node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE

- [Thefirst node must be“PUBLISH_TO".

~ [1 The second nodeis optional and represents the subscription point.

- [I Thethird node is optional and isthe instance the Publication node within the message flow.
Examples:

PUBLISH_TO XML

PUBLISH_TO_FIXED 1

10/30/02 80.1.4b 49

US DEPARTMENT OF EDUCATION EAI CORE ARCHITECTURE RELEASE 3.0

FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (FINAL)

4.1.7.19 ResetContentDescriptor

The ResetContentDescriptor node takes the bit stream of the input message and reparsesit using a
different message template from the same or a different message dictionary. The node can reset any
combination of message domain, set, type, and format. The following guidelines should be followed
when naming ResetContentDescriptor nodes:

ResatContentDescriptor node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE
- U Thefirst node must be “RESET_TO".
~ [1 The second node is the new message template that the message will follow.

- [I Thethird nodeis optiona and isthe instance the ResatContentDescriptor node within the message
flow.

Examples:

RESET_TO XML
RESET_TO NEON_1

4.1.7.20 RouteToL abel

The RouteToL abel node provides arouting facility based on the contents of the destination list associated
with the message. The destination list contains the identity of one or more target Label nodes. The
following guidelines should be followed when naming RouteToL abel nodes:

RouteToL abel node names should bein the following format:

FIRSTNODE_SECONDNODE
~ [Thefirst node must be“ROUTETOLABEL".
~ [The second nodeis optional and is the instance the RouteTol abel node within the message flow.

Examples:
ROUTETOLABEL _1

41.7.21 Throw

The Throw node provides a mechanism for throwing an exception within a message flow. The following
guidelines should be followed when naming Throw nodes:

Throw node names should bein the following formeat:
FIRSTNODE_SECONDNODE_THIRDNODE

~ U Thefirst node must be “THROW”.

-~ [1 The second node is a short description of the exception that is thrown.

- [J Thethird nodeis optiona and isthe instance the Throw node within the message flow.

10/30/02 80.1.4b 50

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Examples:
THROW_INVALID_TRANSACTION_TYPE
THROW_COD_ERROR_1

41.7.22 Trace

The Trace node generates trace records that can incorporate text, message content, and date and time
information, to help you to monitor the behavior of the message flow. The following guidelines should be
followed when naming Trace nodes:

Trace node names should be in the following format:

FIRSTNODE_SECONDNODE_THIRDNODE

~ [0 Thefirst node must be “TRACE".

~ [The second node is ashort description of the function of the trace node.

- 0 Thethird nodeis optiona and is the instance the Trace node within the message flow.
Examples:

TRACE_MESSAGE

TRACE_MESSAGE _HEADERS 1

4.1.7.23 TryCatch

The TryCatch node provides a specia handler for exception processing. The following guidelines should
be followed when naming TryCatch nodes:

TryCatch node names should bein the following format:
FIRSTNODE_SECONDNODE
- [J Thefirst node must be* TRY CATCH".
~ [1 The second nodeis optional and istheingtance the TryCatch node within the message flow.

Examples:
TRYCATCH

4.1.7.24 Warehouse

The Warehouse node is a specialized form of the Database node that stores the entire message, or parts of
the message, or both, to the specified ODBC data source. The following guidelines should be followed
when naming Warehouse nodes:

Warehouse node names should be in the following format:
FIRSTNODE_SECONDNODE_THIRDNODE

- 0 Thefirst node must be “HOUSE IN”.

~ [The second node is the database name that the node connectsto.

10/30/02 80.1.4b 51

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

- [J Thethird node is the table name that the node references.

Examples:
HOUSE_IN_DEV_COD

4.2 MQSl Implementation Guidelines

Thefollowing isalist of suggestions for designing message flows and message setsin MQSeries
Integrator.

Devel op message flows to be as concise as possible. Thereisacost associated with passing through
each of the primitive nodes, soit is best to develop aflow in asfew nodes as possible.

Use RouteTolL abel and Label nodes for message flows that routes messagesin severa (more than 3)
directions, since they are cheaper than several Filter nodes.

Combine Filter and Compute nodesinto a single Compute node with an IF THEN EL SE structure
when possible.

Use non-persistent messages instead of persistent messages. Persistent messages cause agreat deal
more logging and therefore the speed of the flow isbound by the speed of the disk hardware.

Set Transaction Mode to automeatic as a property of the MQInput node, to allow persistent messages to
be treated as transactions while non-pers stent messages are not.

Refrain from using nesting loops inside each other since they offer no significant gain because the
extraoverhead of the additional ESQL counters the small gains from navigating more quickly through
the message structure.

Minimize converting between message XML, MRM and BLOB formats.

Reusable logic should be placed in sub-flow, so that other flows have accessto it. Exampleswould
include acommon error handling route.

Message dements, e ement lengths and types should be automatically created by using the MQS|
importer. The MQSI importer allows for the importing of C structures and COBOL copybooks.

10/30/02 80.1.4b 52

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

5 FSA APPLICATION ENABLEMENT GUIDELINES

51 Application Programs and M essaging

The IBM MQSeries range of products provides application-programming services that enable application
programs to communicate with each other using messages and queues. This form of communicationis
referred to as commercial messaging. It provides assured, once-only delivery of messages. Using

M QSeries means that you can separate application programs, so that the program sending a message can
continue processing without having to wait for areply from the receiver. If the receiver, or the
communication channdl to it, is temporarily unavailable, the message can be forwarded later. MQSeries
also provides mechanisms for providing acknowledgements of messages received.

The programs that comprise a M QSeries application can be running on different computers, on different
operating systems, and at different locations. The applications are written using a common programming
interface known as the Message Queue Interface (MQI), so that applications devel oped on one platform
can be transferred to another.

This figure shows that when two applications communicate using messages and gueues, one application
puts a message on a queue, and the other application gets that message from the queue.

Program B (MQGET)

Program A (MQPUT)

5.2 Application Usage Guidelines For MQSeries

A gueueis aMQSeries object owned by a queue manager, upon which applications can put or retrieve
messages. Applications access a queue by using the Message Queue Interface (MQI). Before amessage
can be put on a queue, the queue must already exist. Each queue must have a name that is unique to the
owning queue manager. Before an application can use a queue, it must open the queue, specifying what
it wantsto do with it. For example, the application can open a queue to:

Browse messages only (do not delete them)
Retrieve messages

10/30/02 80.1.4b 53

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Put messages on the queue
Inquire about the attributes of the queue
Set the attributes of the queue

For acomplete list of the options related to opening a queue, see the description of the MQOPEN call in
the MQSeries Application Programming Reference manual.

There are different types of queues. These typesinclude:

Local: alocal queue is managed by the queue manager to which the application is connected
Remote: aremote queue is managed by a queue manager other than the one to which the
application is connected

Alias. an alias queue points to another queue

Model: amodel queueisatemplate for queue definition

Dynamic: adynamic queue is atemporary queue defined based on amodel queue

In FSA’ stechnical environment, the use of alias queues is discouraged, unless a business need dictatesits
use (e.g. limiting security access to certain queues). Applications putting messages to remote queues will
use the remote queue definition. This allows the application to only specify the remote queue name and
not be required to know the remote queue manager name. Model and dynamic gueues should be used
only when a business need dictates their use.

5.21 Identifying an Application for a Queue Manager

Any MQSeries application must make a successful connection to a queue manager before it can make
any other MQI calls. When the application successfully makes the connection, the queue manager returns
aconnection handle. Thisis an identifier that the application must specify each time it issuesaMQI call.
An application can connect to only one queue manager at atime* (known asitslocal queue manager), so
only one connection handleisvalid (for that particular application) at atime. When the application has
connected to a queue manager, that queue manager processes al the MQI calls that the application issues
until the application issues another MQI call to disconnect from that queue manager. Each adapter
written for FSA performs the task of connecting to the queue manager.

* When an application connects to a queue manager, it issuesa MQCONN call. The scope of a
MQCONN call islimited to the thread that issued it within all of the following:

- MQSeriesfor AS/400

- MQSeriesfor Compaq (Digital) OpenVM S
- MQSeriesfor OS2 Warp

- MQSerieson UNIX systems

- MQSeriesfor Windows

- MQSeriesfor Windows NT

That is, the connection handle returned from a MQCONN call isvalid only within the thread that issued
the call. Only one call may be made at any one time using the handle. If it isused from adifferent
thread, it will be rgjected asinvalid. If the application has multiple threads and each wishesto use
MQSeries calls, each one must individually issue MQCONN. Each thread can connect to a different
gueue manager on OS2 and Windows NT, but not on OS/400 or UNIX. If the application isrunning as a

10/30/02 80.1.4b 54

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

client, it may connect to more than one queue manager within athread. This does not apply if the
application is not running as a client.

5.2.2 Opening and Closing Queues

Before opening a queue using the MQOPEN call, the application must connect to a queue manager. The
application can then use the MQOPEN call to open aqueue. The application can also then use the
MQCLOSE call to close aqueue. When an application opens a queue, the application receives an object
handle for that queue. Thishandleisused in subsequent callsto get or put messages. The same queue
can be opened more than once; each open call creates a new object handle. However, most applications
will only need to open a given queue once.

Once an application has opened a queue, the application has access to that queue until it closes the queue.
The MQOPEN call is costly in terms of time, so once an application has opened a queue and plans to use
it in the future, keep the queue open, except when an application only needsto ‘put’ one message. The
MQPUT1 call was designed for this case: this call opens a queue, puts the message, and closes the queue,
eliminating the need to use the MQOPEN and MQCL OSE calls.

Queues are automatically closed when an application closes its connection to the queue manager.
However, it isagood practice to close all queues before disconnecting from the queue manager.

Each adapter written for FSA performed MQOPEN and MQCL OSE calls.
It isrecommended to use the FAIL_IF_QUIESCING open option for the MQOPEN call. Thiswill allow
the M QSeries administrators more control of the system.

5221 MQOPEN Call

Asinput to the MQOPEN call, the application must supply:

A connection handle, using the connection handle returned by the MQCONN call.
A description of the object to open, using the object descriptor structure (MQOD).
One or more options that control the action of the call.

The output from MQOPEN is:

An object-handle that represents access to the queue. Use this asinput to any subsequent MQI
callsfor this queue.

A modified object-descriptor structure, if the application is creating a dynamic queue.

A completion code.

A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
asto why the call failed.

5222 MQCLOSE Call

Asinput to the MQCLOSE call, the application must supply:

A connection handle, using the same connection handle used to open the queue.
The handle of the queueto close. This comes from the output of the MQOPEN call.

The output from MQCLOSE is:

A completion code.

10/30/02 80.1.4b 55

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
asto why the call failed.

5.2.3 Putting Messages On A Queue

To put messages on a queue, an application must use the MQOO_OUTPUT option when issuing the
MQOPEN call. After the queue has been opened using this option, the application can issue a MQPUT
call to put a message on the open queue. If the application isonly putting one message and will not use
the queue again, use the MQPUT1 call.

It is recommended to use the FAIL_IF_QUIESCING put-message option for the MQPUT and MQPUT1
calls. Thiswill alow the MQSeries administrators more control of the system.MQPUT call.

Asinput to the MQPUT call, the application must supply:

A connection handle, using the connection handle that was returned when the application issued
the MQCONN call.

A gueue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

A description of the message the application is putting on the queue. Thisisintheform of a
message descriptor structure.

Control information, in the form of a put-message options structure. This options structure needs
to be redefined for every MQPUT call.

The length of the application data contained within the message.

The application data itself.

The output from the MQPUT call is:

A reason code.

A completion code.

If the call completes successfully, it also returns the put-message options structure and the
message descriptor structure. One or both structures may have modified attributes within them.
For more detail, look at the MQSeries Application Programming Guide.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
asto why the call failed.

5.24 Getting Messages From A Queue

To open a queue so that the messages on that particular queue can be browsed (does not remove the
message from the queue), use the MQOPEN call with the MQOO_BROWSE option. To get (and
remove) messages from a queue, an application must use the MQOO_INPUT_AS Q DEF,
MQOO_INPUT_SHARED, or MQOO_INPUT_EXCLUSIVE option when issuing the MQOPEN call.
Selection of one of these three options is used to specify if the application opens the queue in exclusive,
or shared, mode. See the MQSeries Application Programming Guide for more information. After the
gueue has been opened using one of these options, the application can issue aMQGET call to get a
message from the open queue.

By specifying the Msgld and/or Correlld fields in the message descriptor structure, the application can
search the queue for a particular message. |If the application uses MQGET call more than once (for
example, to step through the messagesin the queue), it must set the Msgld and Correlld fields of this

10/30/02 80.1.4b 56

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

structure to null after each call. This prevents the call from filling these fields with the identifiers of the
message that were retrieved, and therefore getting messages with the same identifiers as the previous
message.

If the fields in the message descriptor structure are not specified to search for a particular message, the
MQGET call will retrieve the first message in the queue.

It is recommended to use the FAIL_IF_QUIESCING get-message option for the MQGET call. Thiswill
allow the MQSeries administrators more control of the system.

5241 MQGET Call
Asinput to the MQGET call, the application must supply:

A connection handle, using the connection handle that was returned when the application issued
the MQCONN call.

A gueue handle, using the queue handle that was returned when the application issued the
MQOPEN call.

A description of the message the application wants to get from the queue. Thisisin the form of
amessage descriptor structure.

Control information in the form of a get-message options structure. This control information
describes if the application is browsing or removing messages. The control information also
describes if the MQI call waits (and how long it waits) for amessage or if the call returns
immediately.

The size of the buffer you have assigned to hold the message.

The address of the storage location in which the message must be put.

The output from the MQGET call is:

A reason code

A completion code

The message in the buffer area specified, if the call completed successfully

The options structure, modified to show the name of the queue from which the message was
retrieved.

The message descriptor structure, with the contents of the fields modified to describe the
message that was retrieved

The length of the message

Always verify the completion code. If the call isunsuccessful, inspect the reason code for an
indication asto why the call failed

5.25 Queue Manager Connectivity Guidelines

A gueue manager supplies applications with MQSeries services. An application must have a connection
to a queue manager before it can use the services of that queue manager. An application can make this
connection explicitly (using the MQCONN call), or the connection can be made implicitly. For example,
CICSfor MVS/ESA and CICS/MV S programs do not need to explicitly connect to a queue manager,
because the CICS system itself is connected to a queue manager. However, for portability it is
recommended that CICS for MV SESA and CICS/MV S programs use the MQCONN and MQDISC calls.

10/30/02 80.1.4b 57

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

5.2.6 Connecting To and Disconnecting From a Queue Manager

To connect to a queue manager, an application must use the MQCONN call. To disconnect from a queue
manager, an application must use the MQDISC call.

MQCONN Call

Asinput to the MQCONN call, the application must supply a queue manager name. To connect to the
default queue manager, specify a queue manager name consisting entirely of blanks or starting with a null
character.

The output from MQCONN is:

A connection handle, using this handle in subsequent MQI calls associated with this queue
manager.

A completion code.

A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
asto why the call failed. If the reason code indicates that the application is already connected to that
gueue manager, the connection handle that is returned is the same as the one that was returned when the
application first connected. So the application probably should not issue the MQDISC call in this
situation because the calling application will expect to remain connected. The MQCONN call failsif the
gueue manager isin aqueuing state when issuing the call, or if the queue manager is shutting down.

M QDI SC Call

Asinput to the MQDISC call, the application must supply the connection handle that was returned by
MQCONN when the application connected to the queue manager.

The output from MQDISC is:

A completion code.
A reason code.

Always verify the completion code. If the call is unsuccessful, inspect the reason code for an indication
asto why the call failed.

All adapters written for FSA had to connect to the queue manager, open a queue, perform aMQGET or
MQPUT, close a queue, and disconnect from the queue manager. Each future adapter written for FSA
will also need to perform each of the above in order to get and put messages on a queue.

5.2.7 Passthe Connection Name as a Program Parameter

This allows a program to run unchanged on any Queue Manager. This provides the capability for
multiple concurrent instances; or a queue driven application could be moved to a different queue
manager without impacting the application code.

5.2.8 Messaging Using More Than One Queue Manager

This arrangement is not typical for areal messaging application because both programs are running on
the same computer, and connected to the same queue manager. In acommercial application, the putting
and getting programs would probably be on different computers, and so connected to different queue
managers.

10/30/02 80.1.4b 58

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

This figure shows how messaging works when the program putting the message and the program getting
the message are on the different computers, and are connected to different queue managers.

Program B (MQGET)

Program A
(MQPUT)

Queue Manager

In this situation, it is necessary to create message channels to carry M QSeries messages between the
gueue managers.

5.3 Application Usage Guidelinesfor MQSeries Application M essaging I nterface (AM1)

AMI isahighly abstracted interface to MQSeries that externalizes much of the complexity associated
with MQSeries usage into an external repository. Understanding its organization iskey toitsuse. AMI
is organized into three major levels: Service Points, Policies, and Messages. Service Points contain
information related to queues. Policies contain information related to connections, queue interaction,
publish and subscribe and AMI user exits. Messages are not abstracted into the AMI repository and are
the containers that hold the application data to be placed to or received from queues.

The AMI is object oriented. All errors are reported in the form of thrown exceptions that are caught and
evaluated by the application.

The AMI repository is created, updated, and managed by M QSeries administrators who in each case will
ensure that objects match application requirements and options are appropriate. The use of an external
repository dramatically reduces the amount of middleware knowledge application programmers are
reguired to possess. Comparing the MQI and AMI guidelines demonstrate this conclusively.

5.3.1 AMI Connectivity Guidelines

Any AMI application must establish a Session before it can make any other AMI calls. An AMI Session
is acontainer object that holds the queue manager connection information.

10/30/02 80.1.4b 59

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

5.3.2 Establishing and Terminating AMI Sessions

In order to establish an AMI session it is necessary to create an AMI Session object. This object will be
used to establish connections to the underlying queue manager as well as provide the context for other
AMI objects. These Session objects are created with alogical name that must be unique within the
application.

Connecting to a Queue M anager

Connecting to a queue manager isaresult of running the “open” method of the previoudy created
Session object. An AMI Policy isprovided asinput. The“Initialization” section of the referenced Policy
is used to determine queue manager name, whether to use client or server binding and whether to run as a
trusted/fastpath application. When successfully opened, the Session contains an active connection to a
gueue manager.

Disconnecting from a Queue M anager

Disconnecting from a queue manager is aresult of running the “close” method of the previously created
Session object. An AMI policy isprovided asinput. Information from the policy is used in the case
where users exits arerequired. All related objects become invalid after having closed the AMI Session
through which they were created.

533 AMI Sender and AMI Receiver Objects

In order to put messages to and get messages from queues it in necessary to create AMI Sender and AMI
Receiver objects. These objects contain queue information and are used to direct interaction with those
queues.

5331 Using AMI Sender aobjects

When creating a Sender object a Service Point name is provided asinput. Thisisareferenceto a Service
Point in the AMI repository. The Service Point contains the queue name that is to be used to put
messages.

Once created, the “open” method is used to establish a handle to the target MQSeries queue. A Policy is

provided asinput. The“Send” section of the policy is used to determine the options related to the
placement of messages including priority, persistence, expiry interval, report options and more.

To then send data using this Sender, the “send” method is used providing a Policy and message data as
input.

When complete, using the “ close” method of the Sender invalidates its handle to the underlying
MQSeries queue and closesit.

5.3.3.2 Using AMI Receiver objects

When creating a Receiver object a Service Point name is provided asinput. Thisisareferenceto a
Service Point in the AMI repository. The Service Point contains the gueue name that isto be used to get

messages.
Once created, the “open” method is used to establish a handle to the target MQSeries queue. A Policy is

provided asinput. The“Receive’ section of the policy is used to determine the options related to the
receipt of messages including wait interval, message conversion and more.

10/30/02 80.1.4b 60

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

To then receive data using this Receiver, the “receive” method is used providing a Policy and message
buffer asinput.

When complete, using the “close” method of the Receiver invalidates its handle to the underlying
MQSeries queue and closesit.

5.4 Application Interface Programming Optionsfor Message Queue Interface (MQI)

Thereis awide range of options for communicating with MQSeries programs including new interfaces
for message content as well as message delivery. Programs written using any of these message delivery
styles can communicate with each other and with programs written in any of the other MQSeries delivery
styles.

54.1 Message Delivery

54.11 Message Queue Interface (MQI)

The Message Queue Interface (MQI) is the common API across al platforms. The calls made by the
applications running on each platform are common. This allows application programmers to focus on
the business logic of the application, rather than the interface differences of each platform. This makes
it much easier to write and maintain applications, as well as facilitate migration of applications from one
platform to another as required by changing business needs. Each adapter written for FSA made use of a
majority of the MQI function calls as shown below. The following figure represents the MQI.

Application Program

L
Z| o 58 — =X
=l O
MOI gl 2 al o il 5| 5 = - o o
ERERE R R
%2 =] = 3| = Sl = S =
Vvu\'/u\.lz\/ ~ A AERNZ

Queue Manager

Process
Definition
Object

Queue
Manager
Object

Message Queue Interface

10/30/02 80.1.4b 61

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

54.1.2 JavaMessage Service (JMS)

Java Message Service (IMS) is supported by a MQSeries implementation of this Java standard API for
Enterprise Messaging Services. Using JMS, applications can communicate with other MQSeries IMS
applications, with applications written to the MQI, or to the Application Message Interface (AMI).

54.1.3 Application Messaging I nterface (AM1)

The Application Messaging Interface (AMI) provides asimpler and higher-level programming interface
than the MQI. Although it has some limitations compared with the MQI, its function should be sufficient
for the majority of users. The AMI supports both point-to-point and publish/subscribe messaging models.
The AMI eliminates the need for application programmers to understand all of the options and functions
availableinthe MQI. Thiswas not used at FSA, but is mentioned for future use if the need arises.

The MQSeries AMI can be used to build client applications, and the AMI will automatically build any
required headers as specified using the AMI, including the new RFH2 headers. The AMI isdesigned to
simplify the task of the application programmer, while enabling the more advanced functions and
message broker facilities to be used.

AMI isahighlevel API that moves many functions normally performed by messaging applications into
the middleware layer, where a set of policies defined by the enterprise is applied on the application's
behalf. Poalicieshold details of how messages are to be handled, for example, priority, confirmation of
delivery, timed expiry.

54.2 Message Content

54.21 Extensible Markup Language (XML)

Extensible Markup Language (XML) is an industry-wide standard for self-defining messages. It enables
diverse systems and databases to understand each other's data (for example, to identify fields) by
indicating both the content and the role of the data.

XML is supported in MQSeries Integrator Version 2 and MQSeries Workflow Version 3.2; XML will be
supported within MQSeries Messaging via the Common Messaging Interface.

For FSA, al messages passed into MQSeries Integrator werein XML. IBM is not advocating the use of
XML and the adoption of XML as a standard is outside the scope of this document.

Sample XML Message:

<?ml version ="1.0"?>

<IDOCTY PE Message SY STEM "C:\TestEnvironment\X M L Files\LifeQuote.dtd" >

<!--Generated by XML Authority.-->

<Message issuedTime = "string" Authorisation = "string" sessionlD = "string" creationTime = "string"
issueProgram =

"string" issueUser = "string" 1D = "id1" issueSystem = "string" txnScope = "string" eventID = "string"
zoneOffset = "string"

language = "string"><!-- (Command.valueQuoteRequest* , Command.val ueQuoteResponse*)-->
<Command.valueQuoteRequest responseDTD = "string" echoBack = "string" cmdMode = "aways' ID =
"id2"><!--

(%CustomizeAgreement , Systeminfo)-->

<LifeAgreement ID = "id3" REFID ="string" status = "string" UUID = "UUID"><!-- (%Agreement ,

10/30/02 80.1.4b 62

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Product
-—>
<policyNumber>only text</policyNumber>
<effectiveFromDate>only text</effectiveFromDate>
<companyCode>only text</companyCode>
<ratingCompany>only text</ratingCompany>
<policy Type>only text</policy Type>
<renewa Date>only text</renewal Date>
<paymentPlan>only text</paymentPlan>
<agreementState>only text</agreementState>
<lineOfBusinessCode>only text</lineOf BusinessCode>
<effectiveFromDate>only text</effectiveFromDate>
<agentOf Record>only text</agentOf Record>
<agentCommission>only text</agentCommission>
<PolicyMessage/>
<MoneyObligation ID="id4" REFID="string" status="string" UUID="UUID"><!--(type, amount,
frequency)-->
<type>only text</type>
<amount>only text</amount>
<frequency>only text</frequency>
</MoneyObligation>
<Discount-Surcharge/>
<Underwriting/>
<Applicant ID ="id5" REFID = "string" status = "string" UUID = "UUID"><!-- (Person)-->
<Person ID ="id6" REFID = "string" status = "string" UUID ="UUID"><!-- (%Party , Body
, PartyActivity* , Residency , PartyContactPointUsage?)-->
<id>only text</id>
<uuid>only text</uuid>
<FamilyName/>
<!-- <UnstructuredName>only text</UnstructuredName> -->
<Body ID ="id7" REFID = "string" status = "string" UUID = "UUID"><!-- (gender ,
height , weight , birthdate , Medica Condition+)-->
<gender>Female</gender>
<height>6.2</height>
<weight>250</weight>
<birthdate>01/01/1980</birthdate>
<MedicalCondition ID = "id8" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>High Blood Pressure</description>
<response>Y es</response>
</Medical Condition>
<MedicalCondition ID = "id9" REFID = "string" status = "string" UUID =
"UUID"><!-- (description , response)-->
<description>Heart Disease</description>
<response>No</response>
</Medical Condition>

</Body>

5,5 EAI Common Error Handling Guidelines

Whenever possible, the queue manager returns any errors as soon asaMQI call ismade. The three most
common errors that the queue manager can report immediately are described in this section.

10/30/02 80.1.4b 63

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

55.1 Falureof aMQI Call

An example of aMQI call failure is being unable to put a message to a queue because the queue isfull.
The completion code and return code of the MQI call specify the nature of the failure. Applications
should inspect these codes for every MQI call and be able to handle all possible return codes.

5,5.2 System Interruption

The queue manager is an example of a system component needed by the application and when the queue
manager is interrupted, the application encounters an error. Applications must ensure no datais lost due
to this sort of interruption. To ensure no data loss, applications will get and put messages under
syncpoint. This syncpoint activity can be controlled by the queue manager or by some external resource
coordinator (e.g. CICS, Encina, €tc.).

5.5.3 Unableto Process Messages

M essages containing data that cannot be processed successfully are known as poisoned messages. When
applications operate under syncpoint, if the application cannot successfully process a message, the
MQGET call is backed out. The queue manager maintains a count (in the BackoutCount field of the
message descriptor) of the number of times this happens for MQGET calls which DO NOT use any of
the Browse type get message options. Messages whose backout countsincrease over time are being
repeatedly rejected by the application — the application should be designed to handle such situations.
There are many different tactics to handling poisoned messages. One method would be to write the
messages to afile and a common “ poison message application” attempt to process them at a later point in
time. Another method is to have the application itself deal with the message. Messages could also be
written to the dead letter queue and then be processed by a dead letter handler. Based on your
application requirements a method should be adopted.

5,54 Responding to Errors

Applications should respond in a similar manner to errors returned by MQI calls. One possible way to
implement this common error handling methodol ogy is to provide error-handling routines for the
application developer. Use of these common error-handling routines ensures that all application
programmers handle MQSeries errorsin the same way and do not have to write their own error handling
routines.

Note: Refer to Section 8.1 - Reusable EAl Functions: EAl Common Log Component for additional
information regarding common error handling. The EAl Common Log Component interface enables
applications to record events to local and centralized logs.

5.6 Triggered queuesand applications

5.6.1 Designing MQSeries Applications

Some M QSeries applications that serve queues run continuously, and are always available to retrieve
messages that arrive on the queues. However, this may not be desirable when the number of messages
arriving on the queuesis unpredictable. In this case, applications could be consuming system resources
even when there are no messagesto retrieve.

10/30/02 80.1.4b 64

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

MQSeries provides afacility that enables an application to be started automatically when there are
messages available to retrieve. Thisfacility is known as triggering.

i
i QUEUE MANAGER
I
I

- trigger
/;j ager message

T
=y
application | I event
message |— —_— }_/; _______ _]
I
| B | [
i I Process I
APPLICATION ' | Application I Initiation

| | Queus | Queue

. - L_____]
|
' application trigger
I message message
I APPLICATION start APPLICATION
I co#mm and TRIGGER

B — =
i == MONITOR
1
Local or Remote |
System . Local System

1. Application A, which can be either local or remote to the queue manager, puts a message on the
application gqueue. Note that no application has this queue open for input. However, thisfact is
relevant only to trigger type FIRST and DEPTH.

2. The queue manager checks to seeif the conditions are met under which it hasto generate a
trigger event. If so, atrigger event is generated. Information that is held within the associated
process definition object is used when creating the trigger message.

3. The queue manager creates atrigger message and putsit on the initiation queue associated with

this application queue, but only if an application (trigger monitor) has the initiation queue open

for input.

The trigger monitor retrieves the trigger message from the initiation queue.

The trigger monitor issues a command to start application B (the server application).

Application B opens the application queue and retrieves the message.

o0k

Notes:

1. If the application queueis open for input, by any program, and has triggering set for FIRST or
DEPTH, no trigger event will occur since the queue is already being served.

2. If theinitiation queue is not open for input, the queue manager will not generate any trigger
messages, it will wait until an application opens the initiation queue for input.

10/30/02 80.1.4b 65

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

3. When using triggering for channels, you are recommended to use trigger type FIRST or DEPTH.

Each adapter created for FSA utilized triggering. The MQSeries object definitions can be seen by
viewing each system script file contained in the Clearcase repository. Specifically, you want to look for
the objects with the “trigger” attribute.

5.6.2 Starting MQSeries Applications

Trigger messages created because of trigger events that are not part of a unit of work are:
- put on theinitiation queue,
- put outside any unit of work, with no dependence on any other messages
- availablefor retrieval by the trigger monitor immediately

Trigger messages created because of trigger eventsthat are a part of a unit of work are put on the
initiation queue, as part of the same unit of work. Trigger monitors cannot retrieve these trigger messages
until the unit of work completes. This applies whether the unit of work is committed or backed out. If the
gueue manager failsto put atrigger message on an initiation queue, it will be put on the dead-letter
(undelivered-message) queue.

Notes:
1. The gueue manager counts both committed and uncommitted messages when it assesses whether
the conditions for atrigger event exist.

With triggering of type FIRST or DEPTH, trigger messages are made available even if the unit of
work is backed out so that atrigger message is always avail able when the required conditions are
met. An exampleisa put request within a unit of work for a queue that is triggered with trigger
type FIRST. This causes the queue manager to create a trigger message. If another put-request
occurs from another unit of work, this does not cause another trigger event. Rather, the number
of messages on the application queue has now changed from one to two, which does not satisfy
the conditions for atrigger event. If thefirst unit of work is backed out, but the second is
committed, atrigger message is till created.

However, this does mean that trigger messages are sometimes created when the conditions for a
trigger event are not satisfied. Applications that use triggering must always be prepared to handle
this situation. It is recommended to use the wait option with the MQGET call, setting the
WaitInterval to a suitable value.

2. For local shared queues (that is, shared queues in a queue-sharing group) the queue manager
counts committed messages only.

For FSA, the adapters were triggered on the trigger type of “FIRST”, the queues were then read until
empty.

10/30/02 80.1.4b 66

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

5.7 Application Usage Guidelinesfor Data Integrator

5.7.1 Datalntegrator Components

Three components must be running on each machine that will be using Data Integrator: the Manager,
Sender, and Receiver. Each component performs a different task related to the transfer of datausing MQ
Series. Each component performs common duties such as monitoring its input queue, logging events and
sending status messages. When two components are located on different queue managers, the destination
will be resolved to the appropriate transmission queue and sent to its destination.

5711 e-Adapter Manager

The originating queue manager in atransaction acts as the Manager, and is responsible for starting and
ending the transfer unit of work and managing al transfers. The Manager determines the appropriate
Sender, and the message is sent to that Sender’ s input queue.

At the end of atransaction, the Manager returns one of the following completion codes: Request
completed successfully, request failed, request expired, or request canceled. In the event of afailure,
additional information, including error codes, is returned as well.

5.71.2 e-Adapter Sender

The source gueue manager in atransaction acts as the Sender, and is responsible for transforming the
datato be sent into MQSeries messages. Depending on the nature of the transaction, the Sender may send
the message(s) directly to the specified Receiver or move them to a staging area. Onceitswork is
complete, the Sender will report back to the Manager of the transaction.

5.71.3 e-Adapter Receiver

The destination queue manager in a transaction acts as the Receiver, and is responsible for processing the
transfer request from the Sender and transforming the M QSeries messages into the target data. Once
finished it will send areply back to the Manager of the transaction.

5.7.2 Common Script Arguments

A datatransfer using Data Integrator can be performed directly from the command line or typed into a
command script. There are a number of arguments that can be used with the ‘FTF command to
accomplish this. The most commonly used ones are listed below, along with a brief description.

5.7.21 QueueManager Arguments

Igm — Loca Queue Manager — the queue manager from which the command is issued.

ogm — Originating Queue Manager — the queue manager where the Manager will operate,
defaults to the Igm.

sgm — Source Queue Manager — the queue manager where the Sender will operate, defaults to
the lgm.

dgm - Destination Queue Manager — the queue manager where the Receiver will operate.

10/30/02 80.1.4b 67

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

5.7.2.2 Source/Target File Arguments

spath — Source Path — the full path and filename of the source file to be transmitted.
dpath — Destination Path - the full path and filename of the destination file.

5.7.2.3 Process Arguments

immed — this argument will force the transfer request to be processed synchronously between the
Sender and Receiver. The Receiver will begin processing immediately upon receipt of
the first message, instead of waiting until all messages have arrived (the default
method). This technique requires less queue storage on the destination machine.

5.7.24 User Exit Arguments

These arguments are used when a process needs to be started immediately following the completion of a
datatransfer. A Unix script, specified using the user exit arguments, will be run once the transaction has
finished. These arguments must be placed together and in order.

exit — Exit Number — the exit number to be invoked.
exitdll — DLLName —the DLL used to invoke the exit module.
exitentry — Entry Point — the name of the function in the DLL that contains the exit module.

exitdata — Data Va ue — the command-line argument that will be executed.

5.7.25 Data Specification Arguments

compress—will cause the data to be compressed before it is sent.

pool — Pool Name — the name of the data pool that will be used for transferring between the
Sender and Receiver. This pool must be defined in the configuration file, and will default
to the default pool specified in thisfile.

5.72.6 0OS/390 Arguments

These arguments are only necessary when dealing with a target machine running OS/390.
blksize — Block Size —the block size for the target file, it is usually specified .
Irecl — Logical Record Length —the logical record length for the target file, it is usually
specified.

5.7.2.7 Additional Script Arguments

Additional script arguments may be found in the e-Adapter Technical Reference.

10/30/02 80.1.4b 68

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

5.8 Application Usage Guidelinesfor Data Integrator Status Utility

The Data Integrator product can be configured to generate status and diagnostic messages for each Data
Integrator file transfer. These messages are in XML format and can be used to verify that file transfers
occurred and assist in problem determination when afile could not be transferred.

5.8.1 Storing the status messages

When afileistransferred using Data Integrator, the related status messages are directed to an MQSeries
gueue. An MQSeries Integrator message flow reads messages from the queue and places them into an
Oracle database. These messages are retained in the database awaiting later retrieval and analysis.

5.8.2 Retrieving the status messages

Messages are retrieved from the Oracle database via an MQSeries Integrator message flow. Requests for
information are in XML format and they may contain one of several search criteria, such as a date/time
range or aunique Data I ntegrator file transfer identifier. Using M QSeries Integrator as the retrieval
mechanism allows messages to be requested from any platform that has M QSeries access to the EAI bus.

59 Application Usage Guidelinesfor MQSeries Integrator

5.9.1 Defining Messages

MQSeries Integrator provides a message brokering function that can transform messages from one format
to another. The brokers that manage these transformations need to interpret the structure and content of
the messages they receive to perform the full range of transformation functions available with MQSeries
Integrator.

5.9.1.1 Message domains

The messages supported by MQSeries Integrator are of three broad types that are identified by a property
of the message called the message domain:

A message can be unstructured: its message domain must be set to BLOB.
A message can be salf-defining: its message domain must be set to XML.

Two additional domains are included in this category to support IMS messages. the domain
JMSMap can be used for jms_map messages and the domain JM SStream can be used for
jms_stream messages.

A message can be predefined. Its message domain must be set to one of:
~UMRM
-~ [UNEON

A predefined message has alogical structure and a physical structure:

- [IThelogica structure of a predefined message is atree structure that demonstrates the
hierarchical relationships between the components of a message.

10/30/02 80.1.4b 69

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

- O The physical structure of amessage, which is aso referred to asitswire format, isjust a
string of bits and bytes. Without the logical structure, the physical structure (the bit-stream)
has no intrinsic meaning.

5.9.1.2 Unstructured messagesin the BLOB domain

An unstructured message must have a message domain of BLOB. It has no known (or defined structure).
These messages can be processed and routed by MQSeries Integrator, but the manipulation that you can
perform isvery limited. Y ou can perform some simple manipulation at the message level, and take other
actions on the whole message.

5.9.1.3 Self-defining messagesin the XML domain

A sealf-defining message must have a message domain of XML. It carries the information about its content
and structure within the message. Its definition is not held anywhere else. When a self-defining message
isreceived by the broker, it is handled by the XML parser, and atreeis created according to the XML
definitions contained within that message. A self-defining message is also known as ageneric XML
message. It does not have a recorded format.

A self-defining message can be handled by every IBM-supplied message processing node. The whole
message can be stored in a database, and headers can be added to or removed from the message as it
passes through the message flow. The message can also be manipulated, constructed, and reformatted by
nodes in the message flow, using a specialized form of standard database Structured Query Language
(SQL). This speciaized form is known as Extended SQL, or ESQL, and supports MQSeries I ntegrator
processing of the message structure. This means that although you do not have to define the message
structure to the Control Center, you do have to understand the definition to be able to construct valid
ESQL for message manipulation.

5.9.14 Predefined messagesin the MRM domain

A predefined message in the MRM message domain must have its message domain set to MRM. It must
be defined to the Message Repository Manager, a component of the Configuration Manager. Y ou can
define messages to the MRM domain using the Control Center (M essage Sets view). The MRM

mai ntai ns these messages in the message repository. Y ou can a so predefine a message to the MRM in
the XML message domain. If you define a message to the XML domain, you can use all the facilities
availableto MRM domain messages to manipulate and reference the message in the nodes within your
message flows in the Control Center.

However, you are not expected to assign these message sets to a broker, nor to deploy them. Because the
domain is set to XML, the XML parser isinvoked by the broker and does not reference any external
message definition. An MRM message can be handled by every IBM-supplied message processing node.
The whole message, or parts of the message, can be stored in a database, and headers can be added to or
removed from the message as it passes through the message flow. The message can be manipulated using
ESQL defined within all message processing nodes that support manipulation (for example, compute and
filter).

Y ou can aso transform any message in the MRM domain into any other format defined to the MRM
using ESQL (in most cases, just one line of ESQL). This includes code page and encoding conversion. It
provides the significant benefit that data conversion exists in MQSeries and therefore applications are not
required to provide this function.

M essages with a message domain of MRM have three other characteristics for further classification:

10/30/02 80.1.4b 70

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

M essage format
Three message formats are supported by the MRM:
- J A message can have amessage format of CWF (Custom Wire Format).

These messages are MRM representations of legacy data structures created in the C or
COBOL programming language, and imported into the MRM using the Control Center
facilities. Y ou can also create new messages using this format.

- JA message can have a message format of PDF.

Thisisaspeciaized format used predominantly in the finance industry. It does not have any
connection with the Portable Document Format defined by Adobe (also known as PDF). If
you already use messages of thisformat, you can continue to use them and process them by
specifying this format in the definitions.

- JA message can have a message format of XML.

These messages are represented as XML documents. They conform to an XML DTD
(Document Type Definition) that can be generated by the Control Center for documentation
purposes.

Message set

This identifies the message set to which each message belongs. Thisis specified as the message
set identifier, not the message set name. When you define a message in the MRM message
domain, you must define a message set that containsit. A message set can contain one or more
related messages.

Message type

The message type identifies the message definition within the set. It is the unique identifier for
each message of this particular content and format.

5.9.1.4.1 Predefined messagesin the NEON domain

A predefined message in the NEON message domain must have its message domain set to NEON. It must
be defined using the MQSeries Integrator Version 1 graphical utilities that are supplied with MQSeries
Integrator Version 2. Y ou can create new messages and use existing messages defined to the NEON
domain. A NEON message can be handled by every IBM-supplied message processing node. The whole
message can be stored in a database, and headers can be added to or removed from the message as it
passes through the message flow. The NEONFormatter node can be used to transform a NEON message.
No other node can manipul ate the message contents.

5.9.2 Designing Message Flows

A message flow is a sequence of operations on a message, performed by a series of message processing
nodes. The actions are defined in terms of the message format, its content, and the results of individual
actions along the message flow. MQSeries Integrator includes a range of message processing nodes,
called primitives, that provide most of the function that you will need in most situations. A message flow
and the message processing nodes it contains describes the transformation and routing applied to an
incoming message to transform it into outgoing messages. These actions form the rules by which the
message is processed. A message flow can aso be made up of a sequence of other message flows, that

10/30/02 80.1.4b 71

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

are joined together. This function allows you to define a message flow containing a specific sequence of
message processing nodes, and reuse that message flow in other message flows wherever that action is
needed. When you compl ete the creation of your message flow, you can assign it for execution to one or
more brokers. When you do this, the message flow must be operationally complete. That is, it must
contain at least one MQInput node (one of the primitives). Most message flows will also contain at least
one MQOutput or one Publication node, although thisis not required (both of these nodes are al'so
primitives).

5.9.21 Message flows and units of work

A message flow istransactional. Y ou can define your message flows to perform all processing within a
single unit of work. Therefore the receipt of every message by the input node, and the database
operations performed as a result of that message being received and processed by the message flow, are
coordinated. If an error occurs within atransactional message flow, the transaction is rolled back and the
message will be handled according to normal error handling rules. Y ou can aso define a message flow
to work outside of a unit of work if you do not want this support.

5.9.2.2 Parallel processing of message flow instances

When you define, assign, and deploy a message flow, the broker automatically starts an instance of the
message flow for each input node (one or more). Thisis the default behavior. Each instance retrieves a
message from the input node, and runs in parallel with other instances that retrieve a message from other
input nodes. If you want to further increase the throughput of this message flow, you can set a property
of the assigned message flow that defines how many additional instances are to be started by the broker
for that message flow. Y ou can set properties of the input node to exercise control over the order in
which messages are processed.

Y ou can aso increase message flow throughput by assigning more than one copy of the message flow to
the same broker. However, thisis only appropriate if the message order is not important, because the
multiple copies of the message flow are handled independently by the broker, with no correlation
between them. Therefore, if more than one copy of the same message flow is active within the broker,
each copy can be processing a message at the same time, from the same queue. It is possible for the
processing time of a message flow to vary, and multiple message flows accessing the same queue could
therefore read the messages from the queue in arandom order. Also, the order of messages produced by
the message flows might not correspond to the order of the original messages. Y ou can influence the
order in which the input node removes messages from the queue (using the Order Mode property). You
are therefore recommended to increase the instances of a single copy of the message flow if you want to
increase throughput and parallel processing but wish to have control over the message order.

5.9.2.3 Transformation

Most enterprises have applications that have been developed over many years, on different systems,

using different programming languages, and different methods of communication. Standard message
gueuing technology can bridge differences like these, but applications still need to be aware of, and
negotiate, the format in which the messages flow. With MQSeries Integrator the knowledge of each
application is stored just once in the broker and each message is translated into the receiving

application’s format. Because the broker knows the requirements of each application, it can transform the
message to the correct format without the sending or receiving application needing any modification.

10/30/02 80.1.4b 72

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

A message flow can completely rebuild a message, convert it from one format to another (whether format
means order of fields, byte order, language, and so on), remove content from the message, or introduce
specific datainto it.

5.9.24 Inteligent routing

Intelligent routing encapsulates business knowledge of how information should be distributed between
sending and receiving applications throughout the enterprise. This knowledge is stored in the broker asa
set of rulesthat are applied to each message as it passes through the broker. Routing is independent of the
reguirement for message transformation, although you will usually define sets of rules (as message

flows) that combine the two in some way. Messages are distributed according to criteria applied to the
values of fields within the message.

Y ou can also establish a more dynamic routing option by building additional routing information into the
message when it is processed. Optional sets of rules are set up to receive messages according to values
(destinations) set into the message. Y ou can establish these rules such that a message is processed by one
or more of the optional sets of rules, in an order determined by the added message content. Y ou can
create, modify, and use these rules to develop a very flexible approach to the distribution of information.
New ideas and requirements can be stated clearly, and turned into new or changed rulesin the broker,
and your business goals are met. Y ou don’'t have to rework your applications. Y our business processes
range from the simple to the very complex. Y ou can create rules to cover every case, building new rules,
and reusing and combining existing ones to devel op even the most complex solution.

5.9.25 Enriching message content

When amessage is processed by a message flow, it is possible to update and add to the message content.
This allows you to add value between sender and receiver in any way you choose. A typical way in which
you can enhance the message content is by adding data from a database. This can be done by appending
fields to the message, or merging information from the two sources. For example, anew field value can
be calculated using the database information.

5.9.3 Using Message Processing Nodes

Message flow nodes are the key components of a message flow. A message processing node is a stand-
alone procedure defined within a message flow that receives a message, performs a specific action
against it, and outputs zero or more messages as a result of the action it has taken. This section describes
the types of nodes, using the primitives included in MQSeries Integrator to illustrate the function they
provide. Y ou can create additional message processing nodes to provide enhanced or replacement
function if you choose, except where noted.

5.9.3.1 MQSI Primitives

The MQSeries Integrator 2.0.1 Control Center provides a number of message flow nodes. Thetable
below identifies the message flow nodes supplied with MQSeries Integrator, which are known as the
IBM Primitives.

IBM Primitive Function
Check node Compares the format of an incoming message with a predefined message
specification.

10/30/02 80.1.4b 73

US DEPARTMENT OF EDUCATION

FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Compute node Derives an output message from an input message and, optionally, from data
taken from a external database. A computation can be applied to each
element of the input message before the output message is constructed.

Database node Combines database operations with message processing.

DataDel ete node Deletes one or more rows from a database table.

Datal nsert node Inserts one or more rows in a database table.

DataUpdate node Updates the contents of one or more rows in a database table.

Extract node Derives an output message from the fields in an input message.

Filter node Evaluates an input message against an ESQL expression.

FlowOrder node

Determines a specific order for the processing of a message.

Input Terminal Provides an in terminal for an embedded message flow.

Label node Receives a message from a RouteTol abel node.

MQInput node Reads M QSeries messages from a specified message queue.

MQOQOutput node Writes M QSeries messages to a specified message queue.

MQReply node Sends a response message to the originator of the message that caused this
message flow to be invoked.

NEONFormatter node Transforms an input message using the NEON Formatter engine.

NEONRules node Passes an input message to the NEON Rules engine for evaluation.

Output Terminal

Provides an out terminal for an embedded message flow.

Publication node

Publishes a message to subscribers.

ResetContentDescriptor
node

Reparses the bit stream of an input message.

RouteToL abel node

Routes a message to one or more specific destinations that are identified in
the message.

Throw node Throws an exception within a message flow.

Trace node Generates a trace record.

TryCatch node Catches any exceptions that are thrown by nodes further on in the message
flow.

Warehouse node Stores message data in a data repository.

5.9.3.2 Common node characteristics

Every message processing node has a fixed number of input points and output points. These points are
known as terminals. Each node normally has one input terminal (on which it receives messages), and
multiple output terminals to handle a variety of situations. Output terminals are defined according to the

10/30/02

80.1.4b 74

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

characteristics of the individual node. For example, afilter node has true, false, failure, and unknown
output terminals.

A Connector joins an output terminal of one node to an input terminal of the next node in the message
flow. Y ou can leave an output terminal unconnected, or you can connect a single output terminal to more
than one target node. After a node has finished processing a message, the connectors defined from the
node’ s output terminal s determine which node(s), process the message next. If a node has more than one
output terminal connected to atarget node, the node determines the order in which the different
execution paths are executed. If asingle output terminal has more than one connector to atarget node,
the broker determines the order in which the different execution paths are executed. Y ou cannot change
the order of processing determined by the node or broker.

A node does not always produce an output message for every output terminal. Often it produces one
output for a specific terminal depending on the message received. For example, afilter node will
typically send a message on either the true terminal, or the false terminal, but not both. When the
processing determined by one connector has been completed, the node issues the message again to the
next connector, until all possible paths have been completed. Updates to a message are never propagated
to previously executed nodes, only to nodes following the node in which the update has been made. The
message flow can only accept a new message for processing when al paths through the message flow
(that is, all connected nodes from all output terminals, as appropriate) have been completed.

5.9.3.3 Input and output nodes

Some message nodes have specia characteristics. They define points in the message flow to which
clients send messages (input nodes or MQInput), or from which clients receive messages (output nodes
or MQOutput). These special nodes represent M QSeries queues. Client applicationsinteract with these
nodes by putting messages to, or getting messages from, these queues. A message flow has a set of (one
or more) input nodes to which senders can post their messages, and a set of output nodes from which
receivers can pick up messages.

If amessageis being processed under transactional control, the output node only puts the message to the
destination queue when all processing by the message flow has been successfully completed, unless the
output node is set up to put the message outside the global (message flow) transaction. Before you can
use a message flow, the input nodes must be associated with queues that represent the sources of
messages. An output node must also be associated with a queue in most cases. However, you can set an
output node property that causes the node to put the message to every queue in adestination list, which is
contained within the message itself. Y ou must use the primitive MQInput node for every message flow
input node. Y ou cannot replace it with one of your own. Y ou can replace the output node if you choose.

Publication nodes are a specia type of output node that use the queues identified by current subscribers
whose subscriptions match the characteristics of the current message. Subscribers provide the identity of
the queue on which they want to receive all matching publications.

5.9.3.4 Processing messages

All nodes other than the input and output nodes receive an input message from the previous node in the
message flow and transform it into zero or more output messages to be made available to the next node
(or nodes) in the message flow. Messages passing between nodes are not put to an intermediate queue:
each message is held in local memory. These nodes can perform any kind of processing on a message.
For example, they can:

Reformat the message (NEONFormatter).

10/30/02 80.1.4b 75

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

5935

Transform the message (Compute).

Subset the data within the message (Extract).

Route the message to one or more targets (NEONRul es).

Archive the message in a message warehouse (Warehouse).
Update database information from the message content (Database).

Error handling

All primitive message processing hodes have afailure output terminal, to which a message is transferred
if an error is detected within the node. If the failure terminal is not connected to atarget node, an
exception is generated and propagated back towards the M QI nput node:

If a TryCatch node is encountered before the exception reaches the MQInput node, the flow of
control proceeds down the catch terminal. The message that is propagated through the catch
terminal is the message originally received by the TryCatch node: any changes made to the
message by later nodes in the message flow are not preserved. However, any external processing
(for example, updates to a database through a Database node) are preserved. It is not possible to
rollback these database updates from within the message flow.

Before the TryCatch node passes on the message to the node connected to the catch terminal, it
adds the exception information to the ExceptionList item in the message tree. Existing
information in the ExceptionList field in the message is written to the local error log, and then
overwritten with the new exception information.

If the message reaches the input node:

— If theinput node's catch terminal is connected to another node, the messageis
propagated to that node. In this case, an error is not recorded in the local error log.

— If theinput node's catch terminal is not connected, and the message is being processed
under transactional control, the message is returned to the input queue. An error is
recorded in the local error log. The MQInput node will then read the message again for
retry. It first checksto seeif the backout count for this message has now exceeded the

backout threshold:
= |f the backout count has not exceeded the threshold, the message processing is
retried.

= |f the backout count has exceeded the threshold, and the failure terminal is
connected to another node, the message is propagated to that node.

If the failure terminal is not connected, the message is put on the backout queue,
if oneisdefined for thisinput queue, or the queue manager’ s dead-letter queue
(DLQ), if abackout queue does not exist.

If the queue manager does not have a DL Q defined, the message is left on the
input queue. (If the broker’s queue manager has been created by the create
broker command mqsicreatebroker, a DL Q has been defined and enabled for this
gueue manager.)

— If the catch terminal is not connected and the message is not being processed under
transactional control, the message is discarded.

10/30/02

80.1.4b 76

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Y ou can provide aminimum level of error handling within every message flow you define if you choose.
This minimum level might includes:

Define a dead-letter queue (DL Q) on the broker’s queue manager (or use the default supplied
DLQ).

Change the queue manager’ s attributes to use this DLQ.

5.9.3.6 Adding or enhancing message processing nodes

MQSeries Integrator provides an external interface that allows you to add new capabilities to the broker
by implementing new node types. The interface comprises a set of callsimplemented in the C language.
These calls are of two kinds:

Cdllsthat the broker makes to the node, for exampleto initialize the node.

Cdlls that the node makes to the broker, for example, to inquire about the content of the message
being processed.

5.9.4 Assigning and Deploying Resourcesto Brokers

The complete process of assigning resources and deploying them to a broker istoo lengthy to be included
in thisguide. The steps are completely documented in Chapter 7 and 8 in the MQSeries Integrator
“Using the Control Center” Manual. The manual can be found at the following url:

http://www-3.ibm.com/software/ts/magseried/library/manual sa/manual s/mgsiv202.html

10/30/02 80.1.4b 7

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

6 APPLICATION CONNECTIVITY (ADAPTERSAND BRIDGES)

The EALI application will be interfacing with several systems. The interfaces between EAl and other
systems may require special mechanisms called adapters and bridges.

An adapter or abridge is a piece of software that moves data between a message on a queue and an
application or environment. Adapters handle data inbound-to and outbound-from the application or
environment.

6.1 MQSeriesApplication Adapter

M QSeries provides a mechanism for assured delivery of messages, which can be sent even when the
target is disconnected. It can be used to distribute work around alarge number of disparate systemsin an
environment where trying to propagate transactional two-phase commit is not practical.

6.2 Adapter Classifications

6.21 Typeof Message

Adapters may be classified by the type of message that will be processed:

Request/Reply
Anincoming XML request message from the front-end is posted to the back-end. In response, the
adapter always synchronously routes the back-end resultsin the form of avalid XML document.

Fire & Forget
Anincoming XML reguest from the front-end is posted to the back-end and no response is
required.

Notification
The adapter routes an incoming message from the back-end to the front-end in the form of avalid
XML message. This may be the reply to a message received.

All adapters written for FSA were of the Request/Reply type.

6.2.2 Interface Type

Adapters may be classified by interface type:
Java Object - Creates Java objects that corresponds to the XML message elements.
Host structure -

1. Convertsdatafrom valid XML valuesto valid host values. Uses tables for simple cases and
code for complex transformations.

2. Creates host objects that correspond to the host data structures and maps the values from the
XML objectsto the host objects

XML Message — The input data and the output data are both in XML format. The adapter may
add the standard header and perform other functions, but does not need to transform the message

10/30/02 80.1.4b 78

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

6.3 MQSeries-CICSESA Bridge

The MQSeries-CICS/ESA Bridge enables an application, not running in a CICS environment, to run a
program or transaction on CICS/ESA and get a response back. This non-CICS application can be run
from any environment that has access to a MQSeries network that encompasses M QSeries for
MVSESA.

A program is a CICS program that can be invoked using the EXEC CICS LINK command. It must
conform to the DPL subset of the CICS API that is, it must not use CICS terminal or syncpoint facilities.

A transaction is a CICS transaction designed to run on a 3270 terminal. This transaction can use BMS or
TC commands. It can be conversational or part of a pseudo conversation. It is permitted to issue
syncpoints.

6.3.1 Usingthe CICSBridge

Only FSA applications that use a CICS commareato communicate can utilize the CICS Bridge; any
applications that use terminal 1/0O CICS commands can use the CICS DPL Bridge.

The CICS Bridge allows an application to run asingle CICS program or a‘set’ of CICS programs (often
referred to as a unit of work). The adapter written for the CPS system utilizes the CICS Bridge. For
more information on the CPS adapter please reference the Technical Specification document. The CICS
Bridge works with the application that waits for a response to come back before it runs the next CICS
program (synchronous processing). It also works with the application that requests one or more CICS
programs to run, but doesn't wait for a response (asynchronous processing).

The CICS Bridge also allows an application to run a 3270-based CICS transaction, without knowledge of
the 3270 data stream. The CICS Bridge uses standard CICS and M QSeries security features. It can be
configured to authenticate, trust, or ignore the requestor's user ID.

With this flexibility, there are many instances where the CICS Bridge can be used. For example,

To write a new MQSeries application that needs access to logic or data (or both) that reside on
your CICS server.

Enabling a L otus Notes application to run CICS programs.

To be able to access CICS applications from a MQSeries Java client application or aweb
browser using the MQSeries Internet gateway.

6.3.2 CICSBridge at Work

This section explains how the CICS Bridge works and the options available when deciding what level of
security to use.

With respect to system setup, note the following:
Ensure that the MQSeries-CICS adapter is enabled.
The CICS Bridge requires that both MQSeries and CICS are running in the same MV S image.

The MQSeries request queue must be local to the CICS Bridge, however the response queue can
belocal or remote.

The CICS bridge tasks must run in the same CICS as the bridge monitor. The user programs can
be in the same or adifferent CICS system.

10/30/02 80.1.4b 79

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

6.4 Running CICSDPL programs

Data necessary to run the program is provided in the MQSeries message. The bridge builds a
COMMAREA from this data, and runs the program using EXEC CICS LINK.

The following shows the components and data flow to run a CICS DPL program.

MVS/ESA

MQSeries CICS/IESA
ciCcs
2 MQGET bridge
browse monitor
request
3.EXEC
CICS START
—
1.request
message * | 4MQGET g I%iFSNK
= user
request CICS DPI program
sy ey roquest bridge task |q s Exec
queue H CICS RETURN
response
message W | #(7.MQPUT
response
Transmission
queue

MQSeries
server or
client

Figure 1 — CICS DPL Transaction

The following takes each step in turn, and explains what takes place:
1. A message, with arequest to run a CICS program, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizesthat a‘ start
unit of work’ message iswaiting (Correlld=MQCI_NEW _SESSION).

3. Relevant authentication checks are made, and a CICS DPL Bridge task is started with the
appropriate authority.

The CICS DPL Bridge task removes the message from the request queue.

The CICS DPL Bridgetask buildsa COMMAREA from the data in the message and issues an
EXEC CICSLINK for the program requested in the message.

6. The program returns the response in the COMMAREA used by the request.

The CICS DPL Bridge task reads the COMMAREA, creates a message, and putsit on the reply-
to queue specified in the request message. All response messages (normal and error, requests
and replies) are put to the reply-to queue with default context.

8. The CICSDPL bridge task ends.

A unit of work can be just asingle user program, or it can be multiple user programs. Thereis no limit to
the number of messages you can send to make up a unit of work.

10/30/02 80.1.4b 80

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

6.4.1 Running CICS 3270 transactions

Data necessary to run the transaction is provided in the MQSeries message. The CICS transaction runs
asif it hasareal 3270 terminal, but instead uses one or more M QSeries messages to communicate
between the CICS transaction and the M QSeries application. Unlike traditional 3270 emulators, the
bridge does not work by replacing the VTAM flows with M QSeries messages.

Instead, the message consists of a number of parts called vectors, each of which corresponds to an EXEC
CICSrequest. Therefore, the application is talking directly to the CICS transaction, rather than viaan
emulator, using the actual data used by the transaction (known as application data structures or ADSs).

The following shows the components and data flows to run a CICS 3270 transaction.

MWSEESA

MO Series CICSESA

CICS

1. Resquasl

2MOGET
broavse
raques

B il
T R

messs ge

Freapres

LG-L'|-L|

Reguest
queLe

4 BIDEET
[L-HE S

MEEES]E

i

T MPUT
Ll ==yl

MDD - CICE
Bridge emif

JEXEC
CICS
ETART

CIEE
IETH bridge

35k

ransaciion

Trarsmisson
fquane

M1 Saning
BB O
clint

Figure 2 —CICS 3270 Transaction

The following takes each step in turn, and explains what takes place:
1. A message, with arequest to run a CICS transaction, is put on the request queue.

2. The CICS Bridge monitor task, which is constantly browsing the queue, recognizes that a ‘ start unit
of work’ message iswaiting Correlld=MQCI_NEW_SESSION).

3. Relevant authentication checks are made, and a CICS 3270 bridge task is started with the appropriate
authority.

4. The MQ-CICS bridge exit removes the message from the queue and changes task to run a user
transaction.

5. Vectorsin the message provide data to answer all terminal related input EXEC CICS requests in the
transaction.

Terminal related output EXEC CICS requests result in output vectors being built.

The MQ-CICS bridge exit builds al the output vectors into a single message and puts this on the
reply-to queue.

10/30/02 80.1.4b 81

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

8. The CICS 3270 bridge task ends.

A traditional CICS application usually consists of one or more transactions linked together as a pseudo
conversation. In general, the 3270 terminal user entering data onto the screen and pressing an AID key
starts each transaction. This model of application can be emulated by a MQSeries application. A
message is built for the first transaction, containing information about the transaction, and input vectors.
Thisis put on the queue.

The reply message will consist of the output vectors, the name of the next transaction to be run, and a
token that is used to represent the pseudo conversation. The MQSeries application builds a new input
message, with the transaction name set to the next transaction and the facility token set to the value
returned on the previous message. Vectors for this second transaction are added to the message, and the
message put on the queue. This processis continued until the application ends.

An alternative approach to writing CICS applicationsis the conversational model. In this model, the
original message might not contain all the data to run the transaction. If the transaction issues a request
that cannot be answered by any of the vectors in the message, a message is put onto the reply-to queue
requesting more data. The MQSeries application gets this message and puts a new message back to the
gueue with avector to satisfy the request.

10/30/02 80.1.4b 82

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

7 APPLICATION INTEGRATION EXAMPLES

This section contains representative examples of interfaces using each of the EAI middleware products
thereby providing guidance on integrating FSA applications with the EAl Core Architecture.

7.1 Exampleof an interface using Data | ntegrator

The Post-Secondary Education Participants System (PEPS) to eCB (eCampus Based) and COD
(Common Origination and Disbursement) interface ensures accuracy of individual, Campus Based
accounting transactions. Thisinterface uses Data Integrator product in conjunction with the EAI Busto
enable file transfer between these systems.

There are a series of core steps that every application team must follow to build an interface to the EAI
Bus. These steps are supplemented with Data Integrator steps that enable bulk file transfers between
different applications viathe EAI Bus. These may include additional configuration or custom

devel opment, specifying source and target file system location, etc. The steps specific to building a Data
Integrator interface are highlighted and italicized.

| Steps
1 | EAI conducts a core kick-off meeting with the Application Team.

2 | Application Team completes the EAI Questionnaire. (Please see Appendix C: EAI Core
Services Questionnaire)

3 | EAI Team reviewsthe EAl Questionnaire with the Application Team as input for the
Interface Estimate.

EAl Team completes the Interface Estimate.

EAl Team and Application Team review the Interface Estimate.

EAl Team completes the Interface Partner Agreement (1PA).

EAl Team and Application Team sign the IPA.

0 N o (01 |~

EAI Team completes the design documentation.
a. EAI Team completes Interface Control Document (ICD)
b. EAI Team completes Internal Interface Design (11D)

9 | EAl Teaminstalls the MQSeries Infrastructure on the application system in the
devel opment environment.

d. MQSeries softwareisinstalled and configured on the application system
Connectivity test is performed between the EAl Bus and the application system.
Queue Managers are defined on the application system.

Channels are defined between the application system and the EAI Bus.
Loca Queues are defined on the application system.

Message delivery test is performed between the EAI Bus and the application
system using sample programs provided by the MQSeries software.

T o

10 | EAI Teaminstalls the Data Integrator Infrastructure on the application systemin the
devel opment environment.
a. Data Integrator softwareisinstalled and configured on the application system

10/30/02 80.1.4b 83

US DEPARTMENT OF EDUCATION

FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

b. Connectivity test is performed between the EAI Bus and the application system.

c. Queue Managers are defined for Data Integrator on the application system.

j. Channels are defined for Data Integrator between the application system and the
EAIl Bus.

d. Local Queues are defined for Data Integrator on the application system.

e. Filedelivery test is performed between the EAl Bus and the application system
using sample Data Integrator scripts developed by the EAI team.

11

EAI team configures a directory monitor process on PEPS. The directory monitor process
(delivered with the Data Integrator software) polls a directory looking for the existence of
a new file matching certain naming convention criteria. Data Integrator scriptsare
developed by the EAI team to send the PEPSfile eCB and COD via the EAI Bus.

12

EAI Team develops Data Integrator script to send the PEPSfile to eCB and COD via the
EAIl Bus:

a. Secify source and target Queue manager

b. Specify source and target file system path

c. Specify pre or post processing after delivery of thefile

13

EAI team devel ops a Java transformation program that extracts the PEPS delta file. Once
the file arrives on the EAI Bus, the transformation programistriggered

14

Data Integrator is configured allow the same file to be delivered to multiple locations.
For instance, after the PEPSfile is received on the EAI Bus, but before the transformation
programis called, thefile is sent to eCB, another Trading Partner.

15

The Data Integrator scripts and transformation code are reviewed and baselined in
ClearCase repository by the EAI team.

16

EAl Team installs the MQSeries and Data Integrator Infrastructure on the application
system in the test environments (see steps 9 & 10).

17

EAI Team tests the application interface.

18

EAI Team logs testing Issues and reviews/resolves them with the Application Team.

19

Using ClearQuest, the EAI Team coordinates the deployment procedures and timeline with
the application host.
a. EAIl Teamingalsthe MQSeries and Data Integrator Infrastructure on the application
system in the production environment (see steps 9 & 10).
b. Code/scriptsis deployed to production
c. Application Team performs Production Readiness Test

7.2 Exampleof an interface using M QSeries I ntegrator

The eCampus Based (eCB) to Financial Management System (FMS) interface ensures consistent and
consolidated financial reporting of Campus- Based awards. This interface uses MQSeries Integrator,
Data Integrator, and custom adapter in conjunction with the EAIl Bus to enable filesto be converted into
messages and eventually inserted into the FM S database.

10/30/02

80.1.4b 84

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

There are a series of core steps that every application team must follow to build an interface to the EAI
Bus. These steps are supplemented with Data Integrator steps that enable bulk file transfers, MQSeries
Integrator to perform file to message transformation, and custom adapter to feed the messages into the
database viathe EAI Bus. Thisexample will only highlight the MQSeries Integrator steps. These may
include additional configuration or custom development, creating MQSeries Integrator messages, flows,
etc, etc. The steps specific to building MQSeries Integrator interfaces are highlighted and italicized.

| Steps
1 | EAI conducts a core kick-off meeting with the Application Team.

2 | Application Team completes the EAl Questionnaire. (Please see Appendix C: EAI Core
Services Questionnaire)

3 | EAI Team reviews the EAI Questionnaire with the Application Team as input for the
Interface Estimate.

EAl Team completes the Interface Estimate.

EAl Team and Application Team review the Interface Estimate.

EAI Team completes the Interface Partner Agreement (1PA).

EAI Team and Application Team sign the IPA.

0 N o (01 |~

EAI Team completes the design documentation.
a. EAI Team completes Interface Control Document (ICD)
b. EAI Team completes Internal Interface Design (11D)

9 | EAIl Team creates high-level MQSeries Integrator process flow diagrams based on the
business requirements (e.g., transformation, routing, and etc)

10 | EAI Team installs the MQSeries Infrastructure on the application system in the
development environment.

MQSeries software isinstalled and configured on the application system
Connectivity test is performed between the EAI Bus and the application system.
Queue Managers are defined on the application system.

Channels are defined between the application system and the EAI Bus.

Local Queues are defined on the application system.

Message delivery test is performed between the EAl Bus and the application
system using sample programs provided by the M QSeries software.

S0 Qo0 T

11 | EAI Team installs the Data Integrator Infrastructure on the application system in the
development environment.
a. Datalntegrator softwareisinstalled and configured on the application system
b. Connectivity test is performed between the EAI Bus and the application system.
c. Queue Managers are defined for Data Integrator on the application system.
d. Channelsare defined for Data Integrator between the application system and the
EAIl Bus.
e. Loca Queues are defined for Data Integrator on the application system.
f. Filedelivery test is performed between the EAIl Bus and the application system
using sample Data Integrator scripts developed by the EAI team.

10/30/02 80.1.4b 85

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

12

EAI Team develops Data Integrator script to send the eCB UTCL fileto FMSviathe EAI
Bus:

a. Specify source and target Queue manager

b. Specify source and target file system path

c. Specify pre or post processing after delivery of thefile

13

EAI team develops SQL insert statements based on the input UTCL file that is used to load
the UTCL data into FMS. The insert statements are associated with MQSeries message
through MQSeries Integrator

14

EAI Team defines the message set(s) and elements in MQSeries Integrator.

EAI Team defines the message flow(s) in MQSeries Integrator that performs the following
transformation on the UTCL file:
a. Performsany necessary FMSvalidations and transformation
b. Createsan SQL statement to place the message in the appropriate table
c. Placesthe SQL statement on MQSeries queues bound for the FMS MQSeries
gueue manager

15

EAI team develops a custom FMS-MQSeries Adapter that will execute the SQL statement
contained in the MQSeries Message against the FMS database. All insert SQL statements
are performed in a single transaction

16

The Data Integrator scripts and MQSeries Integrator flows are reviewed and baselined in
ClearCase repository by the EAI team.

17

EAl Team installs the MQSeries, Data Integrator, and MQSeries Integrator Infrastructure
on the application system in the test environments (see steps 9 & 10).

18

EAI Team tests the application interface.

19

EAI Team logs testing Issues and reviews/resolves them with the Application Team.

20

Using ClearQuest, the EAl Team coordinates the deployment procedures and timeline with
the application host.
a. EAIl Teamingdlsthe MQSeries, Data Integrator, and M QSeries Integrator
Infrastructure on the application system in the production environment (see steps 9
&10).
b. Adapter code scripts are deployed to production
The Message Sets and Flows are deployed to production
Application Team performs Production Readiness Test

e o

7.3 Custom EAl Adapter

The eCampus Based (eCB) to Financial Management System (FMS) interface ensures consistent and
consolidated financial reporting of Campus- Based awards. This interface uses MQSeries Integrator,
Data | ntegrator, and custom adapter in conjunction with the EAl Bus to enable filesto be converted into
messages and eventually inserted into the FM S database.

There are a series of core steps that every application team must follow to build an interface to the EAI
Bus. These steps are supplemented with Data Integrator steps that enable bulk file transfers, MQSeries

10/30/02

80.1.4b 86

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Integrator to perform file to message transformation, and custom adapter to feed the messagesinto the
database viathe EAI Bus. This examplewill only highlight the Custom EAI Adapter steps. These may
include installation of development tools, shared libraries, psuedo code, etc. The steps specific to
building EAl Custom Adapter interfaces are highlighted and italicized.

Steps

EAI conducts a core kick-off meeting with the Application Team.

Application Team completes the EAl Questionnaire. (Please see Appendix C: EAI Core
Services Questionnaire)

EAI Team reviews the EAI Questionnaire with the Application Team as input for the
Interface Estimate.

EAl Team completes the Interface Estimate.

EAI Team and Application Team review the Interface Estimate.

EAI Team completes the Interface Partner Agreement (1PA).

EAI Team and Application Team sign the IPA.

0 N o (01 |~

EAI Team completes the design documentation.
a. EAI Team completes Interface Control Document (ICD)
b. EAI Team completes Internal Interface Design (11D)

Psuedo code are created as a supplement to the design document.

10

EAI Team designs the custom adapter by applying the existing EAI error handling
framework or customize it to meet the business requirements

11

EAl Team installs the MQSeries Infrastructure on the application system in the
development environment.

MQSeries software isinstalled and configured on the application system
Connectivity test is performed between the EAI Bus and the application system.
Queue Managers are defined on the application system.

Channels are defined between the application system and the EAI Bus.

Local Queues are defined on the application system.

Message delivery test is performed between the EAl Bus and the application
system using sample programs provided by the M QSeries software.

S0 Qo0 T

12

EAI Team installs the Data Integrator I nfrastructure on the application system in the
development environment.
a. Datalntegrator softwareisinstalled and configured on the application system
b. Connectivity test is performed between the EAl Bus and the application
system.
c. Queue Managers are defined for Data I ntegrator on the application system.
d. Channels are defined for Data Integrator between the application system and
the EAl Bus.
e. Loca Queues are defined for Data Integrator on the application system.
File delivery test is performed between the EAl Bus and the application
system using sample Data I ntegrator scripts developed by the EAI team.

—h

10/30/02

80.1.4b 87

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

13

EAI Teaminstalls the following library or support pacs on the application systemin the
devel opment environment.
a. Application Message Interface (AMI) library — provides a layer of MQSeries
interface options
b. MQSeries client (MA88 support pac)
c. Development compiler or engine (e.g., C/C++ compiler, JDK or JVM)

14

EAI Team devel ops the Custom EAI FMS adapter using AMI and the MQSeries client to
perform the following actions based on design documents:

Connect to a specified Queue Manager

Put messages on a specified queue

Get messages from a specified queue

Listen for messages on a specified queue

Disconnect from a specified Queue Manager

Error handling

Additional database access capabilities are developed to insert records into
the FMS database

@ o0 o

15

The Custom EAI FM S adapter code is reviewed and baselined in ClearCase repository by
the EAI team.

16

EAl Team installs the MQSeries, Data Integrator, and MQSeries Integrator Infrastructure
on the application system in the test environments (see steps 11-13).

17

EAI Team tests the Custom EAl FM S Adapter.

18

EAI Team logs testing I ssues and reviews/resolves them with the Application Team.

19

Using ClearQuest, the EAl Team coordinates the deployment procedures and timeline with
the application host.
d. EAI Teamingdlsthe DataIntegrator, MQSeries Integrator Infrastructure on the
application system in the production environment (see steps 11-13).
e. Code/scriptsis deployed to production
f. Application Team performs Production Readiness Test

10/30/02

80.1.4b 88

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

8 REUSEABLE EAI FUNCTIONS

Reusable EAI functions described in the following section are application services that can be utilized by
applications integrated with the EAl Core Architecture. Additional reusable functions will be included
asthey are developed and deployed in future EAI Core Architecture efforts.

8.1 EAI Common Log Function

The following outlines design and implementation information required to utilize the EAl Common Log
Function.

8.1.1 Interface Design Specification

Interface Name: EAIl Common Log Function

Interface Type: Uni-Directional

This interface enables applications to record events to the local and

Interface Short Description: .
. centralized logs.

Source Application: Any

Destination Application: Local and centralized logs.

Functional Requirement References: Message Logging
Related Interface Control Document: N/A
Related Unit Test Document: TBD

N/A

Other Related Interfaces:

8.1.2 Interface Overview

Flow Diagram:

S
—

Centralized
Log
(4)

— .
Log function
Application 2)
(1)

—
Local Log
(5)

10/30/02 80.1.4b 89

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

| Name Description

1 | Application The source application

2 | Log Function A library function that sends the log entry to the centralized and/or local logs.
3 | MQ Series The MQ Series transport mechanism.

4 | Centralized Log The centralized log repository.

5 | Local Log Thelocal log file.

8.1.2.1 Detailed Technical Overview

An application (1) generates an event that it needsto record. The application will call the log function
(2) according to the specified function signature. The log function creates a message. It then sendsthe
message via MQ Series (3) to the Centralized Log (4). The log function also records the event on the
local log (5).

8.1.2.2 Background EAI Logging Objectives

The“logging” framework will help standardize and simplify exception handling for FSA’s application
teams. The standardized exception handling will also help reduce the possibility of uncaught exception
scenarios.

An exception is a code or language construct that indicates when an unusual or unexpected error
condition occursin an application. Examples of exceptions are hardware, network, 1/O, or memory
problems. If an exception is“handled” in code, it can be dealt with gracefully and will not necessarily
have to cause program termination. Exception handling provides a mechanism for writing robust,
resilient code that is capable of dealing with the unexpected.

In addition to exception logging, the following categories were reviewed for consideration:
1. Performance Logging

Capture Service Level Agreement Metrics

Provide information for system tuning

Exception Logging

Provide clarity as to where the problem has occurred

Debugging/Tracing

Aid developers in development and testing

Score Card Logging

© o N o gk~ w D

Provide overall transaction status; i.e file X was transferred from server A to server B
10. Alert Logging
11. Provide a mechanism to alert operations of a problem

Empirically it can be observed that information required when satisfying the varied logging requirements
overlap. For example information required to “ Alert” operations of a problem will also aidein “Problem
Identification”.

10/30/02 80.1.4b 90

US DEPARTMENT OF EDUCATION EAI CORE ARCHITECTURE RELEASE 3.0

FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER ENABLEMENT GUIDE (FINAL)

8.1.2.3 Logging Thresholds Provided via EAI L ogging facility

Each message logged within the framework has a severity. A masking of this value determines whether
the Logger allows the message to continue to the destination.

The severities alowed within a message are:
Debug Logging
- Theseare debugging messages usualy placed by the programmers for the tracing and debugging
purposes.

Informational Logging
- Theseareuseful informational messages about what is occurring.

Score Card Logging
- Providesan overdl gatus of the interface request; for example a datagram message that originates
from NSLDS and terminates at COD would produce logging records for use as an audit mechanism
(Thisfeatureis not currently implemented).

Warning Logging
- These messages warn that something abnormal has happened, but that the system will attempt to
recover fromit. These messages are usualy used by programmersto show that something is starting
to go wrong.

Error Logging
- These messages date that something abnormal has occurred, but that it is not severe enough to cause
the system to fail in general. A specific task may fail and some users may get an error, but the system
will keep going. Exceptions are generally logged at thisleve.

- Forexample, if aLoggers mask is set to INFO, then any message that comesin with aseverity that is
below INFO will be sent on to the destination. A message that has severity DEBUG will be ignored.
With thisLog Mask, all info, warning, error, and fatal messageswill show up at the destination.

DEBUG 37
Log Mask > INFO :
SCORE CARD ?
WARNING :
ERROR Y<;7

10/30/02 80.1.4b 91

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (FINAL)

8.1.24 Configuration Parameters

The following configuration parameters are required for message logging.

Description

Variable

Example

Environment Variable identifying
location of configuration file and
name of configuration file

EAILOG_PATH

C:\somedirectory\eailog\eailog.ini

Logging Threshold

LOGGING_THRESHOLD

0 (Debug)

Log file path name

LOGGING_PATH_NAME

C:\somedirectory\eailog\
eailog.yyyymmdd.txt

Remote queue

LOGGING REMOTE_QUEUE

EAI.LOG

8.1.25 Component Model

The following function calls form the public interface of the Error logging subcomponent. These public
interfaces will be published on the following platforms:

- Solaris
- HP-UX
- 0S/390
- OpenVMS (no AMI)

1. For AMI enabled platforms, logging will be invoked via AMI’s “Policy Handler Interface”. “Policy
Handler” eliminates the need for EAl BUS devel opersto invoke the logging facility for interactions that
utilize MQSeries resources. “Policy Handler Post Transport Request Invocations” will be utilized to

execute the logging mechanism.
Post-transport requests:
Post-MQBACK
Post-MQBEGIN
Post-MQCLOSE
Post-MQCMIT
Post-MQCONN
Post-MQCONNX
Post-MQDISC
Post-MQGET
Post-MQINQ

10/30/02

80.1.4b

92

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Post-MQOPEN
Post-MQPUT
Post-MQPUT1
Post-MQSET.

2. C/C++ function interface:
long EAILog(
long ISeverity,

char *msgCode,

char *msgText,

char *interfaceid);

3. A Javainterface (INI).
public class EAIMSGLOG {

public native int eaiL og(long severity,

String msgCode,
String msgText,

String interfaceid);

package gov.ed.eailog;

8.1.3 Design Assumptions

| ASSUMPTIONS

1 The application is expected to call the log function whenever an event needs to be logged. At aminimum,
informational logging will occur post-transport request.

2 The application is expected to call the log function according to the specified function signature.

3 Each application using this API is expected to install and configure MQ Series v5.2 (OpenVMS excluded).

4 EAIl BUS File Transfer product includes alogging mechanism.

5 MQSeries 5.2 is not supported on OpenVMS, therefore all logging must be coded by the devel oper

6 | Applications must use this mechanism within EAI adapters; at a minimum thiswill be called at the start and
end of a adapter

! All servers must have a C/C++ compiler

8

A COTS mgseries monitoring tool will be utilized

10/30/02 80.1.4b 93

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

8.1.4 Design Dependencies

| DEPENDENCIES

1| MOseries5.2

2 AMI Support Pack

8.1.5 Detailed Technical Design

Component Name: EAI Common Log Function

Related | nterface Control Document:

N/A

Technical Design Description: Applicationswill call the EAl Common Log Function according to the

previously specified function signature:

Field Descriptions:

Message logging output file description:

Description

Informationa
Logging

Exception Logging

Score Card Logging

Version the version of the
EAILogStruct
definition being
used; currently

1

the severity of the
message being
logged; valid
values are;

00 — Debug

04 — Score Card
08 - Informational
12 —warning

16 —error

Severity

msgCode afreeform field
for error codes;
typically a
MQSeries error
code

blank

MQRC=9999

MQRC=9999

MsgText afreeform field
for the error
description;

function/method
name for
informationa

messages

MQRC_XXX_XXX_XX
X

MQRC_XXX_XXX_XX
X

interfaceld interface control
document

Interface Control
Id

Interface Control |1d

Interface Control 1d

10/30/02

80.1.4b

94

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

instance occurrence of a Hash value Hash value Hash Vaue
transaction

System hostname of the Hostname Hostname Hostname
system generating
the error

programid Program id Program_id Program_id Program_id

ReturnCode specifies the status
of the function
upon completion;
valid values are:

0 — success

1—unabletolog
message

Message |ogging functions generate a file delimited as follows:

<Version> <hostname> <program_name> <Instance> <date time> <severity> <interface id>

<message text> <return code>

Error Handling:

Reporting/Communication

| Type Method Message
1 Error — continue processing | Return code Unable to locate EAILOG environment
variable.
2 Error — continue processing | Return code Unable to send message to centralized log.
Error — continue processing | Return code Unable to read control record information.
4 Error — continue processing | Return code Unable to writeto local log.
10/30/02 80.1.4b 9%

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

9 COMMITTING AND BACKING OUT UNITSOF WORK

This section describes how to commit and back out any recoverable get and put operations that have
occurred in aunit of work. The following terms, described below, are used in this section:
- Commit

Back out

Syncpoint coordination

Syncpoint

Unit of work

Single-phase commit

Two-phase commit

9.1 Committing and Backing Out

When a program puts a message on a queue within a unit of work, that message is made visible to other
programs only when the program commits the unit of work. To commit a unit of work, all updates must
be successful to preserve dataintegrity. If the program detects an error and decides that the put operation
should not be made permanent, it can back out the unit of work. When a program performs a back out,

M QSeries restores the queue by removing the messages that were put on the queue by that unit of work.
The way in which the program performs the commit and back out operations depends on the environment
in which the program is running.

When a program gets a message from a queue within a unit of work, that message remains on the queue
until the program commits the unit of work, but the message is not available to be retrieved by other
programs. The message is permanently deleted from the queue when the program commits the unit of
work. If the program backs out the unit of work, MQSeries restores the queue by making the messages
available to be retrieved by other programs. Changes to queue attributes (either by the MQSET call or by
commands) are not affected by the committing or backing out of units of work.

9.2 Syncpoint Coordination, Syncpoint, Unit of Work

Syncpoint coordination is the process by which units of work are either committed or backed out with
dataintegrity. The decision to commit or back out the changesis taken, in the ssimplest case, at the end of
atransaction. However, it can be more useful for an application to synchronize data changes at other
logical points within atransaction. These logical points are called syncpoints (or synchronization points)
and the period of processing a set of updates between two syncpointsis called a unit of work. Several
MQGET callsand MQPUT calls can be part of asingle unit of work. The maximum number of messages
within aunit of work can be controlled by the DEFINE MAXSM SGS command on OS/390, or by the
MAXUMSGS attribute of the ALTER QMGR command on other platforms. See the MQSeries
Command Reference book for details of these commands.

9.3 Syncpoint Guidelines

A MQSeries application can specify on every put and get call whether the call isto be under syncpoint
control. To make a put operation operate under syncpoint control, use the MQPMO_SYNCPOINT value
in the Options field of the MQPMO structure when calling MQPUT. For a get operation, use the
MQGMO_SYNCPOINT vaue in the Options field of the MQGM O structure. If not explicitly choosing

10/30/02 80.1.4b 96

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

an option, the default action depends on the platform. The syncpoint control default on OS/390 and
Tandem NSK is‘yes’; for al other platforms, itis‘no’.

If aprogram issues the MQDISC call while uncommitted requests exist, an implicit syncpoint occurs,
except on OS/390 batch with RRS. If the program ends abnormally, an implicit backout occurs. On
0S/390, an implicit syncpoint occurs if the program ends normally without first calling MQDISC.

For MQSeries for OS/390 programs, usethe MQGMO_MARK _SKIP_BACKOUT option to specify that
amessage should not be backed out if backout occurs (in order to avoid an * MQGET -error-backout’
loop).

9.3.1 Syncpointsin MQSeries for Windows NT, MQSeries on UNIX systems

Syncpoint support operates on two types of units of work: local and global. A local unit of work isone
in which the only resources updated are those of the MQSeries queue manager. Here syncpoint
coordination is provided by the queue manager itself using a single-phase commit procedure.

A global unit of work is one in which resources belonging to other resource managers, such as databases,
are aso updated. MQSeries can coordinate such units of work itself or the units of work can also be
coordinated by an external commitment controller such as another transaction manager.

For full integrity, atwo-phase commit procedure must be used. Two-phase commit can be provided by
XA-compliant transaction managers and databases such as IBM’s TXSeries and UDB. MQSeries
Version 5 products (except MQSeries for OS/390) can coordinate global units of work using a two-phase
commit process.

9.3.2 Locad units of work

Units of work that involve only the queue manager are called local units of work. Syncpoint
coordination is provided by the queue manager itself (internal coordination) using a single-phase commit
process. To start alocal unit of work, the application issues MQGET, MQPUT, or MQPUT1 requests
specifying the appropriate syncpoint option. The unit of work is committed using MQCMIT or rolled
back using MQBACK. However, the unit of work also ends when the connection between the application
and the queue manager is broken, whether intentionally or unintentionally.

If an application disconnects (MQDISC) from a queue manager while a unit of work is still active, the
unit of work is committed. If, however, the application terminates without disconnecting, the unit of work
isrolled back as the application is deemed to have terminated abnormally.

9.3.3 Global units of work

Use global units of work when needing to include updates to resources belonging to other resource
managers. Here the coordination may be internal or external to the queue manager:

9.3.4 Internal syncpoint coordination

Queue manager coordination of global units of work is supported only on MQSeries Version 5 products
except for MQSeries for OS/390. It is not supported in a MQSeries client environment. Here, the
coordination is performed by MQSeries. To start aglobal unit of work, the application issues the
MQBEGIN call.

10/30/02 80.1.4b 97

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Asinput to the MQBEGIN call, supply the connection handle (Hconn), which isreturned by the
MQCONN or MQCONNX call. This handle represents the connection to the M QSeries queue manager.

Again, the application issues MQGET, MQPUT, or MQPUT 1 requests specifying the appropriate
syncpoint option. This means that MQBEGIN can be used to initiate a global unit of work that updates
local resources, resources belonging to other resource managers, or both. Updates made to resources
belonging to other resource managers are made using the API of that resource manager. However, it is
not possible to use the MQI to update queues that belong to other queue managers. MQCMIT or
MQBACK must be issued before starting further units of

work (local or global).

The global unit of work is committed using MQCMIT; thisinitiates a two-phase commit of all the
resource managers involved in the unit of work. A two-phase commit processis used whereby resource
managers (for example, XA-compliant database managers such as DB2, Oracle, and Sybase) are firstly
all asked to prepare to commit. If any resource manager signals that it cannot commit, each is asked to
back out instead. Alternatively, MQBACK can be used to roll back the updates of al the resource
managers.

If an application disconnects (MQDISC) while aglobal unit of work is still active, the unit of work is
committed. If, however, the application terminates without disconnecting, the unit of work is rolled back
as the application is deemed to have terminated abnormally. The output from MQBEGIN is a completion
code and a reason code. When MQBEGIN is used to start aglobal unit of work, all the external resource
managers that have been configured with the queue manager are included. If there are no participating
resource managers (that is, no resource managers have been configured with the queue manager) or one
Or more resource managers are not available, the call starts a unit of work and completes with awarning.

In these cases, the unit of work should include updates to only those resource managers that were
available when the unit of work was started. If one of the resource managersis unable to commit its
updates, all of the resource managers are instructed to roll back their updates, and MQCMIT completes
with awarning. In unusual circumstances (typically, operator intervention), aMQCMIT call may fail if
some resource managers commit their updates but others roll them back; the work is deemed to have
completed with a“mixed’ outcome. Such occurrences are diagnosed in the error log of the queue
manager so remedial action may be taken. A MQCMIT of aglobal unit of work succeedsif al of the
resource managers involved commit their updates. For a description of the MQBEGIN call, see the
MQSeries Application Programming Reference manual.

9.3.5 Externa syncpoint coordination

External syncpoint coordination occurs when a syncpoint coordinator other than MQSeries (e.g. CICS,
Encina, and Tuxedo) has been selected. MQSeries on a UNIX system or MQSeries for Windows NT will
register its interest in the outcome of the unit of work, with the syncpoint coordinator. This happensin
order to commit or roll back any uncommitted get or put operations as required. The external syncpoint
coordinator determines whether one- or two-phase commitment protocols are provided. When an
external coordinator isused MQCMIT, MQBACK, and MQBEGIN may not beissued. Callsto these
functions fail with the reason code MQRC_ENVIRONMENT_ERROR. The way in which an externally
coordinated unit of work is started is dependent on the programming interface provided by the syncpoint
coordinator. An explicit call may, or may not, be required. If an explicit call isrequired, and the
MQPUT call specifying the MQPMO_SYNCPOINT option is specified when a unit of work is not
started, the completion code MQRC_SYNCPOINT_NOT_AVAILABLE isreturned.

10/30/02 80.1.4b 98

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

The syncpoint coordinator determines the scope of the unit of work. The state of the connection between
the application and the queue manager affects the success or failure of MQI calls that an application
issues, not the state of the unit of work. It is, for example, possible for an application to disconnect and
reconnect to a queue manager during an active unit of work and perform further MQGET and MQPUT
operations inside the same unit of work. Thisis known as a pending disconnect.

9.3.6 Interfacesto external syncpoint managers

MQSeries on UNIX systems and MQSeries for Windows NT support coordination of transactions by
external syncpoint managers which utilize the X/Open XA interface. This support is available only on
server configurations. The interface is not available to client applications.

Some XA transaction managers (not CICS on Open Systems or Encina) require that each XA resource
manager supply its name. Thisisthe string called name in the XA switch structure. The resource
manager for MQSeries on UNIX systemsis named “MQSeries XA_RMI”. For further detailson XA
interfaces refer to XA documentation CAE Specification Distributed Transaction Processing: The XA
Specification, published by The Open Group.

In an XA configuration, MQSeries on UNIX systems and MQSeries for Windows NT fulfill the role of
an XA Resource Manager. An XA syncpoint coordinator can manage a set of XA Resource Managers,
and synchronize the commit or backout of transactions in both Resource Managers.

For a statically-registered resource manager:
1. An application notifies the syncpoint coordinator that it wishesto start a transaction.

2. The syncpoint coordinator issues acall to any resource managers that it knows of, to notify them
of the current transaction.

3. The application issues calls to update the resources managed by the resource managers
associated with the current transaction.

4. The application requests that the syncpoint coordinator either commits or rolls back the
transaction.

5. The syncpoint coordinator issues calls to each resource manager using two-phase commit
protocols to compl ete the transaction as requested. The XA specification requires each Resource
Manager to provide a structure called an XA Switch. This structure declares the capabilities of the
Resource Manager, and the functions that are to be called by the syncpoint coordinator.

There are two versions of this structure:

MQRMIXASwitch
Static XA resource management

MQRMIXASwitchDynamic
Dynamic XA resource management

The structure is found in the following libraries:
mgmxa.lib
Windows NT XA library for Static resource management

10/30/02 80.1.4b 99

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

mgmenc.lib

Sun Solaris and Windows NT Encina XA library for Dynamic resource management

libmgmxa.a

UNIX systems XA library (hon-threaded) for both Static and Dynamic

resource management

libmgmxa_r.a

UNIX systems (except Sun Solaris) XA library (threaded) for both Static and Dynamic resource
management. The method that must be used to link them to an XA syncpoint coordinator is defined by
the coordinator. Also, consult the documentation provided by that coordinator to determine how to
enable MQSeries to cooperate with the XA syncpoint coordinator.

The xa_info structure that is passed on any xa_open call by the syncpoint coordinator should be the name
of the queue manager that is to be administered. This takes the same form as the queue manager name
passed to MQCONN or MQCONNX, and may be blank if the default queue manager isto be used.

9.4 MQSeries Syncpoint Callsfor 0S390

MQSeries for OS/390 providesthe MQCMIT and MQBACK calls. Use these callsin OS/390 batch
programsto tell the queue manager that all the MQGET and MQPUT operations since the last syncpoint
are to be made permanent (committed) or are to be backed out. To commit and back out changes in other
environments:

CICS use commands such as EXEC CICS SYNCPOINT and EXEC CICS
SYNCPOINT ROLLBACK.

IMS use the IMS syncpoint facilities, such as the GU (get unique) to the IOPCB,
CHKP (checkpoint), and ROLB (rollback) calls.

RRS use MQCMIT and MOQBACK or SRRCMIT and SRRBACK as appropriate.

Note: SRRCMIT and SRRBACK are ‘native’ RRS commands, and are not
MQI calls.

For backward compatibility, the CSQBCMT and CSQBBAK calls are available as synonyms for
MQCMIT and MQBACK. These are described fully in the MQSeries Application Programming
Reference manual .

9.5 MQSeries Syncpoint Callson Windows NT and UNI X systems

The following products provide the MQCMIT and MQBACK calls:
MQSeries for Windows NT
MQSeries on UNIX systems

Use syncpoint callsin programs to tell the queue manager that all the MQGET and MQPUT operations
since the last syncpoint are to be made permanent (committed) or are to be backed out. To commit and
back out changes in the CICS environment, use commands such as EXEC CICS SYNCPOINT and EXEC
CICS SYNCPOINT ROLLBACK.

10/30/02 80.1.4b 100

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

9.6 Single-phase Commit

A single-phase commit processis one in which a program can commit updates to a queue without
coordinating its changes with other resource managers.

9.7 Two-phase Commit

A two-phase commit process is one in which updates that a program has made to M QSeries queues can
be coordinated with updates to other resources (for example, databases under the control of DB2). Under
such a process, updates to all resources are committed or backed out together. To help handle units of
work, MQSeries provides the BackoutCount attribute. Thisisincremented each time a message, within a
unit of work, is backed out. If the message repeatedly causes the unit of work to abend, the value of the
BackoutCount finally exceeds that of the BackoutThreshold. Thisvalueis set when the gqueue is defined.
In this situation, the application can choose to remove the message from the unit of work and put it onto
another queue, as defined in BackoutRequeueQName . When the message is moved, the unit of work can
commit.

Transaction managers (such as CICS, IMS, Encina, and Tuxedo) can participate in two-phase commit,
coordinated with other recoverable resources. This means that the queuing functions provided by
M QSeries can be brought within the scope of a unit of work, managed by the transaction manager.

10/30/02 80.1.4b 101

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

10 APPENDIX A: REFERENCE M ATERIAL

For more information on the software and hardware prerequisites for the OS/390, please refer to the
“MQSeries for OS/390 v5.2 Program Directory” and the “MQSeries for OS/390 v5.2 Concepts and
Planning Guide” books on the IBM website:
http://www-4.ibm.com/software/ts/maseries/library/manual sa/

For more information on WebSphere Application Server prerequisites, please refer to the “MQSeries for
Windows NT and 2000 Quick Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/ts/maseries/library/manual sa/

For more information on EAI BUS prerequisites, please refer to the “MQSeries for Windows NT and
2000 Quick Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/ts/maseries/library/manual sa/

For more information on DL SS prerequisites, please refer to the “MQSeries for Compaqg (DIGITAL)
OpenVMS System Management” book on the IBM website:
http://www-4.ibm.com/software/ts/maseries/library/manual sa/

For more information on PEPS prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/ts/maseries/library/manual sa/

For more information on BTrade prerequisites, please refer to the “MQSeries for HP-UX v5.2 Quick
Beginnings’ book on the IBM website:
http://www-4.ibm.com/software/ts/maseries/library/manual sa.

For more information on how to customize M QSeries objects for application specific requirements,
please refer to the IBM website:
http://www-4.ibm.com/software/ts/maseries/library/manual sa/

For more information on M QSeries application error handling, event monitoring and MQSI error
handling, please refer to the following books:

“MQSeries Application Programming Reference’

“MQSeries Event Monitoring”

“MQSeries Integrator Introduction and Planning”

on the IBM website: http://www-4.ibm.com/software/ts/mgseries/library/manual sa/

For more information on managing clusters and developing a custom cluster workload exit, please refer
to the “MQSeries Queue Manager Clusters’ book on the IBM website:

10/30/02 80.1.4b 102

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

http://www-4.ibm.com/software/ts/magseriesd/|library/manuals

For more information on the MQSeries Integrator Control Center and the M QSeries commands and
control commands, please refer to the following books:

“MQSeries Integrator Using the Control Center”

“MQSeries MQSC Command Reference”

“MQSeries Systems Administration”

“MQSeriesfor Compaq (DIGITAL) OpenVMS System Management”

“MQSeries for 0S/390 System Administration Guide”

on the IBM website: http://www-4.ibm.com/software/tsymgseries/library/manual sa/

For more information on the MQSI configuration manger, please refer to the “MQSeries Integrator Using
the Control Center” book on the IBM website:
http://www-4.ibm.com/software/ts/mgseried/library/manual sa/

MQSeries Application Programming Guide can be found at:
http://www-4.ibm.com/software/ts/mgseries/library/manual sa/ - Latest family books

MQSeries Application Programming Reference can be found at:
http://www-4.ibm.com/software/ts/mgseries/library/manual sa/ - Latest family books

MQSeries Application Messaging Interface manual can be found at:
http://www-4.ibm.com/software/ts/mgseries/library/manual sa/ - Latest family books

MQSeries Using C++ manual can be found at:
http://www-4.ibm.com/software/tsmgseries/library/manualsal - L atest family books

MQSeries Using Java manual can be found at:
http://www-4.ibm.com/software/ts/mgseries/library/manual sa/ - Latest family books

10/30/02 80.1.4b 103

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

11 APPENDIX B: GLOSSARY

A

ACS
Affiliated Computer Systems. The company that manages the DL SS system located in Rockville,
MD.

activelog
See recovery log.

AIS
Application Information Services

adapter
An adapter is an attachment facility (program) that enables applications to access M QSeries services.
More specifically an adapter is used to isolate an application implementing an interface which
manages format conversions and application specific behavior.

alias queue object
A MQSeries object, the name of which is an alias for a base queue defined to the local queue
manager. When an application or a queue manager uses an alias queue, the alias name is resolved and
the requested operation is performed on the associated base queue.

alternate user security
A security feature in which the authority of one user ID can be used by another user ID; for example,
to open a MQSeries object.

AMI
Application Message Interface. An MQSeries term.

API
Application Programming Interface.

archivelog
See recovery log.

asynchronous messaging
A method of communication between programs in which programs place messages on message

gueues. With asynchronous messaging, the sending program proceeds with its own processing
without waiting for areply to its message. Contrast with synchronous messaging.

authorization service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a service
that provides authority checking of commands and MQI calls for the user identifier associated with
the command or call.

B
BLOB
An MQSI message domain where all unstructured messages are contained.

bootstrap data set (BSDYS)
A VSAM data set that contains:

10/30/02 80.1.4b 104

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Aninventory of al active and archived log data sets known to MQSeries for OS/390
A wrap-around inventory of all recent MQSeries for OS/390 activity
The BSDSisrequired if the MQSeries for OS/390 subsystem has to be restarted.

browse
In message queuing, to usethe MQGET call to copy a message without removing it from the queue.
See also get.

browse cursor
In message queuing, an indicator used when browsing a queue to identify the message that is next in
sequence.

BSDS
Bootstrap data set.

bTrade
A 3™ party vendor to FSA that provides a product to send files across the internet and allows the
data to be compressed and encrypted.

C

CCF
Custom Connector Framework

channel
See message channel.

channel definition file (CDF)
In MQSeries, afile containing communication channel definitions that associate transmission queues
with communication links.

channel event
An event indicating that a channel instance has become available or unavailable. Channel events are
generated on the queue managers at both ends of the channel.

checkpoint
A time when significant information is written on the log. Contrast with syncpoint. In MQSeries on
UNIX systems, the point in time when a data record described in the log is the same as the data
record in the queue. Checkpoints are generated automatically and are used during the system restart
process.

circular logging
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping all restart datain aring of log files. Logging fillsthefirst file in the ring and then
moves on to the next, until all the files are full. At this point, logging goes back to the first filein the
ring and starts again, if the space has been freed or is no longer needed. Circular logging is used
during restart recovery, using the log to roll back transactions that were in progress when the system
stopped. Contrast with linear logging.

CIsC
Customer Information Control System. A subsystem of the OS/390 computing platform.

10/30/02 80.1.4b 105

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

client
A run-time component that provides access to queuing services on a server for local user
applications. The queues used by the applications reside on the server. See also MQSeries client.

client application
An application, running on aworkstation and linked to a client, that gives the application access to
gueuing services on a server.

cluster
A network of queue managers that are logically associated in some way.

CPS
Central Processing System.
COD

Common Origination and Distribution System.

command
In MQSeries, an administration instruction that can be carried out by the queue manager.

command server
The MQSeries component that reads commands from the system-command input queue, verifies
them, and passes valid commands to the command processor.

connect
To provide a queue manager connection handle, which an application uses on subsequent MQI calls.
The connection is made either by the MQCONN call, or automatically by the MQOPEN call.

context
Information about the origin of a message.

context security
In MQSeries, amethod of allowing security to be handled such that messages are obliged to carry
details of their origins in the message descriptor.

control command
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, a
command that can be entered interactively from the operating system command line. Such a
command requires only that the MQSeries product be installed; it does not require a special utility or
program to run it.

COTS
Custom Off The Shelf. Usually used in reference to software.

CsC
Computer Sciences Corporation. Company which hosts and manages the systems located in
Meriden, CT.

CWF
Custom Wire Format

D
data bag
In the MQAI, abag that allows you to handle properties (or parameters) of objects.

10/30/02 80.1.4b 106

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

data conversion interface (DCI)
The MQSeries interface to which customer- or vendor-written programs that convert application data
between different machine encodings and CCSIDs must conform. A part of the MQSeries
Framework.

DB2
A relational database marketed by IBM. Also known as UDB or Universal Database.

DCI
Data conversion interface.

dead-letter queue (DLQ)
A gueue to which a queue manager or application sends messages that it cannot deliver to their
correct destination.

dead-letter queue handler
A MQSeries-supplied utility that monitors a dead-letter queue (DL Q) and processes messages on the
gueue in accordance with a user-written rules table.

DHCP
Dynamic Host Configuration Protocol

DI
Data Integrator. Product used for file transfer utilizing M QSeries as the message transport.

distributed gueue management (DQM)
In message queuing, the setup and control of message channels to queue managers on other systems.

DLSS
Direct Loan Servicing System.

DMZ
Demilitarized Zone

DPL
Distributed Program Load

DTD
Document Type Definition —an MQSI component.

DLQ
Dead-letter queue.

dual logging
A method of recording MQSeries for OS/390 activity, where each change is recorded on two data
sets, so that if arestart is necessary and one data set is unreadabl e, the other can be used. Contrast
with single logging.

dynamic queue
A local queue created when a program opens a model queue object. See also permanent dynamic
gueue and temporary dynamic queue.

E
EAI
Enterprise Application Integration

10/30/02 80.1.4b 107

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

ECB
ECampus Based System

EID - Enterprise Integration Domain

One of five domains within IAFeB devel oped to provide an enterprise-wide scalable framework that
allows multiple front-end applications (such as web and call centers) to inter-operate with back-end
applications (such as policy administration and claims systems) in an effective and efficient manner.

EJB
Enterprise Java Bean

ESQL
Extended Structured Query Language

event data
In an event message, the part of the message data that contains information about the event (such as
the queue manager name, and the application that gave rise to the event). See a so event header.

event message
Contains information (such as the category of event, the name of the application that caused the
event, and queue manager statistics) relating to the origin of an instrumentation event in a network of
MQSeries systems.

event queue
The queue onto which the queue manager puts an event message after it detects an event. Each
category of event (queue manager, performance, or channel event) hasits own event queue.

F
FIFO
First In First Out

FMS
Financial Management System

Framework
In MQSeries, acollection of programming interfaces that allow customers or vendors to write
programs that extend or replace certain functions provided in MQSeries products. The interfaces are:
M QSeries data conversion interface (DCI)
M QSeries message channel interface (MCI)
MQSeries name service interface (NSI)
M QSeries security enabling interface (SEI)
MQSeries trigger monitor interface (TMI)
FSA

Federal Student Aid

G
get
In message queuing, to use the MQGET call to remove a message from a queue. See also browse.

10/30/02 80.1.4b 108

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

H

HACMP
High Availability Cluster Multi-Processing - IBM's high availability offering for AIX platformsto
provide dynamic fail-over within a cluster of separate AIX systems.

I
IAA
Insurance Application Architecture. Insurance business object model.

IAFeB
Insurance architecture for e-business. Framework of common insurance specific functionality built
on top MQSeries and MQSeries Integrator. Used by insurance companies to build
eBusiness/integration systems.

IBM
International Business Machines

in-doubt unit of recovery
In MQSeries, the status of a unit of recovery for which a syncpoint has been requested but not yet
confirmed.

initiation queue
A loca queue on which the queue manager puts trigger messages.

installable services
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT,
additional functionality provided as independent components. The installation of each component is

optional: in-house or third-party components can be used instead. See also authorization service,
name service, and user identifier service.

instrumentation event
A facility that can be used to monitor the operation of queue managers in a network of MQSeries
systems. MQSeries provides instrumentation events for monitoring queue manager resource
definitions, performance conditions, and channel conditions. Instrumentation events can be used by a
user-written reporting mechanism in an administration application that displays the eventsto a
system operator.

ITA
Integrated Technical Architecture

J
JMS
Java Messaging Service

L
LDAP
Lightweight directory access protocol.

linear logging
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
process of keeping restart datain a sequence of files. New files are added to the sequence as
necessary. The space in which the datais written is not reused until the queue manager is restarted.

10/30/02 80.1.4b 109

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Contrast with circular logging.

listener
In MQSeries distributed queuing, a program that monitors for incoming network connections.

local definition
A MQSeries object belonging to alocal queue manager.

local definition of aremote queue
A MQSeries object belonging to alocal queue manager. This object defines the attributes of a queue
that is owned by another queue manager. In addition, it is used for queue-manager aiasing and reply-
to-queue aliasing.

local queue
A gueue that belongs to the local queue manager. A local queue can contain alist of messages
waiting to be processed. Contrast with remote queue.

local queue manager
The queue manager to which a program is connected and that provides message queuing servicesto
the program. Queue managers to which a program is not connected are called remote queue
managers, even if the queue managers are running on the same system as the program.

log
In MQSeries, afile recording the work done by queue managers while the queue managers receive,
transmit, and deliver messages. Thelog file is used to recover in the event of failure.

log control file
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the file
containing information needed to monitor the use of log files (for example, their size and location,
and the name of the next availablefile).

log file
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, afilein
which al significant changes to the data controlled by a queue manager are recorded. If the primary
log files become full, MQSeries all ocates secondary log files.

M

message
In message queuing applications, a communication sent between programs. See also persistent
message and nonper sistent message. |n system programming, information intended for the terminal
operator or system administrator.

message channel
In distributed message queuing, a mechanism for moving messages from one queue manager to
another. A message channel comprises two message channel agents (a sender at one end and a
receiver at the other end) and a communication link. Contrast with MQI channel.

message channel agent (MCA)
A program that transmits prepared messages from a transmission queue to a communication link, or
from a communication link to a destination queue. See also message queue interface.

message channel interface (MCI)
The MQSeries interface to which customer- or vendor-written programs that transmit messages
between a M QSeries queue manager and another messaging system must conform. A part of the
MQSeries Framework.

10/30/02 80.1.4b 110

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

message descriptor
Control information describing the message format and presentation that is carried as part of a
MQSeries message. The format of the message descriptor is defined by the MQMD structure.

message priority
In MQSeries, an attribute of a message that can affect the order in which messages on a queue are
retrieved, and whether atrigger event is generated.

message queue
Synonym for queue.

message queue interface (MQI)
The programming interface provided by the M QSeries queue managers. This programming interface
allows application programs to access message queuing Services.

message queuing
A programming technigque in which each program within an application communicates with the other
programs by putting messages on queues.

messaging
See synchronous messaging and asynchronous messaging.

model queue object
A set of queue attributes that act as atemplate when a program creates a dynamic queue.

MQOD

MQSeries Object Descriptor. The MQOD structureis used to specify an object by name. The
structure is an input/output parameter on the MQOPEN and MQPUT1 calls.
The following types of object are valid:

Queue or distribution list
Namelist

Process definition
Queue manager

M QSeries — Message Queue Series
A family of IBM licensed programs that provides message queuing services across a broad array of
operating system platforms and network protocols.

MQSeries Administration Interface (MQAI)
A programming interface to MQSeries.

MQSeries client
Part of a MQSeries product that can be installed on a system without installing the full queue
manager. The MQSeries client accepts MQI calls from applications and communicates with a queue
manager on a server system.

M QSeries commands (MQSC)
Human readable commands, uniform across all platforms, that are used to manipulate MQSeries
objects. Contrast with programmable command format (PCF).

MQSI - MQSeries Integrator
Second generation message broker product the provides basic message routing and data trangl ation
capabilities.

10/30/02 80.1.4b 111

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

MQWF
MQSeries Workflow. A workflow product built to executed long running transactions and other
workflow functions over a M QSeries foundation.

MRM
Message Respository Manager. A component of the Configuration Manager that manages MQS|

messages.

MVS
Multiple Virtual System

N

namelist
A MQSeries object that contains alist of names, for example, queue names.

name service
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, the
facility that determines which queue manager owns a specified queue.

name service interface (NSI)
The MQSeries interface to which customer- or vendor-written programs that resolve queue-name
ownership must conform. A part of the MQSeries Framework.

NEON
New Eraof Networks. MQSI interface available through the Control Center.

nonpersistent message
A message that does not survive arestart of the queue manager. Contrast with persistent message.

NSLDS
National Student Loan Data System

O

OAMAS
Open Applications Group Middleware APl Specifications

OAG
Open Applications Group. The Open Applications Group is a non-profit consortium focusing on best
practices and processes based on XML content for eBusiness and Application Integration.

object
In MQSeries, an object is a queue manager, a queue, a process definition, a channel, anamelist, or a
storage class (0S/390 only).

object authority manager (OAM)
In MQSeries on UNIX systems, MQSeries for AS/400, and MQSeries for Windows NT, the default
authorization service for command and object management. The OAM can be replaced by, or runin
combination with, a customer-supplied security service.

output log-buffer
In MQSeries for 0OS/390, a buffer that holds recovery log records.

10/30/02 80.1.4b 112

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

P
page set
A VSAM data set used when MQSeries for OS/390 moves data (for example, queues and messages)
from buffersin main storage to permanent backing storage (DASD).

PCF

Programmable Command Format. The purpose of MQSeries programmable command format (PCF)
commands is toallow administration tasks to be programmed into an administration program. In
thisway you can create queues and process definitions, and change queue managers, from a program.

PDF
Specialized message format used in MQS| and predominately found in the finance industry.

PEPS
Post-Secondary Education Participants System

performance event
A category of event indicating that alimit condition has occurred.

persistent message
A message that survives arestart of the queue manager. Contrast with nonpersistent message.

platform
In MQSeries, the operating system under which a queue manager is running.

point of recovery
In MQSeries for OS/390, the term used to describe a set of backup copies of MQSeries for 05390
page sets and the corresponding log data sets required to recover these page sets. These backup
copies provide a potential restart point in the event of page set loss (for example, page set 1/O error).

principa
In MQSeries on UNIX systems, MQSeries for OS/2 Warp, and MQSeries for Windows NT, aterm
used for a user identifier. Used by the object authority manager for checking authorizations to system
resources.

process definition object
A MQSeries object that contains the definition of a MQSeries application. For example, a queue
manager uses the definition when it works with trigger messages.

programmable command format (PCF)

A type of MQSeries message used by:
User administration applications, to put PCF commands onto the system command input
gueue of a specified queue manager
User administration applications, to get the results of a PCF command from a specified
gueue manager
A gueue manager, as a notification that an event has occurred

Contrast with MQSC.

Q

queue
A MQSeries object. Message queuing applications can put messages on, and get messages from, a
gueue. A queueis owned and maintained by a queue manager. Local queues can contain alist of
messages waiting to be processed.

10/30/02 80.1.4b 113

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

queue manager
A system program that provides queuing services to applications. It provides an application
programming interface so that programs can access messages on the queues that the queue manager
owns. See also local queue manager and remote queue manager. A MQSeries object that defines the
attributes of a particular queue manager.

gueuing
See message queuing.

R

recovery log
In MQSeries for OS/390, data sets containing information needed to recover messages, gueues, and
the M QSeries subsystem. MQSeries for OS/390 writes each record to a data set called the active log.
When the active log is full, its contents are off-loaded to a DASD or tape data set called the archive
log. Synonymous with log.

remote queue
A gueue belonging to a remote queue manager. Programs can put messages on remote queues, but
cannot get messages from remote queues. Contrast with local queue.

remote queue manager

To aprogram, a queue manager that is not the one to which the program is connected.

remote queue object
See local definition of a remote queue.
remote queuing
In message queuing, the provision of servicesto enable applications to put messages on queues
belonging to other queue managers.
reply message
A type of message used for replies to request messages.

request message
A type of message used to request areply from another program.

RESLEVEL
In MQSeries for OS/390, an option that controls the number of CICS user IDs checked for API-
resource security in MQSeries for OS/390.

return codes
The collective name for completion codes and reason codes.

RRS
Resource Recovery Service

S
SAIG
Student Aid Internet Gateway

security enabling interface (SEI)
The MQSeries interface to which customer- or vendor-written programs that check authorization,
supply auser identifier, or perform authentication must conform. A part of the MQSeries
Framework.

server

10/30/02 80.1.4b 114

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

(1) In MQSeries, aqueue manager that provides queue services to client applications running on a
remote workstation. (2) The program that responds to requests for information in the particular two-
program, information-flow model of client/server. See also client.

signaling
In MQSeries for OS/390 and MQSeries for Windows 2.1, a feature that allows the operating system
to notify a program when an expected message arrives on a queue.

single logging
A method of recording MQSeries for OS/390 activity where each change is recorded on one data set
only. Contrast with dual logging.

SQL
Structured Query Language. A database language used to query databases.

synchronous messaging
A method of communication between programs in which programs place messages on message
gueues. With synchronous messaging, the sending program waits for areply to its message before
resuming its own processing. Contrast with asynchronous messaging.

system.command.input queue
A loca queue on which application programs can put MQSeries commands. The commands are
retrieved from the queue by the command server, which validates them and passes them to the
command processor to be run.

T
TCP/IP
Transmission Control Protocol / Internet Protocol.

thread
In MQSeries, the lowest level of parallel execution available on an operating system platform.

trace
In MQSeries, afacility for recording MQSeries activity. The destinations for trace entries can
include GTF and the system management facility (SMF). See also global trace and performance
trace.

transmission queue
A loca queue on which prepared messages destined for a remote queue manager are temporarily
stored.

trigger event
An event (such as a message arriving on a queue) that causes a queue manager to create atrigger
message on an initiation queue.

triggering
In MQSeries, afacility allowing a queue manager to start an application automatically when
predetermined conditions on a queue are satisfied.

trigger message
A message containing information about the program that a trigger monitor isto start.

trigger monitor
A continuously-running application serving one or more initiation queues. When atrigger message
arrives on an initiation queue, the trigger monitor retrieves the message. It uses the information in the
trigger message to start a process that serves the queue on which atrigger event occurred.

10/30/02 80.1.4b 115

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

trigger monitor interface (TMI)
The MQSeries interface to which customer- or vendor-written trigger monitor programs must
conform. A part of the MQSeries Framework.

TSYS
Total System. A vendor which manages the COD environment.

U
undelivered-message queue
See dead-letter queue.

unit of recovery
A recoverable sequence of operations within a single resource manager. Contrast with unit of work.

unit of work
A recoverable sequence of operations performed by an application between two points of
consistency. A unit of work begins when a transaction starts or after a user-requested syncpoint. It
ends either at a user-requested syncpoint or at the end of atransaction. Contrast with unit of recovery.

URL
Uniform Resource Locator.

UTCL
Unpaid Teacher Cancellation Policies.

user identifier service (U1S)
In MQSeries for OS/2 Warp, the facility that allows MQI applications to associate a user 1D, other
than the default user 1D, with M QSeries messages.

utility
In MQSeries, a supplied set of programs that provide the system operator or system administrator
with facilities in addition to those provided by the MQSeries commands. Some utilities invoke more
than one function.

\%
VAJ
Visual Agefor Java A Java programming development environment offered by IBM.

VTAM
Virtual Terminal Access Manager.

W
WAS
WebSphere Application Server.

X

XA
XA interface is a specification that describes the protocol for transaction coordination, commitment,
and recovery between a transaction manager and one or more resource managers.

XML
Extensible markup language

10/30/02 80.1.4b 116

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

10/30/02 80.1.4b 117

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

12 APPENDIX C: CORE SERVICES QUESTIONNAIRE

This document serves as a questionnaire for application teams to provide information regarding all the
interfaces for each EAI initiative. Examples of the initial tasks required for every EAI initiatives are
listed below. The [REQUIRED SECTION (S)] must be completed by the application teams before the EAI team
can accomplish the specific task.

EAI Estimatesfor all the interfaces [REQUIRED SECTION (S)]:
0 12.1 High Level System and Interface I nformation
Interface Partner Agreement (similar to a statement of work) [REQIRED SECTION (9)]:
0 12.1 High Level System and Interface I nformation
0 12.4 Detail System and I nterface Overview
Detail design for al the interfaces [REQUIRED SECTION (S)]:
0 12.1High Level System and Interface I nformation

0 12.4 Detail System and I nterface Overview

12.1 High Level System and I nterface | nformation

This section isintended to outline the minimum set of information that the EAl team needs to produce a high level
estimate for work.

12.2 Application
This section lists all the interfacing applications for this EAI initiative.

12.2.1 Application Identification

Application name

Application acronym

Provide a detailed explanation
of the application’s business

usage

Date Questionnaire
Completed/Revised

Data sources [] Database
[]FileSystem
[] Other (please specify)

12.3 Interfaces
List al of the system’sinterfaces to external/internal systems by completing the following sections:

Interface Description — This section captures the high-level information regarding the interfaces. For each
interface, the following two sections should be compl eted.

Transaction details — Data — This section captures different types of datathat will be processed by the
interface.

10/30/02 80.1.4b 118

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

Transaction details — Transformation/Formatting — This section captures the data
transformation/formatting effort for all the data that will be processed by the interface.

The following scenarios below provide general guidelines for appropriate grouping of the identified interfaces:

For example, twelve external subsystems need to interface with a backend FSA system to process student financial
data. Theinterface(s) requires the external systems to extract information from the data source, transfer the file(s) to
FSA system, perform any transformation/formatting, and load the data into the data source residing on the FSA
system.

Scenario #1:

If the twelve external subsystemsall perform similar business functions (e.g., all private collection agencies), and
each subsystem have ten unique types of financial datato be loaded into the FSA system. In this scenario, only one
interface needs to be documented. This resultsin the following sections documented:

2.2.1 Interface Description [oneinstance of this section]
2.2.1.1 Transaction Detail — Data [# of events/messages)
Example: (12 subsystems) x (10 unique events) = 120 total
events for thisinterface.
2.2.1.2 Transaction Detail — Transformation & Formatting
Example: [100] No transformation required
[20] Simple

Scenario #2:

If the twelve external subsystemsall perform unrelated business functions (e.g., government agencies, private
collection agencies, Department of Justice, etc), and each subsystem have ten unique types of financial datato be
loaded into the FSA system. In this scenario, twelve interfaces and each transaction type needs to be documented.
This results in the following sections documented:

2.2.1 Interface Description [#1]
2.2.1.1 Transaction Detail — Data [# of events/messages)
Example: 10 events for thisinterface.
2.2.1.2 Transaction Detail — Transformation & Formatting
Example: [10] No transformation required
2.2.2 Interface Description [#2]
2.2.2.1 Transaction Detail — Data [# of events/messages)
Example: 10 events for thisinterface
2.2.2.2 Transaction Detail — Transformation & Formatting
Example: [10] Simple
2.2.3 Interface Description [#3]
2.2.3.1 Transaction Detail — Data [# of events/messages)
Example: [10] No transformation required
2.2.3.2 Transaction Detail — Transformation & Formatting
Example: [10] Medium

2.2.12 Interface Description [#12]
2.2.12.1 Transaction Detail — Data [# of events/messages)
Example: [10] No transformation required
2.2.12.2 Transaction Detail — Transformation & Formatting
Example: [10] Medium

10/30/02 80.1.4b 119

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

The detail information about each of the documented interfaces should be captured in section 12.6 Detail Interface
Information of this document.

12.3.1 Interface Description [one per interface type:

The following section should be completed for each interface. This section captures the high-level information
regarding the interfaces.

1. Interface name(s)

2. Interface Short
Description

3. Interface Business
Functionality Description

4. Interfacing System(s)
5. Interface Mode [1 Online - real-time transactions (e.g., web front end requesting
(online or batch) information)

[] Batch — scheduled transactions (e.g., feeding daily new students file
from schools)
[] Other (please specify)

6. Interface Direction [] Source -> Target - Data flow from Source system to Target system
(i.e., request or datagram event/message)

[] Target -> Source - Data flow from Target system to Source system
(i.e., reply to arequest event/message)

[]1Both

7. Interaction Method [] Datagram — Send the data to a known target resource without waiting
for areply.

[1 Request & Reply - Requests a service from a known resource, where
the transaction cannot continue without the reply back from the request
event (on-line application)

[] Publish & Subscribe - The data owner publishes documents without
knowing if there are any subscribers to that information. Thisis similar
to publishing magazines, if you likeit, subscribetoit. If don't want it
you cancel your subscription. It doesn’t wait for subscriber
acknowledgements

[] Publish & Reply - requests a service from unknown resources. Once
the source publishes the event, it can continue to process other
information. This interaction method eliminates the source application’s
need to know the target resource’ s identity

[] Other (please specify)

8. Interface Protocol []TCP/IP
(data transmission [1FTP
protocols used to support [JHTTP
interface.) [1SNA
[] Other (please specify)
9. Interface Encryption []Yes

(Doestheinterface support | [] No
encryption? If so, what
algorithm/product is
used?)

10. What arethe interface’s
response time
requirements?

10/30/02 80.1.4b 120

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0

ENABLEMENT GUIDE (FINAL)

11.

Interface usage frequency

12.

Interface usage volume?
Number of transactions?

13.

Internal/External ? [] Internal (inside the firewall or within FSA)

[] External (outsidethe firewall e.g., Department of Justice)

14.

Interface Data Processing
(Describe al processing
[e.g., copying data, writing
to log files, backing up
data, etc.] the interface
performs on data.)

15.

Are protocols or formats [1]
used to ensure message [1No
integrity (i.e. message
digest, digital signature)

16.

Can the interface recover [1]
from a crash without [1No
permanent data |0ss?

17.

List any vendor(s) and
software licensed to
support this interface.

12.3.1.1 Transaction Details - Data

1

For thisinterface,
list the number of
eventsmessage
sent/received?

[Enter # of events/messages] Events/messages sent
[Enter # of events/messages] Events/messages received

For each
event/message, list
the number of
unique
transactions?

Does the
events/messages,
share transactions
—i.e. an Account
trax?

[Enter # of eventsmessages] Enter number of eventsmessages that share
transactions

12.3.1.2 Transaction Details - Transfor mation/For matting

1

What
event/message
cleansingis
performed today
(i.e., removal of
headerg/trailers)?

Whereisthe
transformation
Logic performed?

[1 Source Application

[] Target Application

[1“EAI Bus’ — Thetransformation logic for the eventsmessages from the
source to target format reside on the “EAI Bus’

[] Other (please specify)

10/30/02

80.1.4b

121

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

3. Foreeach [Enter # of transformation of this complexity] No transformation required
event/message, [Enter # of transformation of this complexity] Simple - Mostly pass through data
what business (straight copies of fields), Very little reformatting, semantic or syntactic rules,
logic, Fewer than 50 elements

transformation or | [Enter # of transformation of this complexity] Medium - Some logic and rules based
formatting rules transformation, Format changes, Simple IF or CASE logic, Limited error

are applied (i.e. handling, Very simple DART or CORBA integration, Simple EDI transactions,
converting from Between 25 and 75 elements

one date format to | [Enter # of transformation of this complexity] Complex - Multiple Rules, Complex
another Logic, Moderate to extensive error handling, Moderate to complex DART or
MMDDYY -> CORBA integration complex logic, Moderate to complex EDI interactions,
YYYY-MM-DD) | Between 50 and 150 elements

[Enter # of transformation of this complexity] Super Complex - Joins of datafrom
multiple sources, Complex Logic, Extensive data validation, Extensive error
handling, Complex DART or CORBA integration, Complex EDI interactions,
More than 100 elements

4. What
transactionality is
necessary (i.e.
does processing
depend on the data
from multiple
events/messages.

5. lIstherean [Enter #] Events/messages require acknowledgements
acknowledgement
oncethe
transaction is
completed?

6. Whatisthe
current error
handling
procedures when
the event datais
incomplete?

7. Doesthe
event/message
need to be
persisted?

12.4 Detail System and Interface Overview

The following sections capture technical and operational information about the system and its interfacesin order to
build the core services of the Integration Architecture. This section includes information about the detail system
information, and detail interface information.

12,5 Detail System Information

This section outlines physical locations of environments, application platform information, key system contacts,
system context diagram, and data store information.

10/30/02 80.1.4b 122

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

12.5.1 Environments
List all of the application’s environments and physical locations.

Environment L ocation

Development

Test

Production

Other

12.5.2 Application Platform Information

Complete a separate platform section for each environment listed in the previous section (12.5.1 Environments) used
by the application.

Platform 1 — (e.g. Devel opment)

Logical Platform
Name or Description

Hardware Platform

Operating System

OSVersion

OS Patches

DBMS

Transmission Protocol

IP Address

Node Name

MQSeries MQSeries uses IP Port 1414 as a default for intercommunication. Isthis port
Intercommunication available? If not, please specify an available port number for MQSeries
Port i nter communication.

System Access Does the EAI Core devel opment team have connectivity to the system from their
location? Isthis system only accessible through the EDNet network?

List al programming
languages used

Compiler tool(s) and
version(s)

Source or Target [1 Source
Platform [] Target
[1Both

Additional platform information:

Security Access
Requirements

Contracting
Organization

Developer Location

10/30/02 80.1.4b 123

US DEPARTMENT OF EDUCATION

FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

12.5.3 Contacts

Title/Role

Name

Contact Number

E-mail

SFA System Owner

System Security
Officer

Systems
Administrator

EAI Team Liaison

Technical SME

Functional SME
(devel oper)

Contact for
Development
Access

Contact for
Production Access

12.5.4 System Context Diagram

Provide a high-level context diagram showing this system with all the major interfaces. The diagram should also

depict the system’ sinputs and outputs.

[Insert diagram]

12.5.5 Data Sources

Provide details on the type and structure of data stores (e.g., databases, flat-files, VSAM, etc.) used to support this

system.

Data Store

Version

Platform

Description

10/30/02

80.1.4b

124

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

12.6 Detail Interface Information

Information regarding system interfacesis particularly important in determining the scope of requirements for
integration between the EAI infrastructure and the application. Interfaces are defined as systems/applications outside
the immediate domain of the subject system. Generally, interfaces support connectivity to other systems.
Respondents are encouraged to provide as much detail and supporting documentation as possible. Graphical
representation of interfacesis of particular value in defining these specifics.

12.6.1.1 Interface Flow Diagram

Provide a high-level diagram that depicts the flow of control between the system and its online and batch
interfaces.

[Insert diagram]

12.6.1.2 Interface Transactions and Transaction Volume

The table below lists questions related to the application’ s business and interface transactions (I'T) transactions.
Business transactions are transactions that support a particular business function (e.g., update address). IT
transactions are application-level or system-level transactions that support business transactions (e.g., standardize the
address according to USPS standards, update the HR database with the new address, update the organization
directory with the new address, etc.). One business transaction can spawn more than one I T transactions.

1. Business Transactions List the transaction names or business objects:
Supported by Interface

2. Please define any
seasonal specifics
(Certain interfaces
encounter volume
fluctuations depending
on the time of year and
the various academic
dependencies. Please
provide details on
whether or not this
interface is subject to
such dependencies.)

3. DataVolume per
Transaction (i.e. What
are the maximum

message lengths?)

4. #of IT Transactions per
Business Transaction

5. What isthe maximum
number of IT
transactions per hour that
must be supported by the
interface?

6. What isthe growth
projection for the
interface throughput over
the next three (3) years?

10/30/02 80.1.4b 125

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID

FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

How many concurrent
users (average and peak)
will the application
support?

Average:
Peak:

What are the assumptions
about key capacity
metrics?

12.6.1.3 System Availability

Please provide information on the system’ s availability, as well as the business impact of lost availability. (Provide
details on the period of time that the system and its interfaces must be available. Some of the system’ s interfaces
must be available on demand while others are based on scheduled availability.)

What are the system’s
peak and off-peak times?

What is the uptime
percent (percentage of
time during which the
system is functioning and
available) during peak
hours?

What is the uptime
percent during non-peak
hours?

What is the maximum
acceptable time to recover
from asingle interface
connection failure?

Does areply timeout
exist? If so, what isits
duration?

What is the maximum
response time degradation
acceptable under load?

What is the average
percentage of transactions
that fail and require
reprocessing?

What is the acceptable
window for any required
real-time processing?

What is the acceptable
window for any required
batch operations?

10.

Do other systems that
provide required data
meet the availability
profile of this application?

10/30/02

80.1.4b 126

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

11. Doesthe user interface
portion of the application
system need to be
operational during real-
time updates?

12. Doesthe user interface
portion of the application
system need to be
operational during batch
updates?

13. Can areplicated version
or subset of the database
fulfill availability
requirements when the
production database is
offline for real-time
processing?

14. Can areplicated version
or subset of the database
fulfill availahility
requirements when the
production database is
offline for batch
processing?

15. If your answer to question
11is“YES’, then what
would be the required
currency of the replicated
data?

12.6.1.4 System Security

Describe the system’s security measures. Include information on user groups, and if the system is a mainframe
include LPAR or region information. (Please provide specifics on the tools/products and procedures that are used to
control online access to the application.)

1. Doesthe system operation
environment use/require a
single point for
Identification,
Authentication, and
Access Control? (Please
specify any software that
isrequired.)

2. Do users or applications
require identification and
authentication?

3. Do any transactions or
actions need to be
authorized?

4. Doesthe application
maintain a history/audit

10/30/02 80.1.4b 127

US DEPARTMENT OF EDUCATION
FEDERAL STUDENT AID
FSA MODERNIZATION PARTNER

EAI CORE ARCHITECTURE RELEASE 3.0
ENABLEMENT GUIDE (FINAL)

log of messages sent and
received?

5. Doesthe application
prevent information from
being viewed by
unauthorized parties?

6. Doesthe application track
inactivity?

7. Whereissecurity access
defined and enforced?

8. Isthereahierarchy (i.e.
role-based groups) for
organizing authorization
so that access rights do not
have to be individually
assigned?

10/30/02 80.1.4b 128

