FSA Modernization Partner

NSLDS Il Reengineering
Application Detailed Design:
Application Architecture

Version 1.1

November 26, 2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

1

2

Table of Contents

GENERAL INFORMATION ...ttt 4
1.1 OBIECTIVE coitiiutieiie ittt ettt ettt etttk etk ekt e ke ekt e st ekt ekt e bt b et enn e ne e 4
1.2 SCOPE ittt Rttt 4
1.3 DESIGN LAYERS ...coitiiutieieiittt etttk b etttk se et e ettt e e b ne e 5

EXECUTION ARCHITECTURE ..ottt s 6
2.1 IBM WEB SERVER AND APPLICATION SERVERuceiiiiiiiiianiieseesieesiee e 9

211 DIFECTONY STIUCTUIE ...ttt 9
2.2 IBM DB2 EEEo 10
2.3 ORACLEc ettt bttt 10
2.4 \WEB APPLICATION SECURITY ...uttiiiiiuiiaiiesieeaireeieesiee sttt nne e nne e 11

24.1 USEr AULNENTICATION ... 11

2.4.2 WED AULNOTIZATION ... 11

243 [T 1ol Y/ 1 1 o] o 1TSS 11
2.5 REPORTING ENGINE INTEGRATION STRATEGYceiiiiiiaiienirisieesieesire e esiee s 12

BUSINESS LAYER DESIGN ...ttt 14
3.1 CLASS DIAGRAM. ...ttt etttk b et b etk et 15
3.2 OBIECT ACTIONS. ..ttt ettt ettt b et b e bt e b e et e bt e e st et e b e st e e e ne e 25
3.3 SEQUENCE DIAGRAMS......ceiiiiiitieittt ittt ettt ettt be e 30

331 Aid - Update Loan DetailS..........cooiiiiiiiieiieeie et 31

3.3.2 Aid - VIEW L0AN HISTOIY ...ttt eee e 32

3.3.3 Aid - Update Overpayment DetailSccooiiiiiiiii e 33

3.34 Aid - View OVerpayment HiSTOIY........cccooiiiiiiieie e 34

3.35 Enrollment - Add Reporting SChedule............ooii o 35

3.3.6 ENrollment - VIEW SUMMATYooiiiiiiiiieiee s 36

3.3.7 o]0 0] o RO OO PP PP PPPPTRUPPPR 37

3.3.8 Organization - View CoNtact LiSt...........ccoiiiiriiiiiii e 38

3.3.9 Organization - Delete Contact from LiST..........coviiiiiiiiiieeeiee e 39

3.3.10 Student Access — View Financial Aid REVIEWcccovoiiiiiiiiiiiicicseeeeee e 40

3.3.11 Support — View ContaCt LIStc.eviiiiiiiiiiiie et 41

3.3.12 Support — Add ContaCct T0 LiST........eeieieeiiie et e e 42

3.3.13 Transfer Monitor — View Transfer LIStccooiiiiiiiiiiicieeeeecse e 43

3.3.14 Transfer Monitor — Delete Transfer from LiStccccooiiiiiiiiiiiiceeeece e 44

TR 00 ST Y o o] [ToF: o] o I =1 o (] RSSO 45

3.3.16 JAVA EXCEPLIONS ...ttt ettt ettt et e et e ete et e et e e nnte e e neeenneeeen 46

3.3.17 Web Conversation Framework ACtIONFOIM EITOIS.........cccveiieiiieiieieeee e 47

ARCHITECTURE LAYER DESIGNoootiiiiiiiiiii s 48
4.1 RCS WEB CONVERSATION FRAMEWORKccutiiiiiirieiieniresitasiee e siee e 48

4.1.1 Web Conversation implementation of MVC Design Pattern............ccccovooeeiievinennnen. 48

4.1.2 Implementation EXAMPIE........ocoiiiee e 51
4.2 RCS CONFIGURATION FRAMEWORKotiiiiiiiiiieaiiieieesiee sttt 58
4.3 RCS JSP CUSTOM TAG LIBRARY FRAMEWORKcccitiiiiiiiriaiienieesie et 59
4.4 RCS EXCEPTION HANDLING FRAMEWORKcciiiiiiiiiiniiiiiianieesiee e 60

94.3.3 NSLDS Il Detailed Design 1 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W% ”'.r.r.ll Fiel Amrawicn |'|I.lrw|r=||l:l Setraral AppliCation ArChiteCtU re
441 NSLDS H EXCEPTIONSeeiieie ettt ettt ettt et et e et e e snae e e nneeeeneeas 60
442 Field-1evel Validationcccoiiiiiiiiiic s 61
443 Application and System Level EXCEPLIONS..........ccovviiiiiieiiiiiicie e 62
4.4.4 IMmplementation EXAMPIE........oooii e 63
445 Y Sl ol (0] g - To L T PP RT PP 66
45 RCS LOGGING FRAMEWORKoiitiiiiiitiiaieesteesite st ettt et sie et sbe e 67
45.1 L0gging Usage StaNTardS.cooviiiiiiiiiiieie e 68
4511 DEBUGooiiiiitiee s 68
A.5.1.2 INFO oo 69
4.5.1.3 ERROR ...t 70
A.5.1.4 FATAL oo 72
452 L0gQiNg USAgE SUMMIAKYoeeiiieeiiiieeieieeeiie e st e e teee st eesieeesteeessteeasteeesneeeesneeeenneeeaneeas 73
4.6 RCS USER SESSION FRAMEWORKceitiitiaitiiiiieaieesieesise st a e sne e 74
46.1 Session Framework Usage GUIAEIINES.ooviiiiiiiiiii e 74
4.7 CONTENT DEPLOYMENT (INTERWOVEN TEAMSITE) ...ccoiiiiiiiiieniecsie et 75
4.7.1 Content Deployment APPrOaCKcoviiiiiieiie et 75
5 DATA ACCESS LAYER ...ttt 76
51 RCS PERSISTENCE FRAMEWORKccutiitiiiieiitiaieesiee sttt sne e 76
6 APPENDIX A - APPLICATION ARCHITECTURE QUESTIONNAIRE ... 84
7 APPENDIX B - OBJECT-DATA MAPPING MODEL.......ccccccoiiiiiiiiiiecceeieeeee 85
8 APPENDIX C-ITA CODING STANDARDS ..ot 86
9 APPENDIXD - ITABEST PRACTICES GUIDE........c.ccoiiiiiiieiieeee e 87
10 APPENDIX E - CODING STANDARDS REVIEW CHECKLISTcoccovviiiiiiiiic 88
10.1 INTRODUGCTION .. .ciitttiutiateestteaste et et ettt ekttt et e s e e bt be e be e et e et e e abe e et e e be e asreenneenneennnes 88
LO.1.1 PUIMPOSE -ttt ettt ettt ettt ettt ettt e ookttt e oo ekt bt e e 4 eab bt e e e e bt e e e e e bbb e e e e anbbe e e e annaeeeaans 88
10.1.2 REFEIEICES ...ttt ettt b ettt 88
10.1.3 ReVIeWer INFOrMEaLIONccviiiiiiieiic e 88
10.2 JAVA CODING STANDARDSoetittiitiiaittaiteeaieeaseasteesseeaseesbe e et et e s e nbeessneaneenneennnes 88
10.2.1 SOUICE FIIES ...ttt 88
O O o L3N I Yo | PP S 89
10.2.3 NAMING CONVENTIONS ...eiuiiiiiiiieiiie ettt ettt ee et ee st e st eeasteeesteeesteeesnteeesnaeeaneeennes 89
10.2.4 Programming STYIEcooueiiiiie ettt 90
10.2.5 COMIMENTS ..eiiiiieiiie ettt e r e r e ss e e n e e n e e nnne e e nnn e e nneeennes 90
11 APPENDIX F - NSLDSLOGGER PSEUDQO CODEccooiiiiiiiiiiieee e 91

94.3.3 NSLDS Il Detailed Design 2 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

Document Control

Version Number Description Release Date Author
1.0 Initial Release 11/08/2002 Amy Settle
11 Modifications to 11/20/2002 Terry Helwig

Production diagram
to include CPS in
VDC

94.3.3 NSLDS Il Detailed Design 3 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

1 General Information

1.1 Objective

This Application Architecture detailed design is intended to provide application developers with an
understanding of the underlying architecture supporting the NSLDS Il reengineering effort. This
document will serve as the central architecture design guide to be used in conjunction with the NSLDS
Il Reengineering Screens Detailed Design.

1.2 Scope

This document focuses on the business, application, and data layers of the NSLDS Il web application
architecture. An overview of the execution architecture is provided in the beginning as an aid to better
understand the interaction of the web application architecture with the other NSLDS Il components.
This document does not address external systems or interfaces to them. References to external
systems can be found in the NSLDS Il Reengineering Interface Detailed Design documentation.

The business layer section includes the class diagram, sequence diagrams, and a mapping of the Java
objects and attributes to the tables and fields in the Enterprise Data Warehouse (EDW). The
architecture layer section includes usage guidelines on how to incorporate the different Reusable
Common Services (RCS) components provided by the Integrated Technical Architecture (ITA)
initiative into the NSLDS Il application architecture. The architecture layer interacts with the
database through the data access layer, which is comprised of the ITA RCS Persistence framework.

94.3.3 NSLDS Il Detailed Design 4 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
Wir Fioly Fhel Aemericas Through Schuel Application Architecture

1.3 Design Layers

A web-based application is comprised of several interconnected layers. This document will focus on
the business, architecture, and data access layers. The GUI/presentation layer information is detailed
in the NSLDS Il Reengineering Screens Detailed Design documentation.

Key
|:| Out of document scope

GUI / Presentation Layer

Business Layer

Architecture Layer

Data Access Layer
Data

Figure 1, Design Layer

The presentation, business, and architecture layers are based on the Model-View-Controller (MVC)
design pattern. This pattern creates a separation of control between different components to ease
development and maintenance efforts. Application developers can concentrate on building the
business objects and the web site designers can create web pages without having to understand the
code needed to access the architecture and data layer. The MVC design pattern will be presented in
more detail in the architecture layer section.

94.3.3 NSLDS Il Detailed Design 5 11/26/2002

FEDERATL
STUDENT AID

[+ ”.r.r.ll Firl Amverica |'|I.lrw|r=||l.l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

2 Execution Architecture

The execution architecture comprises of the internal systems that the core application architecture
software components will interact with. It is the foundation of software services that the system relies
on. The core environment components are noted here because all major application design decisions
have a dependency on them. The diagrams below represent the development and production

execution architectures.

NSLDS Il Development Environment
Wednesday, November 20, 2002

cob
(Disbursment)

TSYS
Columbus, GA

ACS

Modernization Partner Offices
Washington, DC

EDLAN I

% Deve“’[”’“em Informatica Broker :
est

Workstations |

NT Domain Controller
1BM x232
ACDOE-DC1
170.248.222.18
Router

i
=" |«—p==_.
S

170.248.221.1

FMS

(1

(Student Aid Eligibilty)

PS

5

Unknown Interfaces

nt
Answers

Ombudsman

Virtual Data Center

Meriden, CT

Eim
peer
Rational ReqPro
NT 4.0 Compag DL380
SFANTO18

External 198.77.203.140
Intranet 4.20.17.246

NSLDS Il SYSTEM

MicroStrategy DB

EAI Bus Servers
MQ Series
Data Integrator

Tape Loader Process
3480, 3490, 3420

(Total
Permant
Disabiilty)

|
|
|
| Switch
|
|

Schools

Iy

g 7 N
/ \ @
Guarantee Cerders!
Agencies Servicers

irewall

Tape Loader
Process

Development
Sun 3500
Su35E16

4.20.15.136

Interwoven
SU35EL
42015.131

IHS Web Server
SU35E2
4.20.15.132

Informatica
and
WebSphere
Application Server
Sun 3500
SU3SES
4.20.15.135

Rational ClearQuest
Oracle 8i
HPV2
4.2015.40

== Oracle 8i
MicroStrategy
Intelligence Server
NT 4.0
Compagq DL380
SFANTO01
4.20.15.244

HPV1
4.20.15.59

NSLDS Il Data
Architecture
FASTT 500 STORAGE SERVER
(40) 73.4 GB Hard Disk Drives
2.9 TB of raw storage

FastT500
Disk array

4.20.15.57

Tape Backup Production
Environment

StorageTek 9310
99408 Tape Drives

Page 1

Figure 2, NSLDS Il Development Execution Architecture

94.3.3 NSLDS Il Detailed Design

11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

NSLDS Il Production Environment

Wednesday, November 20, 2002

! Virtual Data Center
: m Meriden, CT
|
|
|

(Student Aid Eligibilty) ~ pos NSLDS Il SYSTEM

I

DLSS

coD
(Disbursment)

|
|
|

[

- Trs_Yg — - _AES_ —=1 Informatica
C < Sun 3500
Columbus, GA Rogkville, MD T — SU3SE18
4.20.17.152

FP DataMart
PEPS Tape Loader Process

3480, 3490, 3420 —$

Modernization Partner Offices

Washington, DC EMS Ombudsman EAl EAI DB2 EEE - Data Architecture Clustered
SUSSE3 SU3SE14 (4 each of the following):
m————— Pty tviaii | 42017137 42017176 FASTT 500 STORAGE SERVER
Unknown Interfaces (50) 73.4 GB Hard Disk Drives

|
[3.6 TB of raw storage RAID-5

MicroStrategy Environment

|

|

|

| e
|

|

25 Development iformaica Broker ! Switch
es
| Workstations_ ________ 1 Loasde?v e'z‘ € | MicroStrategy Web Server
" c DL380
C:"S'S‘e"‘ (11:P1D| «——| Network Djspdche P s IBM6M1 | 1BM 6M1 IBM 6M1 | IBM 6M1
. nswers otal
NT Domain Controller DNS Servets 2 EETE | Y 4.20.17.158 MicroStrategy
1BM x232 obLed.gdv Disabilly) " Intelligence Server
ACDOE-DC1 Compagq DL380 [SPiSwich | [SP1Swich |
170.248.222.18 SFANTO004 "

. A MicroStrategy Web Server ~ 4.20.17.167 MicroStrategy DB
: ccenture LAN | Router Compag DL380 Rational ClearQuest
|] 170.248.221.1 SFANT003 Oracle 8i
] I < 4.20.17.159 HPV2
| { 4.20.15.40 =
| ! FastT500 FastT500
: Accenture Laptops — - SAIG Diskarray Disk array Diskarray Disk array
—————————— o ITA WebSphere Environment

= IBM Cluster Manager
IHS Web Server WAL 1 Workstation
App Server
SU3SE10 e
Internet Access Lenders/ : g-g-gg Load Balance AZDTTS 4.2017.143
Servicers e Servers
Network DispatcHer
» i aninin Tape Backup Production Environment
IHS Web Server WebSphere
SU3SE12 App Server Interwoven =
= 4.20.17.146 Su35E1L3 SUS5EL StorageTek 9310 Silo
S SunGuard 4.20.17.147 4.20.15.131 99408 Tape Drives

GRre: Disaster FSAPIN Site
i Recovery
Schools Guarantee Page 1
Agencies

Figure 3, NSLDS Il Production Execution Architecture

94.3.3 NSLDS Il Detailed Design 7 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

2.1 IBM Web Server and Application Server

The IBM Websphere Application Server (WAS v3.5) will be the deployment platform for the NSLDS |1
web application. It provides the Java 2 Enterprise Edition (J2EE) standards support required for the
application architecture, as well as a scalable and robust run-time environment that will enable the
application to meet its reliability and performance requirements. It is also the web application
environment of choice for FSA.

J2EE standards that WAS support includes:

JDK 1.2.2 compliance

JSP 1.1 specification compliance

Servlet 2.2 specification compliance

JDBC 2.0 support (including connection pooling)

The IBM HTTP Server (IHS) web server provides for secure HTTP communications via Secure Sockets
Layer (SSL) 3.0 and supports up to 128bit encryption.

2.1.1 Directory Structure

ITA provides four standard environments:

Development (DEV) — used by the application developers for development and unit testing
Test (TST) — used for component and integration testing

Staging (STG) — used for performance testing and production readiness review

Production (PROD) - the fully tested and released application

The tables below show the standard directory structure for ITA supported applications on the shared
web server and application server. The development, test, and staging environments all run on the
same machines and share a standard directory structure. The production environments are load
balanced across multiple machines.

Directory Description
/www/devi/nslds/serviets Location of servlets in the classpath.
/www/dev/nslds/web Location of dynamic content document root and JSPs.
/www/dev/nslds/web/WEB-INF Location of tag library descriptor files.
/www/dev/nslds/properties Location of *.properties files.

/www/dev/nslds/jars Location of jar files in classpath.
/opt/dev352/WebSphere/AppServer/log | Location of NSLDSstdout.log, NSLDSstderr.log, and
S NSLDS_System.log files.

Table 1, Development Application Server (su35e5)

1 This path is the path to the files in the development environment, to access files in staging or test, the path
would be: /Zwww/stg/nslds/ or /www/tst/nslds.

2 This path is the path to the files in the development environment, to access files in staging or test, the path
would be: Zopt/stg35/ or /opt/tst35.

94.3.3 NSLDS Il Detailed Design 9 11/26/2002

FEDERATL
STUDENT AID

FSA Modernization Program
NSLDS Il Reengineering

Wo Hiolp Biet Amreriea Thramgh Schaol Applica_tion Architecture
Directory Description
/www/dev/nslds/htdocs Location of static content document root, location of HTML files,
and PDF files.

Table 2, Development Web Server (su35e2)

In production, the application will reside on the web servers su35e10 and su35e12, and on the
application servers su35e9 and su35e13. The environment identifier will be removed from the
directory structure information (e.g. /www/nslds/servlets).

The NSLDS Il development web application can be accessed from the following path:
http://dev.nslds.ed.gov:8531/NSLDSWebApp/*.jsp. To access other environments, replace dev with
stg or tst.

2.2 I1BM DB2 EEE

IBM DB2 EEE v7.2 will be the database platform for the NSLDS 11 web application. It will be the
platform used for both the Enterprise Data Warehouse (EDW) and the Data Mart that MicroStrategy
will be querying against for reporting purposes. The web application will interact with the EDW while
MicroStrategy will query against the Data Mart. Please refer to the NSLDS Il Reengineering Data
Architecture Detailed Design for additional information.

WAS version 3.5.5 supports DB2 Enterprise Edition 7.2 with FixPaks 4, 5, 6, and 7. FixPak 6 and above
is the recommended FixPak to resolve memory leak issues.

In order to configure WAS to access the DB2 databases, all access information (e.g. username,
password, port number) must be provided to ITA in the Application Questionnaire. The completed
guestionnaire will be provided as Appendix A in this document.

2.3 Oracle

While the application data will be stored in the DB2 EDW and Data Mart, a shared Oracle instance
provided by ITA will also be used to user store session information.

The session information will be stored in the Sessions table of the default Oracle database and will
contain the session id and maximum inactive time defined for the application for that session.

Name Null Type Description
ID NOT NULL | VARCHAR2(64) Session ID
PROPID NOT NULL | VARCHAR2(64) Used by WAS
APPNAME VARCHAR2(64) Web application
LISTENERCNT NUMBER(38) Used by WAS
LASTACCESS NUMBER(38) Last session access time
CREATIONTIME NUMBER(38) Time session created
MAXINACTIVETIME NUMBER(38) Maximum session inactive time
USERNAME VARCHAR2(256) user name associated with the session
SMALL RAW(2000) Stores session data less than 2000
bytes
94.3.3 NSLDS Il Detailed Design 10 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Holp Poak America Throah Schul Application Architecture
Name Null Type Description
MEDIUM LONG RAW Stores session data between 2000
bytes and 2MB
LARGE RAW(1) Not supported by Oracle

Table 3, Sessions Table Description

2.4 Web Application Security

This section describes the security functionality of the NSLDS Il web application, please reference the
Data Architecture Detailed Design for the overall NSLDS Il security approach. The web application
security details the authentication of users to the web application and authorization of users to view
pages and perform functions.

2.4.1 User Authentication

The user logs onto the NSLDS Il website by providing a user ID and password on the logon.jsp page.
The user ID and password are passed via an encrypted https request using SSL from the client’s
browser to the IHS server. The username will be stored in an encrypted column in DB2. An
algorithm will be used to compare the password entered by the user to the encrypted password stored
in the database. The data access layer, described in a later section of this document, will provide the
connection to the database and perform the logic to query the database. A logon Java object (an
architecture layer component) will contain the logic to access the data access layer, utilize the
algorithm, and compare the user-entered password and the database returned password for
authentication.

2.4.2 \Web Authorization

User access to specific tabs, pages, and data field elements will be restricted through the use of
Location Groups, Function Groups and Web Groups. Location Groups define the specific location that
a user is logging in from (e.g. a University’s campus). Function Groups define what functionality a
user can perform (e.g. support staff functionality). Web Groups map web pages to specific function
groups (e.g. access to the Support tab).

A new field will be added into the database to support the ability to add new pages and associate
them with web groups. Each new page will have to be created and a menu will exist to create the new
page. Then the page will be associated with a web group. On the JSP, permission validation will
check if the user belongs to the defined web group.

2.4.3 Encryption

IHS supports 128bit SSL v3 and can be configured to support different variations of encryption level
support. The current NSLDS application checks the users’ browser to see if it supports 40bit, 56bit, or
128bit encryption. Currently, NSLDS supports all these levels of encryption, but it recommends using
a browser that supports 128bit encryption for users within the United States.

94.3.3 NSLDS Il Detailed Design 11 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

When the user logs on to the Student Access page a check on their browser is performed,; if the
browser does not support 128bit encryption, the user is directed to a warning page specifying how to
upgrade their browser. The user is allowed to continue to the PIN site regardless of their encryption
level.

For the Financial Aid Professional (FAP) web site, the user must have a supported secure browser
(Microsoft Internet Explorer 4.x or higher or Netscape Navigator 4.x or higher) to access the site.

2.5 Reporting Engine Integration Strategy

MicroStrategy will be used as the Reports creation and delivery engine. It will interact with the Data
Mart to produce standard and ad hoc reports. The MicroStrategy interface will be accessible when the
user selects the Reports tab in the NSLDS 11 web application. This section defines the integration of
the web application with the reporting tool, (please reference the NSLDS Il Reengineering Reports
Detailed Design for reporting specific information).

When the user clicks on the Reports tab, a new browser window is launched and a new session is
started on the MicroStrategy server. The following diagram depicts the way Single Sign On will occur
between MicroStrategy and the Web Application. The steps are outlined in more detail in the diagram
below.

[m

= 5) Pass User ID =
EEQl and Password |§IE§| caword Valda

Password Validation

MicroStrategy Web Servers MicroStrategy

Compagq DL380 Intelligence Server MicroStrategy DB
SFANTO002 Compag DL380 Rational ClearQuest
4.20.17.158 SFANTO004 Oracle 8i
SFANTO003 4.20.17.167 HPV2
4.20.*7.159 4.20.15.40

4) Pass User ID (Stores MetaData)

ass User
and Password User ID and Password

1-2) User enters ID
and Password.

Table Replicated
Sent via https 3) Checks User ID

and Password

: against table in DB
< IHS Web Servers WebSphere DB2 EEE Cluster

Su35E10 App Servers (DataMart stores user and
4.20.17.144 Su35E19 password information)
Firewalls Su35E12 4.20.17.143
4.20.2.28 4.20.17.146 Su35E13
4.20.2.29 4.20.17.147

Figure 4: MicroStrategy Single Sign on Authentication

1.) Users will enter their user ID and password on the Logon page.

2.) The user ID and password will be passed via an https request over SSL to the IHS web Server.

3.) WebSphere Application Server has an established connection with the EDW that allows the
web application to select the userID and password from the EDW, decrypt the password and
authenticate against the parameters entered.

4.) When a User clicks on the Reports Tab to create or access a report, the user ID and password
will be passed in a form via a JavaScript function to the desktop.asp file on the MicroStrategy

94.3.3 NSLDS Il Detailed Design 12 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

5.)

6.

7)

I1S Web Server. (The Report Tab link will reference the MicroStrategy Web Server’s internal
Network Address Translation IP address. This will remove the need to send information
through the firewall and make encrypting the user information unnecessary.)

The user ID and password are passed from the ASP file on the MicroStrategy Web Server to the
MicroStrategy Intelligence Server.

The MicroStrategy Intelligence Server takes the user ID and password and checks it against the
MicroStrategy table in its Oracle database. (The user ID and password tables are replicated
from the EDW to the MicroStrategy database on a regular basis.)

If the user ID and password exist, the MicroStrategy Home page is displayed in a separate
browser window. The user is now accessing MicroStrategy ASP files directly from the
MicroStrategy 1S Web Server. The requests are encrypted via SSL.

94.3.3 NSLDS Il Detailed Design 13 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
Wir Fioly Fhel Aemericas Through Schuel SDD: Application Architecture

3 Business Layer Design

This section is comprised of the class diagram, object definition, sequence diagrams, and object-data
mapping model. The class diagram shows the different objects and how they are associated with each
other through aggregation, association, or inheritance. It also shows the multiplicity between objects
such as one Student can have one or many loans in NSLDS II.

The sequence diagrams illustrate the timing and interaction between methods in the different classes
that are called during the execution of a task. Due to time constraints and the numerous interactions
between the pages, only select example diagrams from each module are shown. These select examples
were chosen to reflect various actions within the system, such as update and add, to provide a more
diverse example set.

The object-data mapping spreadsheet (provided in Appendix B) maps objects from the system code to
the tables and attributes in the database. This spreadsheet contains only the objects and attributes
defined in the class diagram and preliminary mapping to the existing EDW data model. The object-
data mapping model is not complete, as the source documentation from the legacy system was not
provided in sufficient time for this function to be properly documented in this version of the design.
However, the complete mapping of objects to the logic present in the legacy COOL:Gen code is
included. This mapping provides a complete path from the objects defined in the data-mapping
model to the business logic for each screen.

94.3.3 NSLDS Il Detailed Design 14 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W Holp Fiot Amoricas Throngh Schaol Application Architecture

3.1 Class Diagram

The classes in the diagram have been divided and placed across multiple pages for easier viewing. Some classes may appear in
more than one section to show the relationship of that class in relation to other classes on the same page, but only one definition of
the class will actually exist.

Contactinfo

LocationGroup (from nsids)

Message - (from nslds) B=.contactAddress1 : String

(from nsids) name : String G*contactAddress2 : String
messagelD : String izFidescription : String (S.contactCity : String
startDt : Date User G=contactEmail : String
endDt : Date getLocationGroup() (from nsids) G*.contactExtension : String
priority : int updateLocationGroup() EHuserlD : String OraanizationFacto G contactFax : String
messageText : String addLocationGroup() EWANID : String ¢ rom nslc) & &-lcontactFaxExt : String

unctionGroup : FunctionGroup -—, userFirstName : String actory : OrganizationFactory laHcontactFirstName : String

deleteMessage()

1 ey userLastName : String [G=contactFunction : String
getMessage() L organizationName : String getinstance() aHcontactLastName : String
addMessage() agitype String IcreateOrganization() G contactLastUpdatedBy : String
updateMessage() 1 Lg5istreetAddress : String IE=contactPhone : String

ey passwordHistory AL : Array List 1 IZmicontactState : Sring

0..n FunctionGroup Grcity : String IE=contactTitle : String
(from nslds) fystate : String E=contactUpdateDt : Date

Ghzip : Integer
GHphoneNumber : String
extension : Integer \0..n

l=*jcontactType : String
EcontactURL : String
l=HcontactZip @ String

1 |E%iname : String
= description : String

getFunctionGroup() ~ remail : String :

Organization

updateFunctionGroup() 4 p 1| EstapeFormat : String 0..n i getContactinfo()
adleunctionGroup() Eristatusindicator : String Wﬁ% updateContactinfo()
' assignUser() ExservicerOrgName : String \ - Name.- Strin addContactinfo()
<entity>> [MunassignUser() ErservicerWANID : String gT -.S : g
WebGroup 7 1 BassignWebGroup() EservicerNSLDSID : String g:gsﬁr';it'- ;':g
namc—:fﬁ?msr:rlid:g unassignWebGroup() Sosplitindicator : String orgCity : étring ¢
: 1.n EwstatusDt : Date

orgState : String
orgZip : String
orgStatus : String

desc ription : String

ebPage[] : String E+currentPassword : String

etUser
getWebGroup() gddUser(())
updateWebGroup() updateUser()
addWebGroup() deleteUser()
a55|gr.1WebPage() assignFunctionGroup()
unas signWebPage()

unassignFunctionGroup()

94.3.3 NSLDS Il Detailed Design 15 11/26/2002

FEDERAL
STUDENT AID

[+ FF..!\rp' Firl Amverica :Ian'.lln’EﬂE Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

Organization
(fromnsl...

orgCode : String
orgName : String
orgType : String
orgStreet : String
orgCity : String
orgState : String
orgZip : String
orgStatus : String

Lender
(from nsl...

recordFormat : String
recordsReceived : String
status : String

igetLenderinfo()
updateLoanList()
laddLoanTolList()
updateStudentList()
laddStudentToList()
updateServicerList()
addServicerToList()
updateGAList()
addGAToList()

Servicer
(fromnsl...

recordsReceived : String
distributionMedium : String
SAIGMailbox : String

getServicerlnfo()
updateLenderList()

distributionSAIGUserID : String
lastChangedBYy : String
alertDt : Date
recordFormat : String
IupdateSchooIList()

GA
(fromnsl...

activityCode : String
nameAbbreviation : String
GANumber : String
distributionMedium : String
SAIGMailbox : String
recordFormat : String
recordsReceived : String
status : String

igetGAlInfo()
updateLoanList()
addLoanToList()

School
(fomsl...

ED
(fromnsl...

SaeAgency
(from nsl...

fehacademicCalendar : String
tehactionCode : Integer
LeactionReasonCode : Integer
taapprovallndicator : Char

t¥branchindicator : Char

fev{certificationType : Char

£+COACode : Char
fs{COAEffectiveDt : Date

*=FDSLPOriginationEndReason

L FDSLPOriginationLvl : Char
tatyFDSLPPIusEndDt : Date
fatFDSLPPIusStartDt : Date
fatFDSLPStaffordEndDt : Date

L FDSLPStaffordStartDt : Date

et FDSLPUnsubsidizedEndDt : Date

et FDSLPUnsubsidizedStartDt : Date
tatyFFELPIusEndDt : Date
fatyFFELPlusStartDt : Date

{a#|FFEL StaffordEndDt : Date

{3+, FFEL StaffordStartDt : Date

{3 FFEL StaffordUnsubsidizedEndDt : Date
{sHFFEL StaffordUnsubsidizedStartDt : Date

L servicerName : String
Eoh spl[tFiIeIndicator: Soolean

LywaiverAL : ArrayList
ek defaultSortOrder : String
L SSCRType : Strintg

tenrollmentReportingScheduleAL : ArrayList
Lehstatus : String

LprogramType : String

igetSchoollnfo()
updateStudentList()
addStudentToList()
updateServicerList()
addServicerToList()
updateStatus()
updateGrantList()
addGrantToList()
igetSSCRWaivedSchoolList()
getCDRInfo()

getEDInfo()
updateEdInfo()
laddEdInfo()

getStateAgencylfno()
updateStateAgencylnfo()
addStateAgencyInfo()

94.3.3 NSLDS Il Detailed Design

16

11/26/2002

FEDERAL
STUDENT AID

[+ FF..!\rp' Firl Amverica :an'.lIﬂ:ﬂE Setrareal

FSA Modernization Program

NSLDS Il Reengineering
Application Architecture

Lender

(from nsl...
recordFormat : String
recordsReceived : Strir...
status : String

getLenderinfo()

updatelLoanList()
addLoanToList() 1.n
updateStudentList() 1n
laddStudentToList()

updateServicerList()
addServicerToList()
updateGAList()
laddGAToList()

1

0.n
CohortDefaultRate
(from nsl...

FFELNum : Integer
FFELDenom : Integer
ICDRProcessDt: Date
ICDRLenderStatus : Chi...

GA
(from nsl...

Servicer

activityCode : String
nameAbbreviation : String

School
(from nsl...

GANumber : String
distributionMedium : String
SAIGMailbox : String
recordFormat : String
recordsReceived : String
status : String

(from nsl... L
d istribution SAIGUserID : Sring 1.,

la stChange dBy: Strin g

a lertDt: Da te

r ecodFormat :String

r ecordsRe ceived : String
d istribution Medium : String
S AIGMailbo x : Sring

getGAInfo()
updatelLoanList()
addLoanToList()

g etService rinfo()
u pdateLen derlList()
u pdateSch oolList()

DataProvider

scheduledSubmitDt : Date
receivedDt : Date
processedDt :Date
loanRecordsExtracted
loansWithErrors

(from nsl... 1

getDataProviderinfo()
icalcSubmitPassRate()

0.n

EilacademicCalendar : String
SrlactionCode : Integer
ehiactionReasonCode : Integer
Grlapprovalindicator : Char
ehibranchindicator : Char
EHcertificationType : Char
=HCOACode : Char

L dCOAEffectiveDt : Date
seadisapprovalDt : Date
ttdeffectiveDtOfCombination : Date
seseligibilityStatus : Char
sidethnicCode : Char
sdFDSLPEndReason
sdFDSLPOriginationEndReason

s 4dFDSLPOriginationLvl : Char
sadFDSLPPlusEndDt : Date

G HFDSLPPIusStartDt : Date
hiFDSLPStaffordEndDt : Date

L H{FDSLPStaffordStartDt : Date
EiFDSLPUnsubsidizedEndDt : Date
EHFDSLPUnsubsidizedStartDt : Date
EehFFELPlusEndDt : Date

G HFFELPlusStartDt : Date

ehiFFEL StaffordEndDt : Date

G H{FFELStaffordStartDt : Date

LhiFFEL StaffordUnsubsidizedEndDt : Date
EHFFELStaffordUnsubsidizedStartDt : Date
EehiinitialApprovalDt : Date
EhllocationReason

& 4OPEID : String

saiPellEndDt : Date

ktdPellStartDt : Date

sdprogrambLength : Char

EUNITOBIIT Submittal &tdregionCode : Integer
DLDenom Hint (from nsl... ssischoolType :Char
DualNum :int rovider : Strin S 4SEOGENDt : Date
DualDenom :int provi 9 1 .
hum : int = prowderCode : String i SEOGStartDt : Date]
denomblint SHisubmittalDt : Dat(_e L S_yst_emFunded_Offlce : phar
’ mistatusCode : String =ydistributionMedium : String
SHnumber : Integer &H{SAIGUserlD : String
-getCDRInfo() —: updateDt : Dagt]e *: servicerName : String
pastEnrolimentRptAL : ArrayList| SHsplitFilelndicator : Boolean
&HlreceivedDt : Date f, aiverAL : ArrayList
mhischeduleAL : ArrayList GHdefaultSortOrder : String
=HuserlD : String 0.n =H{SSCRType : Strintg
HimessageKey : Stringt EhlenrollmentReportingScheduleAL : Arrayl...
SHeffectiveDt : Date s tatus : String
=Hifrequency : String Eh{programType : String
SHweek : String
EldayOMWeek : String getSchoolinfo()
Seitransaction : String updateStudentList()
&=laction : String laddStudentToList()
sr4scheduledDt : Date updateServicerList()
&icomments : String laddServicerToList()
snewScheduledDt : Date updateStatus()
updateGrantList()
getSubmittalinfo() laddGrantToList()
update Submittallnfo() getSSCRWaivedSchoolList()
getSubmittalSchedulelnfo() getCDRInfo()
laddSubmittalScheduleDt()
ichangeSubmittalScheduleDt()
94.3.3 NSLDS Il Detailed Design 17 11/26/2002

FEDERAL
STUDENT AID

[+ FF..!\rp' Firl Amverica :an'.lIﬂ:ﬂE Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

<<entity>>
Repaymentinfo

(from nslds)
¥anumDtRange : Date
denomDtRange : Date
2FFELNum : Integer
Gr{FFELDenom : Integer
mrdDLNum : Integer
=iDLDenom : Integer
GrDualNum : Integer
G+{DualDenom : Integer
mriProcessedDt : Date

icalcFFELRate()
calcDLRate()
icalcDualRate()
igetRepaymentinfo()

ViewDateControl
(fromrslds)

<<entity>> 1.

iscalYear : Date

rateType : String

runDate : Date
iewAvailDate : Date

getVDClnfo()
updateVDClInfo()

School
(fromrslds)

academicCalendar : String
Ty actionCode : Integer
gactionReasonCode : Integer
Semapprovallindicator : Char

Gjbranchindicator : Char

mrcertificationType : Char

', ICOACode : Char
GHCOAEffectiveDt : Date
emdisapprovalDt : Date
seffectiveDtOfCombination : Date
2deligibilityStatus : Char

--, ethnicCode : Char
mrFDSLPENndReason

- DSLPOriginationEndReason

--, FDSLPOriginationLvl : Char
GHFDSLPPlusEndDt : Date
ERFDSLPPIlusStartDt : Date
GHFDSLPStaffordEndDt : Date
G{FDSLPStaffordStartDt : Date

', FDSLPUnsubsdizedEndDt : Date
FDSLPUnsubsdlzedStartDt Date
GHFFELPlusEnd Dt : Date
FFELPlusStartDt : Date

, FFEL StaffordEndDt : Date

', school Type : Char

o ISEOGENdDt : Date
GHSEOGStartDt : Date
#dsystemFundedOffice : Char
femdistibutionMedium : String
ISAIGUserID : String
yrjservicerName : String
#dsplitFileIndicator : Boolean
aiverAL : ArrayLig

', defaultSortOrder : String
at ISSCRType : Strintg

status String
programType : String

SHenrolimentReportingScheduleAL : ArrayList

TransferMonitor
(fromrslds)

informServicerFlag : Boolean
alertMethod : String
alertServicerHag : Boolean
monitorBeginDt : Date
lastChangedByName : String
lastChangedByDt : Date
dtAlerted : Date
batchAlertMethod : String
informSAIGMbox : String
alertSAIGMbox : String
monitorRsltDt : Date

getSchoollnfo()
getContactinfo()
updateSchoolTransProfile()
addStudentToLig()
addSchoolTransProfile()
updateStudentOnLig()

locationReason o
lOPEID : String
riPellEndDt : Date
GrjPellStartDt : Date 0..n
#{programLength : Char 1 Student
.n
SH{regionCode : Integer (from rslds)

academicLevel : String
hasPellGrant : Boolean
enrollmentDetailAL : ArrayList
enrollmentTimelineAL : ArrayList

getSchoollnfo()
updateStudentList()
laddStudentToList()
updateServicerList()
laddServicerToList()
updateStatus()
updateGrantList()
addGrantToList()
igetSSCRWai vedSchoolList()
getCDRInfo()

getStudentinfo()
addStudentTransfer()
removeStudentTransfer()

94.3.3 NSLDS Il Detailed Design

18

11/26/2002

FEDERAL
STUDENT AID

[+ FF..!\rp' Firl Amverica :an'.lIﬂ:ﬂE Setrareal

FSA Modernization Program

NSLDS Il Reengineering
Application Architecture

Grant
(fromrslds)

[5*.awardYearBegin : Date
[5=awardYearEnd : Date
(5*.sche dul edAmt : Integer
G=awardAmt: Integer
(G*.disburedAmt: Integer
[S=remainingAmt : Integer
SHperentScheduledUsd
Skitype : String
Skidisbure mentDt : Date

arzschool VerificationFlag
(5*.scho ol OPEID : String

:Double

[S*transactionNumber: Integer
(S*.disburse me ntPostDt: Date

[5*.e xpectedFamCont : Integer

- : Boolean

Overpayment
(from nslds)

S-itype : String
Skindicator : String
(5HdisbursementDt : Date
(G*repaymentDt : Date
[ScreationDt : Date
[S*.source : String
(3*:schoolOPEID : String
(5*=updateDt : Date
S updatedBy : String
SkborrowerSSN : String
SEkborrowerDOB : Date
[S*borrowerFirstName : String
(5*regionCode
(S*.status : String

addOverpaymentinfo()
getOverpaymentinfo()

updateOverpaymentinfo()
G..II

1

Borrower
(from nslds)

getGran tinfo()
updateGrantinfo()
addGrantinfo()

SSN : String
irstName : String
middlelnitial : String
lastName : String
DOB : Date 1..n
borrowerType : String
currentFlag : Boolean
studentDesignator : String

certifyStudent()
updateStudentEnrollmentinfo()

getStudentEnrollmentinfo()

1

£

Student
(from rslds)

P lusBorrower

(5¥.academicLevel : String

@=hasellGrant: Bool

E=enmollm entDetai AL : ArrayList
EHenollmentTimelineAL : ArrayLig

(from nslds)

Loan
(from nslds)

[G*.academicLevel : Char

EcancellationAL : ArrayList
[S*.cancellationType : String
[S*.capitalizedIntAmtAccrued : Integer
(5*.capitalizedIntUpdateDt : Date
[S*.collectionAL : ArrayList
(S*.defermentsAL : ArrayList
[S*.disbursementAL : ArrayList
(5*=DPLoanID : String
EFguarantorHistoryAL : ArrayList
mFinactiveFlag : Boolean
[5*insClaimPymtAL : ArrayList
(5*insClaimRefundAL : ArrayList
[S*interestRate : Float
[S*interestRateType : String
[5*loanStatusChgAL : ArrayList
5=MPNCode : String

Skinotes : String

E=OPBAMtDue

S 0PBUpdateDt : Date

(5= OPEID : Integer
(5*originationDt : Date
(S*originationAmt : Integer
[5*.otherFeesAmt : Integer
[5*outstandingintAmtAccrued : Integer
[5*outstandingIntUpdateDt : Date
SkiperiodBeginDt : Date

== periodEndDt : Date

(S refundsAL : ArrayList

amrepaymentStartDt : Date
[S*repurchaseAmtAL : ArrayList
[G*.sepLoanFlag : Boolean
[5*.subsidizedFlag : Boolean
SxsubsidizedOPBAmMtUsed : Integer
ExsupplReinsPymtRegAL : ArrayList
S=TOPAL : ArrayList

[S*type : String

(3*loanLockDt : Date

SxbankruptcyClaimRefundAL : ArrayList

GreinsuranceClaimPymtAL : ArrayList

ean

getStudentinfo(

addStudentT mnder()
removeStudentTransfer()

-getPIusBorrowerInfo()

getLoanlInfo()
updateLoaninfo()
addLoanlInfo()

setUpdateableFlag()
isUpdatable()
sendAlert()

94.3.3 NSLDS Il Detailed Design

19

11/26/2002

FEDERAL
STUDENT AID

[+ FF..!\rp' Firl Amverica :Ian'.lln’EﬂE Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

Loan

(from nslds)

Organization
(fromnslds)

orgCode String
-—, orgName : String
-—, orgType : String
-—, orgStreet : String
mr;0rgCity : String
orgState String
orgzlp String
orgStatus String

EracademicLevel : Char
ErbankruptcyClaimRefundAL : ArrayList
ErcancellationAL : ArrayList
SrcancellationType : String
capnahzedlntAmtAccrued Integer
capltallzedlntUpdateDt Date
fasycollectionAL : ArrayList
faydefermentsAL : ArrayList
ErdisbursementAL : ArrayList
DPLoanID String
EraguarantorHistoryAL : ArrayList
SrinactiveFlag : Boolean
ErinsClaimPymtAL : ArrayList
ErinsClaimRefundAL : ArrayList
ExinterestRate : Float
fainterestRateType : String
fasyloanStatusChgAL : ArrayList
EMPNCode : String
notes String
OPBAmtDue
EOPBUpdateDt : Date
OPEID Integer
SoriginationDt : Date

. -—, originationAmt : Integer

asotherFeesAmt : Integer
faoutstandingintAmtAccrued : Integer
EroutstandingIntUpdateDt : Date
ErperiodBeginDt : Date
SperiodEndDt : Date

ErrefundsAL : Arraylist
ErreinsuranceClaimPymtAL : ArrayList
repaymentStartDt Date

-—, repurchaseAmtAL : ArrayList
arssepLoanFlag : Boolean
faysubsidizedFlag : Boolean
SrsubsidizedOPBAmtUsed : Integer
SrsupplReinsPymtReqgAL : ArrayList
TOPAL ArrayList

.—, ype : String
IoanLocth Date

<<entity>>
LookupType

(from nslds)

name String
ID String
result String

getLookupResult()
addLookupType()
updateLookupType()

getLoaninfo()
updateLoaninfo()
addLoanInfo()

setUpdateableFlag()
isUpdatable()
sendAlert()

LoanType
(from nslds)

-—, code : String
isrname : String
creatlonDt Date
group String

getLoanType()
addLoanType()
updateLoanType()

deleteLoanType()

<<Interface>>
NSLDS Updatable

(from nslds)

updateFIag : Boolean

isUp datable()
setUpdatableFlag()

94.3.3 NSLDS Il Detailed Design

20

11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
[+ ”'.r.r.ll Firl Amverica .|'|I.lrw|.'=||l:l Setrareal Application ArChiteCtu re
Action
(from action)
Wperform()
%
N SLDSAction

(from nslds)

Wperform()
StudentAccessAction Transf erMonitorAction LogonAction MenuAction AidAction OrgAction ErrollmentAction SupportAction
(from nslds) (from nslds) (from nslds) (from nslds) (from nslds) (from nslds) (from nslds) (from nslds)
Fexecute() Wexecute() ﬂexecute() Fexecute() Hex ec ute() qexecute() Fexecute() Fexecute()
OverpaymentAction EnrollmentSummary Action EnrollmentReportingAction
(from nslds) (from nslds) (from nslds)
Fexecute() Fexecute() Fexecute()

The Action object and NSLDSAction classes are concrete classes that individual business Action subclasses will extend. A business
Action subclass will be created for every page in the web site that perform business logic. Due to timing constraints, not all
subclasses were displayed; one main subclass for each module is shown to demonstrate the inheritance relationship and act as a
placeholder for business actions in that module.

94.3.3 NSLDS Il Detailed Design 21 11/26/2002

FEDERAL
STUDENT AID

[+ ”'.r.r.ll Firl Amverica .|'|I.lrw|.'=||r1 Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

Worker
(from nd... .
: : - WorkUnit
BEworkUnit: WorkUnit (from sl
fzdomain : SFADomain 1
I&}pom : SFAPersistableObjectManag... isSuccessu l()
- = 1
- %ge Results()
:?neslztr?(()) Sse Results()
$scloct) se tSuccess ful()
Supdate()
/\
/\
\ \ \ - \ \ \ ‘
SRR EEEeR o 2 TransferMonitorWorker LogonWorker MenuWorker AidWorker OrgWorker EnrolimentWorker ST T
(fom nsl... (from nsl... (from nsl... (fromnsl... (from nsl... (from nsl... (from nsl... (from nsl...
delete() Fdelete() EBauthenticate... Fdelete() Wdelete() Welete() Fdelete() Idneslzﬁ())
insert() Sinsert() idelete() Sinsert() Sinsert() Linsert() Sinsert() select)
select() Wselect() Linsert() Sselect) Sselect() Wselect() Wselect() update()
| ¥update() || %update() Sselect() || %update() Supdate.. Supdate() | ®update P
Supdate()
KF
DU EnrollimentSummaryWorker EnrolimentReportingWorker
tWorker
(from nsl... (from nsl...
(from nsl...
Bdelete() Sdelete() !g_delete()
A insert() Sinsert()
Finsert() . &
®:cloch select() iselect()
pelee) Hupdate() Supdate()
Supdate() i '

The Worker object is an abstract class implemented by subclassed Worker objects. The Worker class interacts with the

Configuration framework and instantiates a protected member variable for the PersistableObjectManager for the Worker subclasses
to utilize. For every Action that requires database interaction, there will be a subclassed Worker object. Due to timing constraints,
not all subclasses were displayed; one main subclass for each module is shown to demonstrate the inheritance relationship and act
as a placeholder for business actions in that module.

94.3.3 NSLDS Il Detailed Design

22

11/26/2002

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

FEDERAL
STUDENT AID

[+ FF..!\rp' Firl Amverica :I"Ln'.lm:rﬁ Setrareal

SFAPersistableObjectManager

(from persisten...

E8ransaction : SFAUNitOfWork

SFAResultSet
(from persisten...
=rrecordSet: Result...

SFAUNitOfWork

(from persisten...
Econnection : Connectic...

abortTransaction()
addObject()
commitTransaction() 1

SFADomain

(from persisten...

close()
getBoolean()

ErhdataSourceName St~ |ISkendTransaction()

z " etDate

m=userName : String getObject() abortQ : 0

5 S . commit() getFloat()

lsrpassword : String getObjects() end() getint()
getObjects_AsHashlabIe() executeQuery() getLong()
removeObject() executeUpdate() getObject()

removeObjects()
updateObiject()
updateObjects()

getString()
next()

<<Interface>>
ISFAPersistableMapper

(from persisten...

getDeleteQuery()
getinsertQuery()
getKeySelectQuery()
getSelectQuery()
getUpdateQuery()
newFrom()
populateAttributeValues()
populateKeyAttributeValues...[.

™~
™

"

.

EnrollmentReportingMapper
(from nsl...

LoanDetailsMapper
(from ng...

OrgContactListDetailsMapper
(from nsl...

LogonMapper

(from nsl...

B¥org :0rganiza ton

=F:borrower : Borrower

¥org : Organization

getD deteQue ry()

getin sertQuer y()
getK ey SelectQ tery()
getSdectQuer y()

getU pdateQue 1y ()

new Fom()

pop uateAttribu €Values()

pop ulateKeyAttibuteValu es....

getDeleteQuery()
getinsertQuery()

getKeySelectQuery()
getSelectQuery()
getUpdateQuery()
newFrom()
populateAttributeValues()

populateKeyAttributeValues...

getDeleteQuery()
getinsertQuery()
getkeySelectQuery()

getSelectQuery()

getUpdateQuery()
newFrom()
populateAttributeValues()
populateKeyAttributeValues...

Eruser : User

getDeleteQuery()
getinsertQuery()
getKeySelectQuery()
getSelectQuery()

getUpdateQuery()
newFrom()

populate Attribute Values()
populateKeyAtributeValues...

94.3.3 NSLDS Il Detailed Design

23

11/26/2002

FEDERAL
STUDENT AID

[+ ”'.r.r.ll Firl Amverica .|'|I.lrw|.'=||l:l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

ReportReader

(from nslds)

Wsel ect()

ReportGenerator

(from nslds)

WgenerateRe port()
Fil ReportWriter ReportWriterFactory
(f ! eld | (fromnslds) (from nslds)
rom nsias
WwriteReport() WcreateReportWriter()

,,,,,,,,

CDRHistoryReportWriter

(from nslds)

SchoolRepaym entRepotWiiter
(from nslds)

WwriteReport()

WwriteReport()

These reports objects are for the generation of formatted flat file exception reports which are defined in the NSLDS Il Reengineering

Reports Detailed Design documentation.

94.3.3 NSLDS Il Detailed Design

24

11/26/2002

FEDERATL
STUDENT AID

[+ ”'.r.r.ll Firl Amverica |'|I.lrw|r=||l:l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

3.2 Object Actions

The table below lists the major actions that will be performed by the objects defined in the class
diagram. There are two categories of objects defined by the NSLDS Application Architecture —
business objects and business workers.

Business objects contain the informational fields used to hold the NSLDS data. Business worker
objects contain specialized methods used to operate on the business objects to perform a NSLDS
action, usually in coordination with the database. All worker classes are able to select, insert, update,
and delete records from the database. Some workers have methods to perform more specific business
logic, such as authentication. The workers use the business objects as placeholders for the NSLDS data
when performing actions on the database. The business objects also contain methods that allow them
to operate on themselves. Business objects are able to execute calculations and business logic based on
the values contained in their fields. The following table lists the actions exposed by the business
objects and general worker objects.

Business Object Name

Description

Action

Contactinfo

Represents an Organization's
contact or support personnel’s
contact information.

getContactinfo
updateContactinfo
addContactinfo

Lender Represents the entity that lends | getLenderInfo
money to the Borrower. Keeps | updateLoanList
track of the Students, Loans, addLoanToList
Servicers, and GAs for those updateStudentList
loans. addStudentToList

updateServicerList
addServicerToList
updateGAL.ist
addGAToList

Servicer Represent the entity that getServicerinfo
services enrollment information | updateLenderList
for Schools and Loan updateSchoolList
information for Lenders.

ED Represents different Education getEDInfo
Regions. updateEDInfo

addEDInfo

State Agency Represents a particular State getStateAgencyinfo
Agency. updateStateAgencylnfo

addStateAgencylnfo

GA Entity that guarantees financial | getGAInfo

backing of a loan. Used for

performing online loan updates.

updateLoanList
addLoanToList

94.3.3 NSLDS Il Detailed Design

25

11/26/2002

FEDERATL
STUDENT AID

[+ ”.r.r.ll Firl Amverica |'|I.lrw|r=||l.l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

Business Object Name

Description

Action

School

Entity representing a school.
Contains a list of current
students and grants disbursed.
It is also used to monitor
transferring students.

getSchoolinfo
updateStudentList
addStudentToList
updateServicerList
addServicerToList
updateStatus
updateGrantList
addGrantToList
getSSCRWaivedSchoolList
getCDRInfo

TransferMonitor

Entity used to track transfering
students for an associated
school.

getSchoolinfo
getContactinfo
updateSchoolTransProfile
addStudentToList
addSchoolTransProfile
udpateStudentOnList

Repaymentinfo

Associated with the School
class. Able to calculate the rates
of repayment for the loans.

calcFFELRate
calcDLRate
calcDualRate
getRepaymentinfo

DataProvider

Extracts loan data and
populates School and GA
objects.

getDataProviderinfo
calcSubmitPassRate

CohortDefaultRate

Entity to store CDR information.

getCDRInfo

Submittal

Data Provider stores schedule
information for Schools, GAs,
Lenders, and Servicers.

getSubmittalinfo
updateSubmittalinfo
getSubmittalSchedulelnfo
addSubmittalScheduleDt
changeSubmittalScheduleDt

ViewDateControl Entity to store VDC getvVDClnfo
information. updateVDClInfo
User Represents the User on the getUser
NSLDS system. User object addUser
created during logon action. updateUser
Object's properties used to deleteUser

authenicate logon process. A
User belongs to a function and
location group.

assignFunctionGroup
unassignFunctionGroup

LocationGroup

The physical location of the
User.

getLocationGroup
addLocationGroup
updateLocationGroup

94.3.3 NSLDS Il Detailed Design

26

11/26/2002

FEDERATL
STUDENT AID

[+ ”.r.r.ll Firl Amverica |'|I.lrw|r=||l.l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

Business Object Name

Description

Action

FunctionGroup

Used to authorize User for
functionality of the NSLDS site.
A function group can have
many web groups related to it.

getFunctionGroup
updateFunctionGroup
addFunctionGroup
assignUser
unassignUser
assignWebGroup
unassignWebGroup

Message Represent messages to the User. | getMessage
Can be assigned to different addMessage
Function groups. User is able to | updateMessage
view more than one at a time. deleteMessage
WebGroup User's authorization drilled getWebGroup
down to the web page level. updateWebGroup
addWebGroup
assignWebPage
unassignWebPage
Borrower Represents an entity that has certifyStudent
borrowed money. It contains updateStudentEnrollmentinfo
the records for Overpayment, getStudentEnrollmentinfo
Loan, and Grant history. Itis
used to update and display the
financial history.
Student A subclass of Borrower. A getStudentinfo

Student belongs to a School. It
contains enrollment information
for a list of schools and grant
details.

addStudentinfo
removeStudentTransfer

PlusBorrower

A subclass of Borrower.
Represents an entity that has
borrowed money on behalf of a
Student.

getPlusBorrowerlInfo

Grant Entity used to store Grant getGrantinfo
information. updateGrantinfo
addGrantinfo
Overpayment Represents an Overpayment by | getOverpaymentinfo
a Borrower on a loan. updateOverpaymentinfo
addOverpaymentinfo
Loan Contains all of the necessary getLoanInfo

information for a loan. A loan
belongs to a Borrower. A loan is
associated with a LoanType.

updateLoanlnfo
addLoanInfo
setUpdateableFlag
isUpdatable
sendAlert

94.3.3 NSLDS Il Detailed Design

27

11/26/2002

FEDERATL
STUDENT AID

[+ ”.r.r.ll Firl Amverica |'|I.lrw|r=||l.l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

Business Object Name Description Action
LoanType Describes the type of loan. getLoanType
addLoanType
updateLoanType
deleteLoanType
LookupType Maintains validation translation | getLookupType
relationships. addLookupType
updateLookupType
NSLDSAction Subclass of the Action class. perform
Parent class to all NSLDS
actions. Entry point for the
business action. Contains the
centralized exception handling
logic. This object will call the
execute() method of the other
Action objects.
Worker Parent class for all NSLDS delete
business workers. This is an insert
abstract class and cannot be select
instantiated. Defines the update
required methods for all Worker
classes. Contains a WorkUnit
object that is used to return the
results of the work.
WorkUnit Used to record the results of the | isSuccessful
operation of a Worker class. setSuccessful
getResults
setResults

ISFAPersistableMapper

Part of the Persistence
framework. Interface that all
business mappers must
implement. Contains logic for
the object-data model mapping.

getDeleteQuery
getinsertQuery
getKeySelectQuery
getSelectQuery
getUpdateQuery
populateAttributeValues
populateKeyAttributeValues

SFADomain

Part of the Persistence
framework. Placeholder class
for database's data source name,
user ID, and password which it
pulls from the Configuration
framework.

94.3.3 NSLDS Il Detailed Design

28

11/26/2002

FEDERATL
STUDENT AID

[+ ”.r.r.ll Firl Amverica |'|I.lrw|r=||l.l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

Business Object Name Description Action
SFAPersistableObjectManager Part of the Persistence abortTransaction
framework. Defines the addObject

different database operations
exposed to the client objects.

commitTransaction
endTransaction

Used to select, update, insert, getObject

and delete records with the getObjects

database. Provides getObjectsAsHashtable

transactional monitoring removeODbject

through abort and commit removeObjects

methods. updateObject
updateObjects

SFAUNIitOfWork Part of the Persistence abort
framework. This class is not commit
exposed to the developer. Used | end
internally in the Persistence executeQuery
Framework to record a executeUpdate
roundtrip transaction.

SFAResultSet Part of the Persistence close
framework. This class is not getBoolean
exposed to the developer. Used | getDate
internally in the Persistence getFloat
framework to record results getint
from database query. getLong

getObject
getString
next

ReportGenerator Control class to generate a generateReport
report File. Interacts with
ReportReader and
ReportWriter.

ReportReader Reads from a database table all select
of the report fields
coresponding to a Username +
timeStamp +Report ID label and
stores the data in a ResultSet.

ReportWriter Generates the output File. writeReport
While iterating through the
ResultSet from the
ReportReader, it writes the
report data and report headers.

ReportWriterFactory Creates the specific createReportWriter

ReportWriter based on the
Report ID.

94.3.3 NSLDS Il Detailed Design

29

11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
Wir Fioly Fhel Aemericas Through Schuel Application Architecture

Table 4, Object Description and Actions

3.3 Sequence Diagrams

The Normal Processing category includes examples from the seven different business modules. The
Exception Processing has three diagrams that are examples of the different types of exceptional
conditions in the NSLDS system and how they are handled by the application architecture.

Normal Processing — Business Modules
Aid - Update Loan Details
Aid - View Loan History
Aid - Update Overpayment Details
Aid - View Overpayment History
Enrollment - Add Reporting Schedule
Enrollment - View Summary
Logon
Organization - View Contact List
Organization - Delete Contact from List
Student Access - View Financial Aid Review
Support - View Contact List
Support - Add Contact to List
Transfer Monitor - View Transfer List
Transfer Monitor - Delete Transfer from List

Exception Processing — Example sequences
Application errors (i.e. Authentication error)
Exceptions thrown by Java code (i.e. SQL Exception)
Web Conversion framework errors (i.e. Form validation error)

94.3.3 NSLDS Il Detailed Design 30 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Tl Fane Aisimetess Thrisiiph Schoal Application Architecture

3.3.1 Aid - Update Loan Details

loanDetailsUpdate.jsp [‘Actonseviet | | :NSLDSAction | | _AdAcon | | _WorkUnt || AidWorker | | loan | [Bomower | | :LoanD | | :sFapomain | | |
|
‘ i o P | | P P || N |
. I [I T T
L oSt TesP 2:per ing, L) L L o L
| form, request, _ | 3 .
User updates Loan TeSPonSe) form, reauest.
up . e TEsponse)
Detail fields and PR P 4: update(parameters)
clicks Submit. Al -
calls perform() NSLDSAction |
i fi ! 5: loan = new L
Loan Detail fields method in STREERT ! oan = new Loan(, |
and the index NSLDSAction i AidAction calls the update() I\ set Loan fields] |
number of the Loan AGt method, passing the Loan fields 1
AidAction SR | |
are sent in the POST as a HashMap parameter. etallieldsin. [\ | |
request o Loan object from
ActionServiet. parameter
HashMap
7: borrower = new Borfower()
]
!
8: set Borrower Fields (SSN, Name, Date of Birt)} |
|
|
|
9: add loan object to Horrower |
See Struts AN
Sequence diagram
for more details on 10: mapper = new LoanDetailsMapper()
]
the process of 11: populateAftributeValues(borrower) L
mapping *.jsp to T >“ |
an Action Populates attributes to performa [\ L
SQL Update. Mapper uses borrower's
attributes to update the Loan Details.
12: updateQuiery = getUpdateQuery()
]
13: up = getl) i
|
L
14: doain = new SFAD , useriD,
ol
il
8
15: pom = new SFAP
“Ti
16: updateO Query, up: H
T T
! L
17: worknit = new WorkUnit(s -
: (AidWorker calls updateObject() 1
| 118: setSuccessful(method and passes it the query |
| to use on the database. The |
| 119: setResults() updateObject() method does not |
| L
| [AidWorker sets the [\ retum avale. |
L borrower object in !
) the WorkUnit
20{ Return: WorkUnit
21: isSuccessful(
BN
23: Return: 22: getResults() L

AconFoward ||| T

T
!

!

| i

24: Return: ActionForwartl | 5

L !
AidAction updates the
borrpwer object in the
sesgion context using the
indek number of the
selefted Loan.

25: loanDetails.jsp

[ActionForward
returned to
ActionServiet

[Actionserviet

| redirects user to

| loanDetails jsp and
| the updated Loan is

| displayed.

‘AidAction generates an
L ActionForward page. If
update was successful, then
updated Loan Details page is
displayed.
T
]

94.3.3 NSLDS Il Detailed Design 31 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering

[+ ”'..r.r.ll Firl Amverica .Illl.ln'lln’EIIr! St Appl iCatiOn ArCh iteCtU re

3.3.2 Aid - View Loan History

aid.jsp ActionServiet | : NSLDSAction | : AidAction | | : WorkUnit | | :Aidworker | : Borrower | Persistence |
| | N | | | | Framework |
§ 1: process(request, response) §
’U_;"é;’gﬁ’{e’lj’s’;”s”s”,(‘ ””” 2: perform(mapping, form,{3: exe cute(mapping, form,
and leaves the First request, response) request, response)
Name and Date of § , 4: select(parameters)
: T I R ! .
Birth blahk and clicks ActionServiet i | 5: borrower = new Borrower(),
the Retrieve button. calls perform() PP — L :]
POST request sent to thpd : NSLDSAction AidAction calls the D 6: setSSN(ssn) |
: method in calls execute f q)) |
ActionServlet. NSLDSAction el 0 AidWorker business 7: setFirstName(firstName) |
——— method in logic, passing a - i
AidAction HashMap of the SSN, 8: setDateOfBirth(DoB) |
First Name and Date of |
Birth entered by the |
User. T
N 9: borrower = select Loan Histpry Information (borrower)
See Struts N)) - S ; ™
Sequence diagram 10: workUnit = new WorkUnit() AidWorker calls the Persistence Framework to N\ i
T8 (e e am [11: setSu cee ssful() retrieve the Loan History from the database. The
the process of § S - Persistence Framework returns an updated
mapping *.jsp to § 12: setResults() Borrower object, containing the loan history.
an Action §
. N See LogonAction for [\
13: Retyrn: WorkUnit AN more details about
14: isSucce sful() udng Perdstence
: 1 Taiwerkar N | —>S Framework o select
! AidWorker
15: getResults() | L Updated data
T | |populatesa borrower object -
16: Return: ActionForward | 1 | WorkUnit with) e
. . AidAction NLA set in WorkUnit
17: Return: ActionForward ! . - updated
| S S retrieves results Borrower Object
18: loanHistory.jsp | AidAction from WorkUnit |} o~
| [ActionForward AT T|andsess
ActionServiet maps | R —— ActionForward for Borrower object
ActionForward to ActionServlet loan history page. in Session
. . context.
loanHistory.jsp page.

loanHistory.jsp page
reads Borrower object L
from Session context

and displays the
Borrower's loan

history.

N |

—e T
F

94.3.3 NSLDS Il Detailed Design 32 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Tl Fane Aisimetess Thrisiiph Schoal Application Architecture

3.3.3 Aid - Update Overpayment Details

overpaymentDetail : ActionServlet % : NSLDSAction % : OverpaymentAction : WorkUnit % % : OverpaymentWorker : Overpayment : Borrower % Persigence
Update.jsp | | b | Framework
§ 1: process(request, response) i N 3
. \ L. 2: perform(mapping, i
| form, request, 5 T N SN L ‘
! respoise) 3: execute(mapping, See ™N
[Userupdates | NI S form, request, 4: update(parameters) Loa_nDetaiIsUpdate
Overpayment Detail ActionServlet N resp9nse) " - . _ Acthn for more)
fieldsand clicks Submit. calls perform() y AidAction calls the update()™\ 5: overpmt = new Overpayment() detailsabout using

Persistence
Framework to
update data.

—

NSLDSAction calls
execute() method in
OverpaymentAction

method in
NSLDSActi on

- method, passing the 6: set Overpayment fields
number of the Overpayment fields andthe | | | TS iAo oo
Overpayment are sent in Borrower information asa
the POST request to HashMap parameter.

ActionServlet.

All fields and the index

Set all Overpayment
fields from HashMap
parameter.

[

7: borrower = new Borrowel()

8: set Borrower field{SSN, firstName, DoB)

9: addOverpayment(overpint)

"w
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i}

10: update Overpayment (bofrower) 1

11: workUnit = new WorkJnit()
12: setSuccessful() OverpaymentWorl'(er calls the I
update() method in the
13: SetReSE“[S() Persistence framework. It
passes the Borrower object
> that includes the
Overpayment to update.

14: Return:{ WorkUnit

OverpaymentWorker
15: isSuccessful(sets the borrower
object in the WorkUnit

16: getRequlty)

17: Retumn: ActionForward| ;N

\ b

\ T
18: Return: ActionForward | B OverpaymentAction retrieves h
OverpaymentActio | Borrower object from |
i n generates LJ WorkUnit. Using the index of
the selected Overpayment,
the Borrower object from the
Session context is updated.
;

19: overpaymentDetail.jsp

— N
—————————————————————————————— ActionForward [\ ActionForward for

returned to overpaymentDetail
ActionServlet

ActionServlet [N
redirects user to
overpaymentDetails.
jsp and the updated
Overpayment is
displayed.

-jsp page

[

94.3.3 NSLDS Il Detailed Design 33 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering

[+ ”'..r.r.ll Firl Amverica .Illl.ln'lln’EIIr! St Appl iCatiOn ArCh iteCtU re

3.3.4 Aid - View Overpayment History

HashMap parameter

overpaymentHistory. i : ActionServlet i % _ NSLDSAction i i : OverpaymentAction % i - WorkUnit i i : Overpa menlWorkeri i _ Bomower i i Persistence i
i | | i P | P | i | | Framework |
11: process(request, response)] 2: perform(mapping, i i
! § - form, request, . . i i
R R N Tesponse) 3: execute(mapping, | |
User enters SSN, | | form, request, ! |
First Name, and DoB | ActionServiet D\ response) 4: select(parameters) |_5: borrower = new Borrower()
on Overpayment | calls perform() | | g
History page and i method in NSLDSAction calls 1™ Action calls Workers [N &: SelS_SN(SS”) - !
clicks Submit. i NSLDSAction execute() method in busness logic to select 7: setFirstName(firstNam |
POST‘ request sent i OverpaymentAction data, passing it the SSN, 8: setDateOfBirth(DoB) i
to ActionServlet. | Firg¢ Name, and DoB as a |

9: borrower = select Overpayment History (borrower)

/

OverpaymentWolker calls L\

N
the Persistence Framework See LogonAction fori,

to retrieve the Overpayment more details about i

10: workUnit = new WorkUnit() History f'f)m the databas. pSinojRelsistence %
I The Persgence Framework Framework to select |

| returns an updated Borrower data. |

i object, containing the i

L !

Overpayment history. See
the LogonAction for more
details onretieving data
with the Persistence

Updated
borrower object
set in WorkUnit

Framework
13: Return: | WorkUnit
14: isSuccessful() b
15: getResults()
16: Return: ActionForwari \ OverpaymenlWorker‘) [N
_ | 117Z: Return: ActionForwar | - OverpaymentAction [populates a WorkUnit with
18: overpaymentHistoryList.jsp OverpaymentAction L retrieves results from i updated Borrower Object
I generates WorkUnit and sets i
| ononvan ActionForward for Borrower object in |
[Actionserviet maps [;f“f'"esd ‘°| overpayment history Session context. |
N - ctionServlet
ActionForward to page.
overpaymentHistory

Listjg page. JSP
page reads Borrower

object from Session 7
context and displays
the Borower's

overpayment history.

4444444444444444444444444441
N

94.3.3 NSLDS Il Detailed Design 34 11/26/2002

FEDERAL
STUDENT AID

[+ ”'..r.rp Firl Amverica .I'll:lrvluylrs Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

3.3.5 Enrollment - Add Reporting Schedule

enrollmen!ReDorlinﬂl‘

ActionServlet

: NSLDSAction

: EnrollmentReportingAction

: WorkUnit

: EnrolimentReportingWorker

: Organiza

tionFactory : School : EnrollmentReportingMapper : SFADomain : SFAPersi bj

lager

Create.jsp
T

| |
11: process(request, responge)i 2: perform(mapping,
H

form, request,

T
|
|
|
|
|
|
|
L

User enters reporting L
start date and
frequency. Reporting
values and Org

Name, Code, and
Type sent via a

POST request to
ActionServlet.

ActionServlet
calls perform()
method in

NSLDSAction

See Struts
Sequence

mapping *.
an Action

diagram

for more details on
the process of
.jsp to

4: Return: ActionForwal

5: enrolimentReporting.jsp

ActionServlet maps L
ActionForward to
enrollmentReporting.jsp
page. JSP page reads
School object from
Session context and
displays the Enrollment
Reporting Schedule.

ActionForward
returned to
ActionServlet

3: execute(mapping,
form, request,

resp?nse)
]

NSLDSAction calls
execute() method in
EnrolimentReporting
Action

23: Return: ActionForward

Action generates =
ActionForward for
enrollment reporting
page.

4: insert(parameters)

Use factory to create L
anew Org -
Type = School

Action calls the Worker's |
business logic, passing a
HashMap of the Org
information and the
reporting info entered by

the User.
17: workUnit = new WorkUnit()
<
!
!
!
!
!
|
L
20: Return

21: isSuccessful()

22: getResults() L

eves the new [\
Reporting entry from the
WorkUnit and adds it to

the Reporting Schedule in
the School object stored

in the Session Context.

5:qrg =
createOrgahization(type)

7: Return: School

8: set Org fields)

6: org = new School()\

Populate Org fields L
in School object

9: set Reporting fields (:

10-13. Setup L

tartDate, frequency) mapper and get SQL

10: mapper;

statement to insert
— Reporting Schedule
= new EnrollmentReportingMapper()]

11: pl

ppulateAttributeValues(s¢hool)

12:

insertQuery = getinsertQuery()

13: insert

Parameters= getinsertParameters()

14

domain = new SFADomdin(dataSource, userlD, pass} ‘d)

15: pom * new PersistableObjectManager(domain)

16: addObject(insertQuery, insertPdrameters) Call to addObject() h

School object set [

as the result in

inserts the new
| Reporting entry into the 5
Reporting Schedule. No
values are returned.

94.3.3 NSLDS Il Detailed Design

35

11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Tl Fane Aisimetess Thrisiiph Schoal Application Architecture

3.3.6 Enrollment - View Summary

enroliment.jsp ActionServlet :NSLDSAction : EnrollmentSummaryAction - WorkUnit : EnrollmentSummaryWorker _: Student Persistence
Framework
] 2: perfom(mapping,
11 process(reqL}lest, response) | form, request, 3: execute(mapping, |
e N TESPONSE) form, request, | .
User enters a SSN i response) 4: select(parameters) 5: gudent = new Student()
and leaves the First [ActionServiet | |]
—_— ‘ \ 6: setSSN(ssn
:;lg;r]eb?ndeaLe ?fk calls perform() NSLDSAction calls L Action calls the Worler's 1\ (sen) |
Irih blankand ¢icks method in execute () method in busness|ogic, pasing a 7: setFirstName(firstName), |
the Retrieve button.) EnmolimentSummar ' ; 3
POST request sent to NSLDSAction P y HashMap ofthe SSN, 8: setDateOfBirth(DoB)
ction i |
ActionServiet. Fire¢ Name and Date of |
Birth entered by the User.

9: student = select Enroliment Data (student)

~ 1
See Struts 10} workUnit = new WorkUnit() -
Sequence diagram ; H—J

for more detailson 11: setSuccessful() EnrolimentSummaryWorker calls the [
the process of 12: setResults() Persistence Framework to retrieve
mapping *.jsp to the Enrollment Summary from the

an Action) Update database. The Persistence

Framework returns an updated
Student object, containing the
Enrollment summary data.

object isset asthe

13: Returni WorkUnit result of the WorkUnit

=

14: isSuccessful()

15: getResults()
16: Return: ActionForward

See LogonAction for |
more details about

’ T - ‘ using Persistence

| EnmllmentSumaryAction N\ Framework to select
. \ [Aetemernmeies. | retrieves the Student object
18: enrollmentSummary.jsp | Action generafes L. and etsthe object in the deta.
ActionForward for N
~ | enrollment summary SIS GRAE:

page.

17: Return: ActionForwal

! ActionForward |
returned to
ActionServ et

—

ActionServlet maps
ActionForward to
enrollmentSummary.jsp
page. JSP page reads
Student object from
Session context and
displays the Student's
Enroliment Summary.

]

94.3.3 NSLDS Il Detailed Design 36 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering

[+ ”'..r.rp Firl Amverica .I'll:lrvluylrs Setrareal AppIiCatiOn AI’ChiteCtU re

3.3.7 Logon

viet

] [NSLDSAction | [ZLlogonAction | [Workunit | [_LogonWorker | i : User | [ZLlodonMapper | [:SFADomain | | SFAPersistableObjectManager |
| 1 | 1 P || Pl P || P i
7 T
]]
! !
2:perform(mapping. | 3. o 0cite(mapping, |
e = form. request, L form, request, !
User enters usernamd, response) e bnse) | u selont .
and password and [i : select(parameters) 5 new User()
clicks Submit. POST | ActionServiet v s
request sent to | calls perform() | \ Tl
: | thod ! LogonAction calls [N s
ActionServlet | m ethod in | calls execute() B 9 e 6: setUserName(userNane)
NSLDSAction | method in ogonWorker's business f
LogonAction logic, passing the — T
User-entered username L
and password in a 7: mapper = new LogonMapper()
See Struts D HashMap >k
U
Serrenes keram 8: populateKeyAttrilutesvalues(user) o
for more details on !
the process of i =1 |
mapping *.jsp to Populate attributes to perform SQL™ e
an Action SELECT statement

9: keySelectQuery = getkeySelectQuery()

10: keySelectParameters = getKeySelectParamters(

11: domain = new $FADomain(dataSource, userlD, passwd)

i
|
12: pom = new SFAPerdistableObjectManager(Fomain)

13: user = getObject(mapper, Query, Parameters)

-

Call to getObject [
returns a User
object, updated

with the results of

14: authenticate()

15: wbrkUnit = new WorkUnit(;

[T i6: setsuccesstul() LogonWorker checks to see if I the query.
! query results are non-null
| |_A7: setResults(User) then compares the User If query returned no
| entered password to the results, then
B password from the database getObject returns
18: Returp: WorkUnit null
!
S N
LogonWorker

returns the results
asa WorkUnit
object

19: isSuccessful()

LogonAction
checks to see if
Work was
successful

N
S

LogonAction DN
generates the
ActionForward

2

=

Return: ActionForward

22: Return: ActionForward

ActionForward is|
mainMenu.jsp if
successful logon,
elselogon.jsp

23: mainMenu.jsp

- T NFo Wﬂlu’
ActionServiet returned to
redirects the user to ActionServlet
mainMenu.jsp after L

a successful logon
or back to logon.jsp
if unsuccessful

Y

——

B
R

94.3.3 NSLDS Il Detailed Design 37 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
War Holpp Furk Americar Thronest Setrel Application Architecture

3.3.8 Organization - View Contact List

orgSearch.jsp : ActionServlet : NSLDSAction | : OrgAction | : WorkUnit : OrgWorker | : OrganizationFactory| | State Agency | Persistence |
| | | | | Framework |
i 1: process(request, respon@)i . i
1 : L, 2: perform(mapping, !
7777777777777777777 | form, request Use factory to create) i
User clicks on a result 1\ reépbnse) : 3: execute(mapping, anew Org - | !
from the Org Search | form, requesd, 4: select(parameters) Type = State Agency | §
lig. POST request ActionServlet > response) : 5 Q; i
sent to ActionServlet calls perform() | \ org= |
- R R \ ibati 6: org = new |
with Org Code, Name, method in NSLDSAction & - : T i) createOrganization(type)) Stateigency() i
City, State, and NSLDSAction calls execute() | OrgAction calls select() L e
Type = State Agency e i i method, passing Org i L
OrgAction 3 parameters - Type, 7: Return: org = | T
| Code, Name, City, StateAgency S R
State - as HashMap § Populate Org fleldsw‘L\,‘
| in StateAgency |
‘ | object |
See Struts N T 4 J
Sequence diagram T
for more details on 8: set Code, Name, City; and State
the process of = =T
mapping *.jsp to L
an Action . i 9: org = select Contact Info for specified State Agency (org)
10: workUnit = new WorkUnit() ~ ™
11: setSuccessful() ‘T‘
| OrgWorker uses [
12 setRe?JIts(org) Persigence Framework to
\ select the Contactinfo
i 766\7/\7/6}@;;&;’{5;” N dat.a from the database.
13: Returin: WorkUnit StateAgency object | A list of Contactinfo
in a new WorkUnit | objectsis aeated and
14:isSucce ssful(! stored in the updated
15: getResults() StateAgency object.
16: Return: ActionForward
\ L1
| OrgAction retrieves the | - b
17: Return: N E— & Its f th - See LogonAction for)\
ActionForward OrgAction results from the more details about
! generates an WorkUnit and places the M——
. }1 ActionForward for StateAgency object in Ef;r;g]]ewirrsklst:r;;eem
18: orgContactList.jsp [ActionForward 1\ the Org Contact the Session context. T e
i returned to 7 | List page o i I
! ActionServlet § i i |
ActionServlet redirects L _ § § § §
User to the § § § § §
T | orgContactList.jsp. § § § § §
| | The JSP page reads § § § § §
| | the Org object from § § § § §
| | Session context and § § § § §
|| displays the contact | | | | |

list.

94.3.3 NSLDS Il Detailed Design 38 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
War Holpp Furk Americar Thronest Setrel Application Architecture

3.3.9 Organization - Delete Contact from List

h Y h Y h]
orgContactListDelete.js| i : ActionServlet i i : NSLDSAction i i : OrgAction i i : Wo rkUnit i i OrgWorker i i : OrgContactListDetailsMapper i i : SFADomain i i : SEAPersistableObjectManager i
! e
| . N § | | | R | |
: 7 7
h_: process(request, response)‘ 2: perform(mapping, . i Organization is cloned |
' T form, request, 3: execute(mapping, i and ContactInfo list is
User selected the I\ response) ,,,,jgmyjﬁgye)st 1 populated with only
Contact to delete [; response, . Contact to delete.
. ActionServiet | 4: delete(parameters) ~
andiclickeline calls perform() NSLDSActi | } G
Confirm button. methgd in calls exeg:toen = OrgAction calls the delete() [5: create
POST request sent NSL DSAGti on thod i 0 method passing the ”Orgaﬁlziaﬂnon
to ActionServlet with gre Agtiol: Organization object from < -
the index of the 9 the Session context and 6: mapper = new OrgContactListDetailsMapper()
Contact to delete. the Contactinfo index as a 7. lateAttributeVal izati 3
HashMap parameter. : populateAttribu e‘ alues(organizatian)| i
!
Populate attributes to do a N i
SQL Delete. Mapper uses Org
A
gzefet:gz dia ramLﬁ and Contactinfo values to
4 .g select record to delete.
for more details on
the process of 8: removeCondition = getDeIeteQuery(L
o £3 F T
mapping *.jsp to 9: removeParams = getDeleteParameters() |
an Action i
I
L
10: domain = new SFADomain(dataSouriceName, userlD, passvord)
T
11: pom = new SFAPerd stableObjectManager(domain)
]
]
12: removeObject(removeQuery, removeParams) i
!
delete Contactinfo - > 1 N i
) . OrgWorker calls [N !
14: workUnit = new WorkUnit() } removeObject() to delete -
15: setSuccessful(OmgWorker removes the deleted L the antactlnfo record. No
Contactinfo entry fom the value is returned
16: setResults() original Omanization object.
17: Returnj WorkUnit
18: isSuccessful(OrgWorker sets the
updated Organization
20: Return: 19: ge‘R?SUI‘S(object as the result of
ActionForward N the WorkUnit
————— e N L] e
21: Return: | 1
ActionForward OrgAction AN OrgAction retrieves the =
o | generates an updated Organization
22: orgContactLig.jsp | ActionForward for object from the WorkUnit
T - A . . or
3 ActionForward D\ by omContactLig.jsp i 2;1nd updgtes the object in i
! returned to i | the session context. i
; : ! ! !
ActionServlet redirects L i ActionServlet I } i
the user to the | I | |
~f orgContactList.jsp. The | | ! !
JSP page displays the || i i i
updated Contact List, | | ! !
with the previously i i i i
selected entry removed. || ! ! !

94.3.3 NSLDS Il Detailed Design 39 11/26/2002

FEDERAL
STUDENT AID

[+ ”'..r.r.ll Firl Amverica .|'|I.lrw|.'=||r1 Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

3.3.10 Student Access — View Financial Aid Review

Pin Request/
Information

ActionServlet

: NSLDSAction

: StudentAccessAction

: WorkUn it

: StudentAccessWorker

: Borrower

Persistence
Framework

1: process(request, respon se)

2: perform(mapping,
form, request,

User enters SSN,
date of bitth, and firg
2 lettersof lag name
and clicks the Submit
button. POST
request £ntto
ActionServiet.

—

response)
[ActionServiet |
calls perform()
method in
NSLDSAction

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

L=

17: financialAidReview.jsp

16: Return: ActionForward

3: execute(mapping
form, request,

response)

NSLDSAction calls
execute() method in
StudentAccessAction

h
|
L=

15: Return: ActionForward

4: select(pa:rameters)

StudentAccessAction calls the
Worker's business logic, passing a
HashMap of the SSN and Date of
Birth entered by the User.

r“
i
|

9: wbrkUnit = new WorkUnit(

5: borrower = new Borrowe r()

6: setSSN(ssn)

7: setDateOfBirth(DoB)

8: borrower = select Financij

al History (borrower)

0: setSuccessful()

11: setResults()

I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

12: Return:{WorkUnit

wer object L

13: isSucce ssful()

14: getResults()

ActionServl et maps
ActionForward to
financialAidReview.jsp
page. JSP page reads
Borrower object from
Session context and
displays the Borower's
financial higory.

ActionForward
returned to
ActionServlet

Action generates
ActionForward to
display the
borrower's financial
history.

Action retrieves
Bomower object from
WorkUnit and sets
objectin Sesson
context.

-
1
i

StudentAccesWorlker uses =
Persigence Frameworkto select
Loan, Grant, and Ove payment
Histoty for this Borrower. Updated
Borrower object retumed by
Framework containing the

financial higory.

See LogonAction for
more details about
using Persistence
Framework to select
data.

94.3.3 NSLDS Il Detailed Design

40

11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Tl Fane Aisimetess Thrisiiph Schoal Application Architecture

3.3.11 Support — View Contact List

support.jsp : ActionServlet : NSLDSAction : SupportAction - WorkUnit : SupportWorker : OrganizationFactorﬂ _~GA Persistence
— Framework
%1: proce sfeques, response 2: perform(mapping, . _ Use factory to create [\
- form, request, 3: execute(mapping, | |anewOrg -
777777777777777777777777777777777777 ‘ response) form, request, || Type = GA
User enters an Org L i respanse) 4: select(parameters) 5. oré
Type=GA, an Or | MActinnSaruiar | ™ N E— h i . =
C{)Fc)!e and OrgNagme ?;ITSO;:;Q:::E) - NSLDSAction ¢reateOrganization(type)
and clicks Retrieve. method in callsexe_cute() SupportAction calls N 6: org = new GAO\‘ .
POST request sentto | NSLDSAction method in sel ect() method 7: Return: GA
ActionServlet with SupportAction passing Org '
palameters: parameters- Type,
Code, Name - as L
N HashMap 8: &t Orgfields (code, name)
See Struts X i
Sequence diagram
for more details on
the process of 10:§WorkUnit = new WorkUnit() 9: org = select Suppq\rt Contact L|st (org) AL
e . F I . b
S | (B setsuccessul()
_12: setResults() SupportWorker uses the D
| Su pportWo rker setsthe N Persistence Framework to
L . query the database. An
update GA object as L
the result in the CLTe LTS ObJ.e‘?t IS
) returned, containing a
VR collection of Contactinfo
13: Return: WorkUnit objects representing support
14:isSuccessful(personnel.
15: getResults(L
16: Return: ActionForward
. Tj See LogonAction for [
17: Return: ActionForward | S more details about
o r SupportAction SupportAction retrieves |\ using Persistence
18: externalContactListjsp generates an the GA object from the Framework to select
ActionForward |\ ActionForward object WorkUnit and places it in data.
’;’C’{i’g;{gg’r’\ﬁ;’t ”””””” N returned to for displaying the_ the SessiPn Context.
redirects user to ActionServlet external contact list. :
externalContactList.j
| |'sp. JSP page reads
| |the GA object from
| |the Session context
| |and displays the

contact list.

94.3.3 NSLDS Il Detailed Design 41 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering

[+ ”'..r.r.ll Firl Amverica .Illl.ln'lln’EIIr! St Appl iCatiOn ArCh iteCtU re

3.3.12 Support — Add Contact to List

externalContactAdd. : ActionServlet : NSLDSAction % : SupportAction % : WorkUnit : SupportWorker % : OrganizationFactory : GA % : Contactinfo % Persistence
isp. | i | | | Framework
11: process(request, respong}i 2: perform(m apping, .) [Use factory to createl, |
1 : ! form, request, 3: execute(mapping, anew Org - |
—U————m7W_mfiimftﬁmmmj form, r?quest, Type = GA |
Ser navigates to = response) 4: insert(parameters) — |
Contact Add page from ActionServiet | - 5:org = |
ist. User || - oo T e b createOrganization(type) | 6: org = new GA
Contact List. User calls perform() NSLDSAction 1\, : N gan (ty|),L,‘ g 0
enters info for a new thod i] Action calls the Worlers [>
Contact and clicks L G CEETHg i business| ogic, passing a | | .
NSLDSAction i | | | . . | Ll
Submit. POST request TCHIEE] [. [HashMap of the Org | 7: Return: GA |
N SupportAction | . . | |
sent to ActionServlet | information and the | |
with Contact info and support contact info i i
the Organization it is to entered by the User. | L
be added to. 8: contattinfo = new Contactinfo()
9: set ContactInfo fields %
See Struts L3 10: add Contactinfo to GA |
Sequence diagram ™ T
for more details on Li
the prpces; of 12t workUnit = new WorkUnit() 11: insert new ContactInfo record for this GA (org)
mapping *.jsp to . b
an Action _13: setSuccessful() o
| SupportWorker cal Is Pe isistence 1™
14: setRefuIts(Framework to insert anew
| [Worker sets the [‘;\ Contactinfo recod. Persistence
. h updated GA object as § Framework read the Co ntactinfo
. the result in the § data from the GA orgobject. No
15: Retum; WorkUnit WorkUnit | values are returned.
16: isSuccessful(.
17: getResults() §
18: Return: ActionForward L See EnrollmentReportingAddAction [\
19: Return: ActionF d - A L .) for more details about using §
: Return: ActionForwar T Action retnevgs GA object Persistence Framework to insert data. i
0: externalContactDetail.jsg 1 ActionForward for from WorkUmt.. ThG_b new
! P —— Contactlnfo object is added
-~ ActionForward detail to the GA object in the L
ActionServlet redirects |\ returned to T G [P Session context. |
User to L1 | ActionServlet e — T §
externalContactDetail. ! ! !] |
“+'| jsp page. JSP reads § § i i i
§ the GA object from § i i i i
i Session context and i i i i i
i | displays the new | ! ! ! |
| | support contact. | | | | |

94.3.3 NSLDS Il Detailed Design 42 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Tl Fane Aisimetess Thrisiiph Schoal Application Architecture

3.3.13 Transfer Monitor — View Transfer List

transferMonitor.jsp : ActionServlet : NSLDSAction % : TransferMonitorAction | : WorkUnit : TransferMonitorWorker | |_: OrganizationFactory : School Persistence %
| | | Framework |
| 1: process(request, response) | 2: perform(mapping, | . . Use factory to create L\
| | ! form, request, 3: execute(mapping, anew Org -
! . form, request —
| response)) _
- !) ,,,,,,,,,,,,,,pﬁ 77777)7 - response) 4: select(parameters) Type SChF’Ol
User clicks on_ the) [N ActionServiet i] 5: schjool =
Transfer Monitor List calls pefform () S R ! ‘ createOrganization(type
link. POST request sent method in NSLDSAction L Action calls the select() L> 6: school = new School()
to ActionServlet with NSLDSAction calls execute() method in the Worker, 1
School information. method in) passing t.he School 7: Return: School LiJ
TransferMonitor informationas a i

Action Ha$Map parameter. | || L e N

Populate Org fields L

L _____|in School object
e - 8: set School fidlds-(code, name) j
Sequence diagram I

-
;]
for more details on !

the process of 9: school = select Transfer Monitor List ! hool
mapping *.jsp to 10: workUnit = new WorkUnit() 1 3CNo0. = perect Trans gr\ onitor List (school) i
an Action [T>11: setSuccessful() L

TransferMonitorWo rker call's the [\
Persigence Framework to select
— the Transfer Monitor List

12: setRewulty)

R —

- - Woc;kercs;e;s r‘]he | - assoicated with the School
updated Schoo object. An updated School
13: Return] WorkUnit object as the result of object is returned, containing
the WorkUnit. the transfer list.
14:isSucce sful()

15: getResults()

16: Return: ActionForward| \

v

|
\ [}

- : ! more details about
- N Action retrieves the [- !
Action generates L using Persistence

. School object from the
/ X - Framework to select
[EACHIREREE ~~ | WorkUnit and sets it in

17: Return: ActionForward

i?:f?ifili’!lfﬂtilffijSD ActionForward [GHplly i the Session context. data.
ActionServlet redire cts- returned to iiransferllisipace

user to ActionServlet

transferMonitorListjp | TL

| |page. JSPreadsthe
School object from
Session context and
displ ays the transer
lig.

]
i

e

94.3.3 NSLDS Il Detailed Design 43 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
War Holpp Furk Americar Thronest Setrel Application Architecture

3.3.14 Transfer Monitor — Delete Transfer from List

studentMonitoring : ActionServlet : NSLDSAction : TrangemMonitorAction | - WorkUnit : TransferMonitorWorker | Persistence
Detail.jsp) Framework
—l-processfequed, response)-—2:-perform(mapping;—- -))
- N form, request, 3: execute(mapping, School is doned and |\
response) form, request, TransferMonitor list is
N response) 4: delete(parameters) populated with only
User selected the N !
| Transfer to delete.
Transfer to delete and Act|0nServIet ””” A
. . [: N
clicksthe Confirm e) NSLDSAction > Action calls the delete()
button. PQST request method in calls exegute() method passing the School
sent to ActionServlet . method in A .
.) NSLDSAction . object from the Session
with the index of the TransferMonitor
Acti context and the Transfer
Transfer student to ction student index as a
delete. HashMap parameter.
Worker calls remove() method in
‘ Persigence Frameworkto delete
. - Trander student re cord.
Sequence diagram

4

9: setSuccessful()
10: setResults()

for more detailson
the process of
mapping *.jsp to
an Action - \

Worker removes the deleted
Transfer entry from the original
School object.

See Struts = 8; workUnit = new WorkUnit()

Updated School |
object set as
result.

See OrgContactListDel ete fori
11: Return: WorkUnit more detailsabout using
Persigence Framework to
delete records

12: isSucce ssful()
13: getResults()

14: Return: ActionForward \

(L5: Return: ActionForward | \
: \ Action retrieves the 1\
16: transferMonitoringList.jsp N N School object from the

R S Action generates KUni d L
ActionEorward o AR Worl Unlf[and sets it in
the Session context.

retqrned to to digplay the
ActionServlet Transfer list page.

ActionServlet redirects{ >
user to
transferMonitorList.jsp
page. JSP reads the
School object from
Session context and
displays the transfer

list.

—]

e

94.3.3 NSLDS Il Detailed Design 44 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering

[+ ”'..r.rp Firl Amverica .Illl.ln'lln’EIIr! Setrareal Appl iCatiOn ArCh iteCtU re

3.3.15 Application Error

ActionServlet

v]] v "] v]]
| | i : NSLDSAction | | _LlogonAction | | : WorkUnit | i : LogonWorker | | cUsr | | Persisence |
| | | | | | Do | | | | Eramework |

1: process(request,response) i 5 " (. i
: perform(mapping, .
r = piorm re uez? g 3:execute(mapping, |
L Lred i form, request, |
User enters username L 'ESDQ‘"SE) resppnse) |
and passwo.rd and | |V o N i o 4: select(parameters) 5: user = new User(
clicksSubmit. POST ActionServiet L R N \ 1
request sent to calls perform() i NSLDSAction A\ | i
ActionServlet. method in | calls execute() LogonAction calls = T
NSLDSAction | method in LogonWorker's business 6: seiUserName(userNarﬁ\e)
LogonAction logic, passing the }“;
—————————————————————————— User-entered username L
and password in a 7: user = select User info (user)
HashMap
See Struts [N !
Sequence diagram I 3 J
for more details on . Galll to G 1l
the process of 8: authenticate() returns a User |
Ny |
mapping *.jsp to al object, updated i
an Action . with the results of !
LogonWorker compares the L[the query. i
User entered password to the !
password from the database
9: wdrkUnit = new WorkUnit() and determines the
h passwords do not match.
| 110: setSuccessful(false, See LogonAction for D
| .
| 1: setResults(User) more details about
3 using Persistence
{ Frame work to select
: data.
12: Return: WorkUnit
_| LogonWorker
returns the results
13: isSuccessful()\ as|alWorkUnit
N P object
LogonAction
determines work was
not successful.
teActionErrpr
LogonAction creates an L
ActionError object with a
logon authentication
error message.
15: generateForward
16: Return: ActionForward N
T 1 - LogonAction =
17: Return: ActionForward ActionForward is generates the
logon.jsp page for L AcllonForward for the
18: logon.jsp an unsuccessful | input page.
ctionForwar logon !
returned to L i
. " ActionServiet i i
User is redirect | |
back to the T | |
L logon.jsp page and | | |
i the error message i i i
| is displayed. | | |
i i i i
| | | |
| | | |
! ! ! !

94.3.3 NSLDS Il Detailed Design 45 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
War Holpp Furk Americar Thronest Setrel Application Architecture

3.3.16 Java Exceptions

: NSLDSAction : LogonAction : WorkUnit : SFADomain

: LogonWorker : User

[ActionServiet
!
!
!

process(request,response) | i]]
| 2: perform(mapping, | . !
: . f | 3: execute(mapping, |
I orm, request, | !
: ! form, request, !
User enters username [respénse) !
and password and i 4: select(parameters) | 5 user = new User()
clicksSubmit. POST - ! : ah
request sent to calls perform() NSLDSAction A\
ActionServlet. method in calls execute() LogonAction calls N N
NSLDSAction method in LogonWorker's business 6: setUserName(userNarhe)
LogonAction logic, passing the ™
User-entered username [
and password inja 7: mapper = new [LogonMapper()
HashMap
See Struts [N T
I
zf“""”uerzcje‘:‘:igz: 8: populateKeyAttributesValues(user) ‘T
the process of i M
* i L
mapping *.jsp to Populate attributes to perform SQL [\ r
an Action SELECT statement
9: keySelectQuery = getKeySelectQuery()
)
!
10: keySelectParameters =|getKeySelectParamters() |
!
!
L
11: domain = new SFADomain(dataSource, juserID, passwd)
U
12: pom = new SFAPersistableObjectManager(dpmain)
L
L
13: user = getObject(mapper, key Query, ameters) !
!
7
14: throws SFAException |
!
i
m — !
authenticate() When executing 0 i
query, a [
SQLExceptionis |
16: throws SFAException . ~|encountered. |
LogonWorker stops normal I\ SQLExceptionis |
processing and propagates the wrapped by a |
i SFAExcepti d
17: generateForward ShAExceRtion xeeptionand |
L thrown by the |
Pesistence |
18: throws SFAException Manager. |
N |
LogonAction gops normal S
process ng and propagates the |
L SFAException |

SFAException is finally caught by I
the NSLDSAction. The centralized
logic for handling exceptions is
contained here. The

SFAException is logged using the
exception log message

20: logon.jsp

21: rateActionError

User is redirect
back to the
logon.jsp page and
the error message
is displayed

22: Return: ActionForward
— [NSLDsAction creates an

N ActionError object with the

- exception's user message
and places the ActionError in
the Session context.

-
i

creates an
ActionForwa...

L} [NsLpsAction
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|

94.3.3 NSLDS Il Detailed Design 46 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
Application Architecture

[+ ”'..r.r.ll Firl Amverica .Illl.ln'lln’EIIr! Setrareal

3.3.17 Web Conversation Framework ActionForm errors

: ActionForm : Action

: ActionM apping

) Y
: ActionServiet | i : ActionMappings |
| ! |
| | |
| |

*.jsp 1
!
!
!
]

v

1: process(request, respo se)i
] R — 2: mapping = findMapping(path)
=T

POST request I\ 1
. \ .
to ActionServiet Find mapping for path (i.e. &+
/logon). All paths are
loaded on start-up from
servlet-config.xm I.

T
|
|
|

L.

3:formName = getFomAttribute()
!

4: get Form Instance Getthe ActionForm name LN

ame) associated with this mapping, if one

T |exigs Using the form name, either
pull the form from the Session or
create anew instance of the class.

b: processPo pulate(form, request)

- —____|Populate form with [
attributes from |
request. i

6: errors = validate(mapping, request)

]

——|Validate the user iL |
entered fields. Returns

an ActionErrors object.

rs(errors) If there are errors, set k
~————____|the ActionErrors object

in the Session context.

8: action = getAction()

Get Action from mapping. If first
instance of Action, create object and
place into Collection of Actions.
Future calls for this mapping will use
the same Action object.

9: perform (m apping, forminstance, request, response)

Call the Action class's [
perform () method to
execute business logic.

10: Return: A ction Forward

11: *.jsp -
Return results via an N
\ ActionForward object

Go to next JSP
page.

—]

]

94.3.3 NSLDS Il Detailed Design 47 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

4 Architecture Layer Design

The goal of the ITA initiative is to promote code reuse, standardization of development, and
application of best practices across all FSA system development projects. Reusable Common Services
(RCS) components were created as part of this initiative to deliver reusable common functionality. The
ITA Coding Standards and Best Practices guide are provided as Appendix C and Appendix D
respectively. The Coding Standards Review Checklist is provided as Appendix E of this document.

NSLDS Il application level uses RCS to provide the core application structure and common services
for the NSLDS Il system. This section will concentrate only on the application architecture parts that
require configuration or customization to serve the purpose of building the system.

The following ITA RCS components will be used in NSLDS Il web application:

Web Conversation framework
Exception Handling framework
Logging framework

User Session framework

JSP Custom Tag Library framework
Configuration framework
Persistence framework

Specific implementation and detail usage of these frameworks can be found in the ITA component
detailed design and user guide documents for each framework. These documents are available
through the ITA.

4.1 RCS Web Conversation Framework

The purpose of the ITA Web Conversation framework is to provide a standard for developers and
designers to apply the Model-View-Controller (MVC) design pattern for developing web applications.
This framework allows different tiers of the web application to be created independently of one
another, provide the ability to update the static strings displayed without updating and recompiling
code, and facilitates internationalization of web pages. The Web Conversation framework enables
developers to combine the use of JavaServer Pages (JSP) and Java Servlets to create dynamic pages.

The ITA Web Conversation framework provides for:

Separation of control and business logic
Automated form validation
Multiple page forms (e.g. wizard steps lasting multiple pages).

4.1.1 Web Conversation implementation of MVC Design Pattern

94.3.3 NSLDS Il Detailed Design 48 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

In the Model-View-Controller software design pattern, the business logic/state is separated from the

user interface, and from the program flow control. This separation allows web designers to create the
web pages without having to know how to write application code, and vice versa. The separation of
the presentation and logic also promotes code reuse.

The following diagram shows the Web Conversation framework components of the MVVC model.

Model
View Controller
Status Query ActionForm [* State Change—‘
Change Notification —
Action
X
Dispatch
\
User Gestures
JSP ActionServlet
View Selection

Figure 5,Mapping of Web Conversation framework to MVVC Design Pattern

Model

The model encapsulates the business logic and represents the data in the system. A Java Object
(typically a Java Bean) usually represents the Model component in the Web Conversation framework.
The bean will represent details of the internal state of the system. The Model classes typically extend
the abstract class ActionForm, which is a standard JavaBean with getter and setter methods that are
used to access its state. All form classes are automatically populated and validated within this
framework by the ActionServlet

If an error in processing occurs, an ActionErrors object can be created to hold all errors from the page
and return those errors to the original requesting page so a user can correct the problem.

View

The view is represented by the JSP or HTML page presented to the user. The framework provides
custom tag libraries that allow the JavaServer Pages to be displayed without embedding Java code in
the page. The JSPs contain static HTML and offers authors the ability to insert dynamic content based
on the interpretation (at page request time) of special action tags. There are also custom tag libraries
that facilitate creating user interfaces to interact with ActionForm beans (part of the Model
component). Custom tag libraries also allow the JSP developer to access and display business objects
that are stored within the Session context.

94.3.3 NSLDS Il Detailed Design 49 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture
Controller

The controller is responsible for controlling the flow of the program by processing updates from the
model to the view (and vice versa). The controller is comprised of two components the
org.apache.struts.action.ActionServlet object and classes that extend org.apache.struts.action.Action.
The ActionServlet is loaded upon startup of the WebSphere Application Server and it will read all of
the action mappings defined in the struts-config.xml file. The ActionServlet will act as a switchboard
by reading incoming Uniform Resource Identifier (URIs) requests and matching that against an action
mapping (defined in a struts-config.xml configuration file to find a controller (Action) class that will
handle the request. The Actions are then responsible for interacting with the Model and forwarding
control to the logic within the business objects.

For web-based applications, the vhosts.properties, rules.properties, and queues.properties files work
in conjunction to direct all incoming requests for a particular application pointing to certain extensions
to the appropriate application server, port number, and working directory. The rules.properties file is
used to direct all incoming requests for web pages with an extension of *.activity to be forwarded to its
associated ActionServlet. The ActionServlet will inspect the incoming URI and match it to an Action
class listed in the action mapping in the struts-config.xml file. The Action object handles the request
and forwards control to a view defined in the struts-config.xml file.

Aside from the ActionServlet, all other controller classes must extend the
org.apache.struts.action.Action class. The Action class has a perform method that is used to process
incoming requests and direct results to the next page. It is passed an ActionMapping object (loaded
with values for this controller from the struts-config.xml file) that the findForward() method uses to
direct the results to the appropriate ‘next’ page based on the action performed.

The following diagram details the interaction of the framework within the application server.

94.3.3 NSLDS Il Detailed Design 50 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
Wir Fioly Fhel Aemericas Through Schuel Application Architecture

3. Reads:

queues.prop«_arties, 5. Reads:
rules.properties,
vhosts.properties

4. Directs to the ActionServlet

rules.properties file

— 2. Request is directed to the on the appropriate App Server = -
Web Server == Zo Enterprise
= = == == Data
= = = e — =\Warehous
Client Computer Web Server (IHS) Applls_:/auon Server (WAS) ==
Databag®\Server
1. User browses to a web page: /
http:\\myhost\authorize.activity
Components within Application Server
16. Forward control to ‘ 13. Action accesses 14. Database
new JSP to be presented - database to query and returns data
back to the client - update data

6. All *.activity page is directed

X 10. Maps incoming URI to an
to the ActionServlet

Action and forwards control to it

ActionServlet Action

7. Reads: 15. returns an ActionForward
struts-config.xml

9. Return populated

12. ActionForm return
ActionForm

user input dat:
8. Map the input toan
':?;?;F\?;%Zggn 11. Action performs its aefivity,
P utilizing the ActionF to
retrieve input data from the

. JSP
ActionForm

Figure 6, Web Conversation framework implemented in WebSphere Application Server container

4.1.2 Implementation Example

The following section provides example code for the logon functionality of the NSLDS Il web
application. The important parts of each component have been bolded to highlight the main focus of
each component. More specific interaction points between these components and the web
conversation framework architecture can be determined by referring to the sequence diagrams for the
Logon section and for the Web Conversation framework provided earlier in this document.

The example code provided throughout the rest of this document will map to the following steps and
the Figure 7 below:

1) When the user clicks submit, the logon.jsp file is directed to the ActionServlet.
2) The ActionServlet references the struts-config.xml file.

a) The struts-config.xml file maps the logon.jsp page to a LogonForm Java Bean.

94.3.3 NSLDS Il Detailed Design 51 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

3) The LogonForm acts as both a temporary holding place and error checker for web form data.
The User ID and Password are passed via the Post method from the logon.jsp page to the
LogonForm, via the ActionServlet.

a) The LogonForm performs minor error checking (e.g. valid length, characters) and returns the
results to the ActionServlet.

4) If the User ID and Password are in the appropriate format, the ActionServlet passes the
parameters to a LogonAction.

5) Within the LogonAction, the LogonWorker object is instantiated.

6) The LogonWorker object calls the Persistence framework.

7) The framework builds and runs a SQL query against the EDW for valid user information. The
guery results are returned to the LogonWorker and checked against the user’s User ID and
password for final validation. If the user was successfully authenticated, the LogonAction
returns an ActionForward containing the next JSP page to be displayed, back to the
ActionServlet. If logon was unsuccessful, the ActionForward refers to the input page, which in
this case would be the logon.jsp page.

struts-config.xml 2a—> LogonForm
Java Bean
Persistance
T 3a 4 Framework
2 >
7
Loy] .
6 EDW
ActionServlet «—T-4—>f LogonAction 47 ¢
5 < >
I N LogonWorker
1
logon.jsp <«

Figure 7: Logon Example

Examples for steps 5 - 7 will be provided in the Data Access Layer section (RCS Persistence
framework) of this section. The ActionServlet code is not included as it is a standard class that is not
modified and is a servlet loaded on the Application Server upon start up.

Step 1) logon.jsp (View):

This is an example JavaServer Page that will display the username and password input boxes and will
interact with the form bean to display the form fields and submit button to the user. The <html:form
action="/logon” focus="‘username’> tag uses the struts-html custom tag library developed to bridge
the gap between a JSP view and the other components of the web application.

94.3.3 NSLDS Il Detailed Design 52 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

On startup, the ActionServlet reads the struts-config.xml file and loads all of the mappings between
the JSP actions (such as /logon) and the Struts Action and ActionForm objects. The action="/logon”
directs the ActionServlet to look for the mapping <action path="/logon" to find the path to the
ActionForm associated with this form. The JSP action "/logon" is mapped to a LogonAction and
LogonForm.

The <bean:message> tag directs the JSP to read the static text from the
NSLDSApplicationResource.properties file to find a match for the key. For example, <bean:message
key="prompt.username”/> will have the resulting JSP display User ID: in that field. The <html:text>
and <html:password> tags are renders as HTML <input> element of type text and password
respectively. The property attribute for both tags will be the name used to populate the FormBean
associated with this form. Refer to the model section for details on the interaction with these
attributes.

<%@ page language="java" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="htmI" %>

<%@ taglib uri="/WEB-INF/struts-template.tld" prefix="template" %>

<l—insert the template -->
<template:insert template="templates/maintemplate.jsp’>
<l—insert the system restriction header -->
<template:put name="restrictHeader’ content="/template/restrictHeader.html’ direct="true’/>
<l—insert the links to pages that do not require log-on -->
<template:put name="infoHeader’ content="/template/infoHeader.html’ direct="true’/>
</template:insert>

<html:html locale="true">

<head>

<title><bean:message key="logon.title"/></title>
<html:base/>

</head>

<body bgcolor="white">

<html:errors/>
<html:form action="/logon" focus="username">

<table border="0" width="100%">
<tr align="middle”>
<td>
<bean:message key="prompt.username"/> <html:text property="username" size="30"
maxlength="30"/>
<bean:message key="prompt.password"/> <html:password property="password" size="10"
</td>
</tr>
</table>

</html:form>

94.3.3 NSLDS Il Detailed Design 53 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture
</body>
</html:htm|>

Figure 8, logon.jsp pseudo code

NSLDSApplicationResources.properties (View):

This is an example properties file that can be customized with messages to be displayed in JSPs for the
web application. Utilizing a properties file allows the developer to maintain all of the static messages

from one location for easier updates. Properties files are also useful for internationalization purposes.
Text strings could be converted into other languages so that one JSP can display text that international
readers can understand.

prompt.username=User ID:
prompt.password=Password:
error.username.required=Username is required</Ii>
error.password.required=<Ili>Password is required
error.ssn.required=<Ii>Please enter either all 3 identifiers or SSN.

Figure 9, NSLDSApplicationResources.properties pseudo code

Step 2) struts-config.xml (Controller):

The ActionServlet is the main component of the Controller and directs the flow of interactions in the
framework. When the JSP containing the form is submitted, control is directed to the ActionServlet ,
which reads the struts-config.xml file to find the mapping for the form. Once the form has passed
validation, the ActionServlet directs the request to an Action subclass, which will then process the
request. Each JSP submits its form to *.activity, which is configured in the Application Server to direct
the request to the ActionServlet. Then struts-config.xml file, which defines the form bean information,
action mappings, and forwarding information, is read for the mappings. This is a sample portion of
the file. The struts-config.xml file is read to produce the ActionMapping object passed to the perform
method in the Action controller class.

For each Action, a mapping will have to be defined with the: path to the page, path to the Action class
for this Action, path to the JSP for this Action. Forward elements will have to be defined that directs
where the control of the application should be forwarded after the Action has completed. The forward
elements include the name used to map to a forward and the path of the JSP to forward to. Global
forward elements are defined with the name referenced by the application and the path to forward it
to. The form-bean information is also defined in this file.

<action-mappings>

<action path="/logon"
type="gov.ed.fsa.nslds.LogonAction”
name="LogonForm"
scope="request"
input="/logon.jsp">

</action>

<forward name="success” path="/menu.jsp"/>

94.3.3 NSLDS Il Detailed Design 54 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

</action-mappings>

<global-forwards>
<forward name="logoff" path="/logoff.activity"/>
<forward name="logon" path="/logon.jsp"/>
</global-forwards>

Figure 10, struts-config.xml pseudo code

Step 3) LogonForm (Model):

This is an example LogonForm bean that will be used to capture the current state of the user
information. The bean contains getters and setters to access the current state, validation functionality,
and the ability to reset the forms to a default state.

import javax.servlet.http.HttpServietRequest;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;

public final class LogonForm extends ActionForm

{
I Instance Variables
private String username = null;
private String password = null;
1 Properties

/** Return the username. */
public String getUsername()
{

return (this.username);

}

/** Set the username.
* @param ssn : The new ssn */
public void setUsername(String username)

{

this.username = username;

}

/** Return the password. */
public String getPassword()
{

return (this.password);

}

[**Set the password.
* @param password The new password */
public void setPassword(String password)

{

this.password = password;

94.3.3 NSLDS Il Detailed Design 55 11/26/2002

FEDERAL
STUDENT AID

[+ ”'.r.r.ll Firl Amverica |'|I.lrw|r=||l:l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

}
1l Public Methods

/**Reset all properties to their default values.

* @param mapping The mapping used to select this instance

* @param request The servlet request we are processing */

public void reset(ActionMapping mapping, HttpServietRequest request)

{

this.username = null;
this.password = null;

}

/**Validate the properties that have been set from this HTTP request,
*and return an ActionErrors object that encapsulates any
* validation errors that have been found. If no errors are found, return
* null or an ActionErrors object with no recorded error messages.
* @param mapping The mapping used to select this instance
* @param request The servlet request we are processing */
public ActionErrors validate(ActionMapping mapping,
HttpServletRequest request)
{

ActionErrors errors = new ActionErrors();
if ((username == null) || (username.length() < 1))

errors.add(“username”, new ActionError(“error.username.required”));

}

if ((password == null) || (password.length() < 1))

errors.add(“password”, new ActionError(“error.password.required”));

}
if ((password.length() < 6) || (password.length() > 8))

errors.add(“password”, new ActionError(“error.password.length”));

}

/I Enter additional password validation here

return errors;

Figure 11, LogonForm.java pseudo code

4) LogonAction (Controller):

This is an example LogonAction object that extends an NSLDSAction (see RCS Exception framework
section for details on NSLDSAction) object to interact with a LogonWorker object to access the

94.3.3 NSLDS Il Detailed Design 56

11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

persistence layer to obtain the requested information from the database. The LogonWorker example
will be defined in the Data Access Layer section of this document.

/I Package Statement
/I Import Statements

public class LogonAction extends NSLDSAction

{

public ActionForward execute(ActionMapping mapping,

page

ActionForm form,
HttpServletRequest request,
HttpServiletResponse response)

/I cast the form to a LogonForm object
LogonForm myForm = (LogonForm) form;

/I create a HashMap of parameters to send to the LogonWorker

/l send a HashMap instead of the LogonForm to hide the details of the Web Conversation
/l Framework (i.e. LogonForm) from the LogonWorker

HashMap params = new HashMap();

params.put("userName", myForm.getUserName());

params.put("password”, myForm.getPassword());

LogonWorker worker = new LogonWaorker();

/I execute the select() method in the LogonWorker, passing the userName and password
WorkUnit workUnit = worker.select(params);

/I check to see if the work the LogonWorker performed was successful

/l'if it was successful then forward the user to the Main Menu JSP page
if (workUnit.isSuccessful())

{

return mapping.findForward(“mainMenu”);

/I else if the work was not successful, record the error and send the user back to the Logon

else
{
ActionError error = new ActionError();
/[add logic to add logon error to list
/I go back to logon page
return new ActionForward(mapping.getinput());

Figure 12, LogonAction.java pseudo code

94.3.3 NSLDS Il Detailed Design 57 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

4.2 RCS Configuration Framework

The RCS Configuration framework allows configuration data to be stored in the form of properties
files, xml files, database tables, or any combination of the three. The framework creates one common
interface for application developers.

The Configuration framework provides the following services:

Configuration Data Load: the configuration data files are loaded into a static initializer that on
system start-up loads the data from properties files, xml files, or database tables into one
singleton object for central data access.

Configuration Data Retrieval: returns the value based on the domain name and the tag/key
name.

The Configuration framework will be used in the NSLDS Il system to load the domain values for
connecting to the database. The data source name, database user ID, and database password will be
stored in the dbDataSource.properties file.

The Configuration framework will also be used to load the lookup values from the database. This will
provide a standard programming interface to access the lookup values and will make sure the values
are loaded only one time from the database. The configuration framework utilizes the singleton
design pattern so that all class access the same instance of the framework. All values from the
database and properties files will be loaded in the Configuration framework on initialization of the
NSLDS Il web application service.

The following is an example of the master properties file containing the database connection fields.

dataSource="java:comp/env/jdbc/NSLDSWebSiteDB"
userlD="system"
password="123456789"

Figure 13, dbDataSource.properties:

94.3.3 NSLDS Il Detailed Design 58 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

4.3 RCS JSP Custom Tag Library Framework

The tag library framework provides a collection of commonly used JSP custom tag libraries for JSP
developers to access. A JSP tag library is a collection of custom tags created by developers to aid the
separation of control between the presentation and the application logic. Custom tags allow JSP
developers to focus on the design of the page and presentation issues without having to know how to
code to access enterprise services.

Custom tags are beneficial in that:

They have access to all the objects available to JSP pages.
They can modify the response generated by the calling page.
They can be nested within one another, allowing for complex interactions within a JSP page.

The NSLDS Il web application will leverage the following tag libraries:

Custom Tag Library Usage

Logging Taglib The logging tag library will allow JSPs to
access the functionalities of the logging
framework and will be used to provide
logging functionality from the JSP.

Input Taglib The input tag library combined with the struts-

Struts-html taglib html tag library to ease form creation and
usage.

Struts-bean Taglib The struts-bean and logic tag libraries will

Struts-logic taglib allow the JSP developer to easily manipulate
beans and perform logic operations in the web
application.

Struts-template taglib The struts-template tag library will be used for

creating a template for the entire web
application for the header, footer, menu, and
message areas.

Table 5, Leveraged Custom Tag Libraries

94.3.3 NSLDS Il Detailed Design 59 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

4.4 RCS Exception Handling Framework

The ITA Exception Handling framework is designed to provide a mechanism for trapping and dealing
with any erroneous or unexpected actions which applications may encounter during runtime. The
Exception Handling framework also allows error message formatting standards to be developed and
enforced to ensure proper information is gathered if a program failure occurs. This framework was
created as part of ITA Release 2.0 before the name change from SFA to FSA, therefore, the
framework’s Java classes’ name contains SFA.

The ITA Exception Handling framework enhances the ability of an application to define and trap
errors that may arise as the application executes. The Exception Handling framework includes the
following key components:

SFAExceptionFactory
SFAException

The best way to customize the SFAException for use in an application is by defining application-
specific exception codes. The SFAException class is the only exception class instantiated, but by
supplying it with different exception codes, different types of exceptions are created. By customizing
it this way, the SFAExceptionFactory does not have to be extended to create different exception objects
other than SFAException.

The SFAExceptionFactory is the class used to create exceptions. It should work in any application
without modifications. This class is designed to work as a singleton (i.e. there is only one instance of it
in the application server’s memory). Therefore, a reference to the factory is obtained via the
getlnstance() method. It also contains some exception-centered utility methods, such as
getNestedException(), which can be used to obtain the nested exception for all standard Java exception
types. The SFAExceptionFactory exposes a method called getMessage() that when passed a
SFAException will return the log message associated with that exception. The log message is pulled
from a properties file containing mappings of exception codes to messages.

The SFAException class is the base exception, which can be customized on an application level. It has
setters and getters methods for each of its main properties, such as methodName and className.

The developer will use the SFAException and SFAExceptionFactory classses when catching exception
thrown by Java components. The original Java exception will be caught, then a SFAException is
created using the SFAExceptionFactory. The exception code depends on the type of exception of the
original Java Exception.

4.4.1 NSLDS Il Exceptions

There are different categories of exceptional conditions that may occur during the execution of the
NSLDS Il web application. The different categories where exceptions could occur are:

Field-Level validation
Application level exceptions
System level exceptions

94.3.3 NSLDS Il Detailed Design 60 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

JSP error pages

Two of the exception categories, Field-Level Validation and JSP Error Pages, do not use the Exception
Handling framework levels, but rely on the Web Conversation framework for proper handling of
system and application errors. The fundamental idea of exception handling for all categories is the
centralization of logic to catch the exceptions, produce meaningful log and user messages, and redirect
control to the appropriate response.

4.4.2 Field-level Validation

In using the Web Conversion framework, all field-level validation of the JSP pages will be executed
within the validate method of the associated ActionForm Java object (i.e. a logon.jsp page will have a
LogonForm to validate the web form). This validation consists of checking each field on a web form to
ensure the proper data is being sent by the user and all required fields are populated. The
ActionForms use an ActionError object to record the validation errors that occur in the validate
method. Every validation error gets recorded and an ActionErrors collection object is sent back to the
ActionServlet. The error messages displayed to be displayed will be read from the
NSLDSIIApplicationResources.properties file and show to the user.

The following is a diagram of the sequence for validating form fields and displaying the appropriate
information to the user when an error is encountered.

94.3.3 NSLDS Il Detailed Design 61 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
[+ ”'.r.r.ll Firl Amverica |'|I.lrw|r=||l:l Setrareal Application ArChiteCtu re
logon.jsp
Target URL = /logon .
» | ActionServlet — >
Username 2. logon page is directed 8b. No validation errors.
to ActionServlet Normal processing
Password _ con_tlnues and
7. ActionServlet checks the | ActionServlet calls perform
< — ActionErrors object to method in LogonAction.
. 8a. Validation errors determine if any errors
S occurred. Useris occurred and reads the
redirected back to ApplicationResources <
logon jsp page and errors properities file. 6. LogonForm returns an
1. User enters Username are displayed. ActionErrors object that
and Password and clicks contains all field-level

Submit validation errors.

3. ActionServlet reads the
struts-config.xml file to
map the logon page to the
LogonForm and
LogonAction objects.

4. struts-config.xml
returns the ActionForm
and Action classes for this
activity.
<form-beans> v
<form-bean
name="logonForm"
type="gov.ed.sfa.nslds.LogonForm"/>
</form-beans>
<action-mappings>
<action path="/logon" -
type="gov.ed.sfa.nslds.LogonAction" LogonForm.java
name="logonForm"
input="/logon.jsp">
</action>
</action-mappings>

5. ActionServlet calls
validate method in
LogonForm

ActionErrors errors = new ActionErrors();
if ((username == null) || (username.length() < 1))
errors.add("username"”, new
ActionError(“error.username.required"));
return errors;

struts-config.xml

Figure 14, Field-Level Validation

4.4.3 Application and System Level Exceptions

Application and system level exceptions in NSLDS Il can occur during the life of the application.
These exceptions will occur at well-defined places and will therefore be caught and wrapped with the
SFAException class. Java Runtime exceptions are unchecked exceptions that could not be predicted
during the design phase or can occur at any place in the code, such as a
java.lang.NullPointerException. A NullPointerException is thrown when an action is performed on a
null object.

Application and system level exceptions will differ by their exception code value used. The exception
code value is used to define the type of exception when a SFAException is created. It also maps to the
appropriate properties files and is used to retrieve the log and user messages associated with the
exception.

The following tables list sample application and system level exceptions and the possible log messages
and exception codes for each. A complete list of existing exception messages was not provided and
will have to be defined in a future version.

94.3.3 NSLDS Il Detailed Design 62 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering

Wi Holp Poak America Throah Schul Application Architecture
Exception Name Code Example Message

Authentication Exception 1001 | The username and password could not be verified.

Add Exception 1002 | The disbursement amount could not be added to the loan

details.
Delete Exception 1003 | The loan record could not be deleted.
Update Exception 1004 | The loan contact information could not be updated.

Table 6, Sample Application Exception Code

Exception Name Code Example Message
SQL Exception 2001 | A SQL error occurred.
JNDI Exception 2002 | A JNDI error occurred.
Communication Exception | 2003 | Could not connect to external resource.
FileNotFound Exception 2004 | Could not locate resource file.
Undefined Exception 3001 | A general error occurred.

Table 7, Sample System Exception Code

The difference between these two types of exceptions is very important since they are logged as
different levels and indicate different severity of the exceptions. Usually, application exceptions occur
due to normal behavior of the system. They are used to indicate an action cannot be completed, but
allow the system to exit gracefully. System exceptions, on the other hand, often indicate that
something in the execution environment has been changed or no longer working. They tend to be
much more severe and may affect not only the current action executing, but also subsequent actions.
Application level exceptions will be logged at the ERROR level, and System level exceptions will be
logged at the FATAL level. Please refer to the next section, RCS Logging framework on the different
logging levels available.

4.4.4 Implementation Example

The NSLDSAction class will handle all Java exceptions, including SFAExceptions and Runtime
exceptions. This class extends the Web Conversation framework's Action class and is the base class for
all actions in the NSLDS Il application. The NSLDSAction class overrides the perform method of the
Action class. When the ActionServlet calls the perform method in an application Action (such as
LogonAction) the call gets forwarded to the NSLDSAction, which in turn calls the execute method of
the LogonAction. The NSLDSAction provides the central exception handling logic around the call to
the LogonAction and will trap and log all exceptions that propagate back to the NSLDSAction. The
following is pseudo-code for the NSLDSAction.

NSLDSAction (Controller):

There will be two properties files used to retrieve the exception messages. Each properties file will be
a listing of the same exception code keys, matched to the appropriate exception messages. The
logmessages.properties file will include the messages used by the Logging framework to record the
exceptions as either ERROR or FATAL. The NSLDSIIApplicationResource.properties file, which is
defined by the Web Conversation framework, contains the user messages.

94.3.3 NSLDS Il Detailed Design 63 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
W g Pk soedon Thorsighe Gekaiil Application Architecture

The NSLDSIIApplicationResources.properties file is used in conjunction with the ActionError object,
which will hold the exception code used to retrieve the error message from the properties file. The
user messages will be displayed on the page represented by the ActionForward object. As an
example, if a SFAException with the exception code equal to 2001 (SQL Exception) is encountered, the
exception handling code will read from both the logmessages.properties file and the
NSLDSIIApplicationResource.properties file.

The RCS Logging framework (see next section) will record the log message into the log file and the
user message will be displayed using the ActionError object. There will also be general messages in
the log and user message properties files for undefined exceptions that are not of type SFAException,
such as the NullPointerException, but encountered during runtime.

public ActionForward perform(ActionMapping mapping, ActionForm form,
HttpServletRequest request, HttpServletResponse response)
{

/I ActionForward is returned to redirect user
/I If exception occurs, then redirect back to input page or error page
ActionForward forward = null;

/I try/catch around call to LogonAction execute() method
try

/I call the execute method in LogonAction — returns ActionForward
forward = execute(mapping, form, request, response);

}
catch (SFAException sfae)

{
/I determine if application or system exception
/I log SFAEXxception
handleException(sfae);
forward = Input Page with exception message

}
finally

/I always return a forward page, even when handling exceptions
return forward;
}
}

Figure 15, NSLDSAction.java pseudo code

94.3.3 NSLDS Il Detailed Design 64 11/26/2002

FEDERAL
STUDENT AID

[+ ”'.r.r.ll Firl Amverica |'|I.lrw|r=||l:l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

The diagram shows the handling of an exception thrown by the database. The exception is originally
wrapped by a SFAException in the Persistence framework and then propagated back to the
NSLDSAction, where it is handled.

1. ActionServlet calls the
perform method in the
LogonAction. This method
is forwarded to its parent
class NSLDSAction.

A4

ActionServlet

NSLDSAction
extends Action

try {
return execute(...);

LogonAction
extends NSLDSAction

9. SFAException
propagated back tq
LogonAction.

3. LogonAction creates a
LogonWorker object and
| calls the authenticate

11. NSLDSAction reads the messages
from a properties file tied to the
exception code and logs the message.

4 12. Aft i
12. ActionForward is . . er recording the messages,
returned to the Ca;g;éi';if;;ﬁg:g;.e) { a new ActionForward object is
ActionServlet and redirects return new ACtionF(;nNard(...)' crea'lted to redirect the user back to
the user to the logon.jsp } the input page.
page. 2
10. SFAException
propagated back to —
NSLDSAction.
Y 2. NSLDSAction EDW
calls execute method
in the LogonAction.
A

A

5. Persistence Framewor
creates a SELECT
statement and queries the|
EDW.

6. The EDW throws a

| method. SQLException due to a
malformed SQL statement.
y 4. LogonWorker calls the
Persistence Framework to A
query the database. | Persistence Framework
LogonWorker

extends Worker

7. SQLException is caught
and a SFAException is

8. SFAException thrown created with an exception
by the Persistence code of 2001.
Framework

Figure 16, SFAExceptions Usage

94.3.3 NSLDS Il Detailed Design

65

11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

4.45 ISP Error Pages

In addition to field-level validation and SFAExceptions, there may also be exceptions that occur in the
ActionServlet code, JavaServer Pages, and the connection between the two. Any exceptions that occur
in the ActionServlet and in the connection to it would be system level exceptions that cannot be caught
by NSLDSAction. NSLDSAction cannot capture these exceptions as the failure will have occurred and
the activity stopped before the call to NSLDSAction has been made.

The JSP specification allows the developer to define error pages that are included in the header of the
JSP page. If an exception is thrown by the JSP or code the JSP calls, then control will be directed to the
error page. The error page will handle the exception appropriately, displaying a message to the user
and logging the exception. There will be one global errorPage.jsp file that will contain the centralized
error handling code. There is only one errorPage.jsp file as it is a requirement of the current system.
errorPage.jsp will utilize the Logging custom tag library (please refer to the RCS JSP Custom Tag
Library framework section) to call the NSLDSLogger and log the exception stack trace (at the FATAL
(level — please refer to the RCS Logging framework) read from the JSP implicit object "exception” that
is available to JSP error pages.

The "exception” object has page scope so if there are exceptions thrown by the ActionServlet for
multiple users, each user will see a different exception object. Since the error page will not be able to
determine the cause of the exception, the message displayed to the user will be a generic system
exception message that is stored statically in the errorPage.jsp file. The following diagram details an
exception thrown by the ActionServlet and handled by the errorPage JSP.

6. errorPage.jsp catches
5. logon.jsp forwards and _handles the exception,
control to errorPage.jsp errorPage.jsp logging the stack trace. A

- generic user-friendly
message is displayed on
the webpage.

logon.jsp
4. 10Exception

Username propagated back to the .
calling code in logon.jsp ActionServlet

Password
. 3. ActionServlet throws an
Target URL = /logon.activit . .
Submit 9 9 v | |OException because it can
2. logon.activity page is not read the struts-
directed to ActionServlet config.xml file

1. User enters Username
and Password and clicks
Submit

Figure 17, JSP Error Page

94.3.3 NSLDS Il Detailed Design 66 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

45 RCS Logging Framework

The ITA Logging framework enhances the current logging capabilities of the WebSphere Application
Server, by allowing programmers to dynamically set logging and tracing functionality without
modifying source code. The Logging framework also allows for formatting standards to be developed
and enforced for log files to ensure proper information is gathered if a failure occurs.

The ITA RCS Logging framework provides the following features:

Simple logging API

Background logging (Configurable)

Multiple message severities

Configuration can be modified on-the-fly while the system is running

The Logging framework allows the programmer to log messages easily through a simple API. It
contains one main object called Syslog that provides a set of calls to log in a variety of manners. Most
of the operation of Syslog is set through the rcs.xml configuration file the component uses. The
logging level and output location are defined in the rcs.xml file and the file can be configured while the
Application Server is running. Any changes made to the configuration file will not take effect though
until the instance of the NSLDS service has been restarted.

There will be four message levels of the Logging framework used in the NSLDS Il web application (in
order of severity): DEBUG, INFO, ERROR, and FATAL. These levels allow the Logging framework to
be used as a debugging tool during development and as a troubleshooting tool when the application
goes into production. During development and testing, the messages may be simply sent to a single
log file. When the system is moved into production, log messages can be split up by severity levels
(Fatal messages may result in someone being paged, for instance) and log files may be rotated every
night and archived. These kinds of configuration changes do not require changes to the code and can
even be made while the system is running.

In the Production environment, the rcs.xml file will define the location of the NSLDS web application’s
system log file. The file will be stored in: Zopt/WebSphere/AppServer/logs/ and the file name will
be NSLDS_System.log. The storage location is configured in the WebSphere Administration Console.
The log file is rotated regularly and CSC’s Unicenter TNG tool can integrate with the RCS Logging
framework by monitoring the log file. When the monitoring tool encounters a FATAL message in the
log, it should trigger an escalation action to CSC personnel.

rcs.xml

<?xml version="1.0" encoding="UTF-8"?>
<Syslog defaultMask="ERROR" backgroundLogging="false">
<Logger class="com.protomatter.syslog.FileLog" name="NSLDS_System">
<fileName>/opt/WebSphere/AppServer/logs/NSLDS_System.log</fileName>
<autoFlush>true</autoFlush>
<stream>System.out</stream>
<Policy class="com.protomatter.syslog.SimpleLogPolicy">
<channels>ALL_CHANNEL</channels>
<logMask>INHERIT_MASK</logMask>

94.3.3 NSLDS Il Detailed Design 67 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture
</Policy>

<Format class="com.protomatter.syslog.SimpleSyslogTextFormatter">
<showChannel>false</showChannel>
<showThreadName>false</showThreadName>
<showHostName>false</showHostName>
<dateFormat>HH:mm:ss MM/dd</dateFormat>
<dateFormatCacheTime>1000</dateFormatCacheTime>
<dateFormatTimeZone>America/New_York</dateFormatTimeZone>
</Format>
</Logger>
</Syslog>

45.1 Logging Usage Standards

This section will detail the levels and scenarios for using the ITA Logging framework in the NSLDS I
application. NSLDS Il JavaObjects and JSPs will be utilizing the four logging levels defined above.
These four levels provide a mechanism to differentiate the degree of importance of the information
logged. The DEBUG and INFO levels are typically used during development and testing and turned
off when the application is in production. While this will reduce the size of the log file created, the log
files will still need to be rotated on a nightly basis. Log files will be kept for a minimum of five days
for any troubleshooting purposes before being deleted. This section will define which phase of the
application lifecycle the logging level is required and provide guidelines as to the type of information
to be captured in the log message.

The usage guidelines of the Application Programming Interfaces (API) below uses a custom
NSLDSLogger described in Appendix F. This logger is an application specific wrapper around the
Syslog class provided by the Logging framework. The developer would call
NSLDSLogger.getLogger().logLEVEL(*'short message™, ** detailed message™); where LEVEL would be the
logging level (logDebug, loginfo, logError, logFatal).

Refer back to the Exception Handling section for more details on system and application level
exceptions, which utilize the ERROR and FATAL logging levels.

45.1.1 DEBUG

The DEBUG logging level is primarily used by the developers to replace System.out.printin()
statements used to test and debug code. These log statements will only be recorded during the
development and test phases of the application lifecycle and should be used thoroughly when writing
the Java code. The key advantage of the DEBUG log statements over System.out.printin() statements
is they do not need to be removed when migrating to a production system. The DEBUG level can
simply be turned off when it is no longer necessary to view these statements.

The DEBUG logging level will be used in the following environments:
Development

Unit Test
Assembly Test

94.3.3 NSLDS Il Detailed Design 68 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

System Integration Test
Training

Usage Guidelines

The developers should use the DEBUG log statements wherever they feel it is necessary. As stated
before, there is minimal overhead in using DEBUG statements and the more information provided via
the logging process will greatly reduce the amount of time in completing bug fixes. The following
table is a sample list of scenarios where the DEBUG log statements could be included:

Example Scenario Example Message
Entry/EXit points of complex Entering Loan Details update method.
methods
Test conditions used in logical Start Date = 9/23/1998 and End Date = 2/15/2003
statements
Before and after data SSN = 123456789
transformations SSN = 123-45-6789
Results of calculations Subsidized Loans Pending disbursements =

(LOAN_AMOUNT -
LOAN_TOTAL_DISBURSEMENT_AMOUNT -
LOAN_TOTAL_ CANCELLATION_AMOUNT) =

250
SQL statements LogonWorker — password query = "SELECT
password FROM table WHERE user = userID"
Load external resources Loading ApplicationResources.properties file

Table 8, Debug Usage Scenarios

Usage Example
NSLDSLogger.getLogger().logDebug("This is a short debug message", "This is a more detailed debug
message");

The developer can log information that may be useful to debug later for checking to see what the
application had processed. While coding LogonWorker, the developer would be able to put in
NSLDSLogger.getLogger().logDebug("In LogonWorker", "LogonWorker will access persistence
framework to query = ‘SELECT password FROM table WHERE user = userID™);

45.1.2 INFO

The INFO logging level should be used to record major points in the application. The main purpose of
the INFO level is to record the roundtrip of requests made to the system. For example, when a user
clicks on a submit button for a web form, a request is generated to process the form and sent to the
Application Server. This request should be logged using the INFO level. When the request is finished
processing and a response returned to the user, the response should also be logged using the INFO
level. The INFO level is utilized mostly by application framework classes and Java Objects and will
not be used heavily by the JSP developers.

The INFO logging level will be used in the following environments:

94.3.3 NSLDS Il Detailed Design 69 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

Development

Unit Test

Assembly Test

System Integration Test
Training

Usage Guidelines

The INFO level may be utilized to record any changes made to the system through field updates,
especially those involving monetary adjustments. If a system properly utilizes INFO level logging, it
will be possible to trace through the major events of an actions as it executes during runtime. INFO
level messages should be written so that they may be understood by more than just the Java
developer. The idea is to have a high-level snapshot of the system from input to output. The
following is a sample list of scenarios where the INFO log statements could be included:

Example Scenario Example Message
Input requests and Output User trying to logon with username = test and
responses password = 123456789
Any changes to monetary fields Loan principal amount changed from 2,300 to
3,500.
Updates to user/system fields Student contact name update to John Smith
Creation/Deletion of records User added disbursement payment of 150

Table 9, INFO Usage Scenarios

Usage Example
NSLDSLogger.getLogger().loginfo("This is a short info message", "This is a more detailed info

message");

The developer can log activities that occur in the system later for checking to see what the application
had processed. While coding LogonAction, the developer would be able to put in
NSLDSLogger.getLogger().loginfo("In LogonAction®, "User trying to logon with username = xyz");

45.1.3 ERROR

The ERROR and FATAL logging levels are closely linked together in that they are both used when
exceptions occur during runtime. The main difference is the ERROR level should be used to log
application exceptions where as the FATAL level should be used to record system level exceptions.
Application exceptions will mostly be generated from field-level validation exceptions and conditions
that break the normal execution. These circumstances, while exceptions, are mostly normal behavior
of the system. They usually do not require escalation to support personnel, but do require proper
logging and robust messaging to inform the user of the condition. Please refer to the Exception
Handling framework which implements the messaging functionality.

94.3.3 NSLDS Il Detailed Design 70 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

The ERROR logging level will be used in the following environments:

Development

Unit Test

Assembly Test

System Integration Test
Performance Test

User Acceptance Test
Production

Training

Usage Guidelines

The ERROR level is used to record erroneous situations when exceptions arise in application code
during runtime. The log message should include the circumstances behind the exception and the
location the exception occurred, as well as any additional information provided by the application
developer. However, the message should not be logged by the developer in the application code. The
developer will only be responsible for throwing the exception (again, see the Exception Handling
section). The exception will be propagated to a central location in the system, the NSLDSAction,
where it will be handled by the NSLDSAction and the exception message logged. All application
exceptions should be logged with the ERROR logging level.

Exception Name Custom Message
Authentication Exception User not authenticated with username=test and
password=1233456
Add Exception New disbursement amount record could not be added

on the Loan Activities. Amount=2,500 and
Date=10/21/2002

Delete Exception The insurance claim payment could not be deleted.
Amount=1,000, Date=10/30/2002, Reason Code=DF

Table 10, ERROR Usage Scenarios

Usage Example
NSLDSLogger.getLogger().logException("This is a custom exception message.”, new

SFAException(...));

The developer would be able to log an error message if the logon was unsuccessful. In the
LogonAction, if the WorkUnit's isSuccessful() method returned false, the LogonAction would know
the authentication was unsuccessful and log a message using the ERROR level. The java statement
would look like NSLDSLogger.getLogger().logException("Authentication unsuccessful with User=" +
userName +" and Password=" + password, sfaAuthenticationException) where
sfaAuthenticationException is a SFAException created with the AuthenticationException exception
code.

94.3.3 NSLDS Il Detailed Design 71 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture
45.1.4 FATAL

As stated before, the FATAL logging level should be used to log system level exceptions. These are
exceptions when a system component has failed unexpectedly or a system resource was unavailable.
In most cases, support personnel should be notified by the CSC’s Unicenter TNG monitoring tool
during these circumstances.

The FATAL logging level will be used in the following environments:

Development

Unit Test

Assembly Test

System Integration Test
Performance Test

User Acceptance Test
Production

Training

Usage Guidelines

Similar to ERROR level logging, all logging of FATAL level messages will be constrained to one
central location. This allows for a standardization of exception logging and reduced code duplication.
Application developers do not need to worry about logging FATAL messages. All FATAL messages
should be the result of system exceptions or Java runtime exceptions (such as
java.lang.NullPointerException).

Exception Name Custom Message
SQL Exception Malformed SQL statement. "SELECT * from "
FileNotFoundException Could not load resource file
NSLDSApplicationResource.properties
NullPointerException java.lang.NullPointerException. A general error
occurred.

Table 11, FATAL Usage Scenarios

Usage Example
NSLDSLogger.getLogger().logException("This is a custom exception message”, new
SFAException(...));

The FATAL log level would only be used by the developer coding the NSLDSAction class. The
NSLDSAction handles all exception cases, which should be logged with the FATAL log level. In
handling the exceptions, the developer should include a log statement like the following:
NSLDSLogger.getLogger().logException("A System exception has occurred”, sfaException), where
sfaException is a system SFAException

94.3.3 NSLDS Il Detailed Design 72 11/26/2002

FEDERAL
STUDENT AID

[+ ”'..r.rp Firl Amverica .I'Ln'.ll@lﬁ Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

4.5.2 Logging Usage Summary

The table below summarizes the different environments and the logging level that should be captured

for it.

Environment

DEBUG

INFO

ERROR

FATAL

Development

Unit Test

Assembly Test

System Integration Test

X | X | X

X | X | X

Performance Test

User Acceptance Test

Production

Training

X

X

XX XX [X|X|X

XX XX [X|X|X

Table 12, Logging Level Usage Summary

Although DEBUG and INFO are typically turned off during performance testing, user acceptance

testing, and production; those messages could be turned back on if inexplicable system errors occur

and need to be traced through the system.

94.3.3 NSLDS Il Detailed Design

73

11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

4.6 RCS User Session Framework

The session framework provides a mechanism for the retrieval and manipulation of user session and
context data stored in cookies, web server session variables, or in a data store. The framework also
creates one common interface for application developers to access the session via any of these
methods.

The session framework will provide context management service that stores a user’s temporary data
during their HTTP session. The session framework will provide for the following services on both the
client-side and server-side contexts:

A common interface to all HTTP variables (request, cookie, session)
Storing temporary data that should persist across each web page presented to the user

4.6.1 Session Framework Usage Guidelines

The WebSphere Administration Console contains a section for defining the session settings for the
web application. For NSLDS I1, session id will be stored on a session cookie on the client in the
browser’s memory. The actual session information will be stored in the Sessions table in the Oracle
database. Session information is persisted to the database to ensure that session information will
be maintained and accessed in a load-balanced environment.

Users must have cookies enabled on their browsers. If it is not enabled, the user will be
directed to a session error page. NSLDS Il may not use persistent cookies as they are against
federal regulations. Since cookies are required, URL rewriting will not have to be supported.
In the session manager should have a timeout setting of 30 minutes.

In the session manager, manual update will be set to false. This means that the database will
be written to at the end of execution of every servlet’s service() method.

94.3.3 NSLDS Il Detailed Design 74 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

4.7 Content Deployment (Interwoven TeamsSite)

4.7.1 Content Deployment Approach

Interwoven ‘s TeamSite is a powerful content management tool that can be used for version control,
virtualization, templating, workflow, and deployment. For NSLDS Il, TeamSite will be used for
version control and deployment of the PDF help files to different environments. TeamSite will be used
only for deploying the static documents, such as the PDF help files and monthly newsletters.

Its version control utility will be used to monitor the changes and differences in versions of PDF files
published to the site. It also provides the capability to ‘archive’ how the PDF file looked at a specific
time.

Interwoven's Open Deploy technology allows users to deploy content housed in TeamSite to
development, test, and production environments. Typically, there is a two-week change control
request process to update any web sites in the Production environment. Using TeamSite and Open
Deploy to deploy PDF documents to production bypasses this process and negates the wait time.
NSLDS Il monthly newsletters can be created and published in a matter of days instead of having to
wait weeks for the process to be completed.

94.3.3 NSLDS Il Detailed Design 75 11/26/2002

FEDERAL
STUDENT AID

[+ ”'..r.r.ll Firl Amverica .|'|I.lrw|.'=||r1 Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

5 Data Access Layer

5.1 RCS Persistence Framework

The ITA persistence framework provides a transparent and flexible mapping of the business objects to
relational database tables. It is transparent in that once the business objects and their mappings are
defined, application developers do not need to have any knowledge of the underlying relational
database tables. Itis flexible in that if the underlying relational database model changes, the business
object model does not have to change with it — a change in the mapping layer is all that should be
required. This framework represents the Data Access Layer that the Architecture Layer will use to

access the database.

The table below shows the components that work together to make up the Persistence framework:

Component

Description

ISFAPersistableMapper

Interface that all business mappers must
implement. Contains logic for the object-data
model mapping.

Domain Component

Placeholder class for database's data source name,
user ID, and password.

Unit of Work Component

This class is not exposed to the developer. Used
internally in the Persistence framework to record
a roundtrip transaction.

Persistable Object Manager Component

Defines the different database operations exposed
to the client objects. Used to select, update, insert,
and delete records with the database. Provides
transactional monitoring through abort and
commit methods.

Result Set Component

This class is not exposed to the developer. Used
internally in the Persistence framework to record
results from database query.

Business Mapper Component

Individual mappers that implement the
ISFAPersistableMapper and contains the actual
mappings to the database.

Business Object Component

Individual business objects such as User, Student,
School with attributes that store the parameters
for the queries and also the results of the queries.

Table 13, Persistence Framework Component Description

The Worker subclasses provide the centralized access to the Persistence framework. The related
Worker subclass is called by its Action object. The Worker creates the appropriate Mapper class and
populates the attributes of the business object the work is being performed on.

94.3.3 NSLDS Il Detailed Design

76 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

The WorkUnit has methods for the LogonAction to determine if the action was successful and, if so,
retrieve the results. The WorkUnit returns the results as an Object, so the Action and Worker classes
will have to know how each other expects the results. In the Logon example, both the Action and
Worker use the User object to perform the work.

Example usage of the Persistence framework as it applies to NSLDS II:

Business Object Component:

The Business Object components are for the most part simply Java data beans. They contain getter and
setter methods to access the attributes of the component. In the NSLDS system, the business objects
may also contain some business logic to operate on their attributes. All example of a Business Object
would be the Loan class. The Loan class has many different attributes, each with a get and set method
corresponding to the attribute name (i.e. getinterestRate and setinterestRate for the interestRate
attribute).

/lpackage statement
/limport statement(s)

public class User

{

private String userName;
private String currentPassword;
/I . . . other attributes included here

public User()
{

}

public String getUserName()
{

return userName;

}

public void setUserName(String userName)

{

this.userName = userName;

}

public String getCurrentPassword()

{

return currentPassword,;

}

public void setCurrentPassword(String currentPassword)

{

this.currentPassword = currentPassword;

}

/l. . .other getter/setter methods included here

94.3.3 NSLDS Il Detailed Design 77 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture
Bi

Figure 18, User.java pseudo code

Business Mapper Component:

A Business Mapper component is defined for each Business Object that is mapped to a database table.
The Business Mappers implement the logic necessary to select, insert, update, and delete database
records about the Business Objects. The Mappers use the Business Object components to generate the
SQL queries and update the business objects with the results returned by the queries. The Business
Mappers expose methods to retrieve the SQL queries, which are executed by the
SFAPersistableObjectManager.

/I package statement
/I import statements

public class LogonMapper implements ISFAPersistableMapper

{

private User user;
private String tableName;

public LogonMapper()
{

}

public String getDeleteQuery()
{

}

/I returns a collection of parameters to insert into the query (i.e. userName)
public Vector getDeleteParameters()

{

tableName = "USER";

return "DELETE FROM " + tableName + " WHERE userName = ?userName?";

Vector params = new Vector();

params.addElement(new SFAParameter("userName", user.getUserName(),
SFAParameter.PTSTRING));

return params;

}

public String getinsertQuery()

{
return "INSERT INTO " + tableName + " (USERNAME, CURRENTPASSWORD)

VALUES(?userName?, ?currentPassword?)";

}

/I returns a collection of parameters to insert into the query (i.e. userName, currentPassword)
public Vector getinsertParameters()
{
Vector params = new Vector();
params.addElement(new SFAParameter("userName", user.getUserName(),
SFAParameter.PTSTRING));

94.3.3 NSLDS Il Detailed Design 78 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

params.addElement(new SFAParameter("currentPassword”, user.getCurrentPassword(),
SFAParameter.PTSTRING));
return params;

}
public String getKeySelectQuery()
{
return "CREATE VIEW clear_auth (currentPassword) as SELECT ?userName?, decrypt_char(currentPassword)
FROM NSLDS_USER_AUTH Set encryption password = ‘test123’ SELECT userName,
currentPassword FROM clear_auth™;
}

/I returns a collection of parameters to insert into the query (i.e. userName)
public Vector getKeySelectParameters()

{
Vector params = new Vector();
params.addElement(new SFAParameter("userName", user.getUserName(),
SFAParameter.PTSTRING));
return params;
}
public String getSelectQuery(String selectCondition)
{
return "SELECT userName, currentPassword FROM " + tableName + " WHERE " + selectCondition;
}
public String getUpdateQuery()
{
return "UPDATE " + tableName + " SET currentPassword = ?currentPassword? WHERE
userName = ?userName?";
}

/I returns a collection of parameters to insert into the query (i.e. userName, currentPassword)
public Vector getUpdateParameters()

{
Vector params = new Vector();
params.addElement(new SFAParameter("userName", user.getUserName(),
SFAParameter.PTSTRING));
params.addElement(new SFAParameter("currentPassword”, user.getCurrentPassword(),
SFAParameter.PTSTRING));
return params;
}

/I Updates a User object with the results of the query and returns the User object
public Object newFrom(SFAResultSet resultSet) throws SFAException

{
User user = new User();
user.setUserName(resultSet.getString("userName"));
user.setCurrentPassword(resultSet.getString("currentPassword"));
return user;

}

/I Used to retrieve the query parameters for the insert, update, and selectCondition queries
public void populateAttributeValues(Object obj)

94.3.3 NSLDS Il Detailed Design 79 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture
{

this.user = (User)obj;

}

/' Used to retrieve the query parameters for the key select query
public void populateKeyAttributeValues(Object obj)

{
this.user = (User)obj;
}
public void setTableName(String tableName)
{
this.tableName = tableName;
}

}

Figure 19, LogonMapper.java pseudo code

Worker (To Retrieve Data from the Database):

The Worker abstract class makes use of the Configuration framework (please refer to the RCS
Configuration framework for details), to access the data source name, database user ID, and database
password necessary for creating the SFADomain object and connecting to the database. These values
are stored in a properties file, read by the Configuration framework so they may be easily maintained
and changed without recompiling the code base.

/I package statement
/[import statement(s)

public abstract class Worker

{

/I domain and pom are available to Worker subclasses
protected SFADomain domain;
protected SFAPersistableObjectManager pom;

public Worker()

{
/I Use Configuration framework to obtain database dataSourceName, userID, and password
String dataSourceName = FSAConfigurationSl.getProperty("master”, null, "dataSource");
String userlD = FSAConfigurationSl.getProperty("master”, null, "userID");
String password = FSAConfigurationSl.getProperty("master”, null, "password");
/I Create SFADomain
domain = new SFADomain(dataSourceName, userlD, password);
/I Create PersistableObjectManager with this domain
pom = new SFAPersistableObjectManager(domain);
}

public abstract WorkUnit select(HashMap parameters);
public abstract WorkUnit insert(HashMap parameters);
public abstract WorkUnit delete(HashMap parameters);
public abstract WorkUnit update(HashMap parameters);

94.3.3 NSLDS Il Detailed Design 80 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

Figure 20, Worker.java pseduo code

LogonWorker (To Retrieve Data from the Database):

For example, a LogonWorker is called by a LogonAction that performs work on a User object. The
LogonWorker creates a LogonMapper and populates the mapper's attributes with values from the
User object. The LogonMapper is responsible for mapping the User object to the database, through
the PersistableObjectManager component. The LogonMapper will return the results to the
LogonWorker as an updated User object. The LogonWorker wraps the updated User object in a
WorkUnit and returns the WorkUnit to the LogonAction.

/I package statement
/[import statement(s)

public class LogonWorker extends Worker

{

public LogonWorker()
{

}

public WorkUnit select(HashMap parameters)

{
/I get the userName and password string from the hashmap, passed in by the LogonAction
String userName = (String)parameters.get("userName");
String userPassword = (String)parameters.get("password");

/I create a User object and populate userName attribute
User user = new User();
user.setUserName(userName);

/I create LogonMapper object and populate attributes
LogonMapper mapper = new LogonMapper();
mapper.populateKeyAttributeValues(user);

/I Use the PersistableObjectManager, pom, instantiated by the Worker super class

Il retrieve the updated user object from the database — will contain currentPassword

user = (User)pom.getObject(mapper, mapper.getKeySelectQuery(),
mapper.getkeySelectParameters();

/I create WorkUnit to return results
WorkUnit workUnit = new WorkUnit();

/I check to see if user entered password matches password from database
/l'if yes, then set the workunit success to true, else false
workUnit.setSuccessful(user.getCurrentPassword().equals(userPassword));

/I set updated User object as the results in the workUnit
workUnit.setResults(user);
return workUnit;

94.3.3 NSLDS Il Detailed Design 81 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

public WorkUnit insert(HashMap parameters)

{
" ..

}

public WorkUnit delete(HashMap parameters)

{
" ..

}

public WorkUnit update(HashMap parameters)

{
" ..

}

Figure 21, LogonWorker.java pseudo code

WorkUnit (To Retrieve Data from the Database):

The WorkUnit exposes two methods dealing with the success of work - isSuccessful() and
setSuccessful(boolean). The setSuccessful() method is used by the Worker subclasses to notify the
Action subclasses if this piece of work has completed successfully. This method is called after the
work has completed and before the WorkUnit is returned to the Action subclass. When the Action
subclass receives the WorkUnit from the Worker subclass, the first thing it does is call isSuccessful() to
check if the work done by the Worker was successful or not. It uses this information to determine the
next course of action and the type of ActionForward to return to the ActionServlet.

/I package statement
/[import statement(s)

public class WorkUnit
{

private boolean success;
private Object result;

public WorkUnit ()
{

}

public boolean isSuccessful()

{

return success;

}

public void setSuccessful(boolean success)

{

this.success = success;

}

94.3.3 NSLDS Il Detailed Design 82 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

public Object getResults()
{

}

public void setResults(Object result)

{
}

return result;

this.result = result;

}

Figure 22, WorkUnit.java pseudo code

94.3.3 NSLDS Il Detailed Design 83 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

6 Appendix A - Application Architecture Questionnaire

94.3.3 NSLDS Il Detailed Design 84 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

7 Appendix B - Object-Data Mapping Model

94.3.3 NSLDS Il Detailed Design 85 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

8 Appendix C - ITA Coding Standards

94.3.3 NSLDS Il Detailed Design 86 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

9 Appendix D - ITA Best Practices Guide

94.3.3 NSLDS Il Detailed Design 87 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

10 Appendix E - Coding Standards Review Checklist
10.1 Introduction

10.1.1 Purpose

This document is provided by the ITA for code and peer reviews of Java coding standards. Please
document the "Reviewer Information” section and complete all questions and comments where
necessary when reviewing code.

10.1.2 References

The ITA deliverables 16.1.3 Java Coding Standards and the 46.1.5 ITA Best Practices documents served
as references for this document. (ITA deliverables, provided separately.)

10.1.3 Reviewer Information
Modules/ Packages Reviewed Developer

Reviewer Date Reviewed

10.2 Java Coding Standards

10.2.1 Source Files

Source files are important because they import the files necessary for the program to run correctly. A
source file should contain one public class or interface (not including inner classes). When private
classes and interfaces are associated with a public class, they can be placed in the same source file as
the public class. The public class should be the first class or interface in a source file.

Each source file should include the following source files at the top of the code, in the following order:
Beginning comments stating the file information

A Package statement utilizing the gov.ed.fsa name base for all FSA custom packages
import statements that are listed explicitly

Category Yes | No Comments

Are the source files
accurate and correctly
stated?

94.3.3 NSLDS Il Detailed Design 88 11/26/2002

FEDERATL
STUDENT AID

[+ ”.r.r.ll Firl Amverica |'|I.lrw|r=||l.l Setrareal

FSA Modernization Program
NSLDS Il Reengineering
Application Architecture

10.2.2 Code Layout

Code layout is important for making the code easily readable and easy to maintain. In addition, good

code layout facilitates debugging and locating errors. Ensure each source file follows the code layout
guidelines listed below:

Class headers that are declared on one line
Method headers that are on one line, if possible
Using curly braces, even for one block statements

Category

Yes

No

Comments

Does the code follow
the code layout
guidelines??

10.2.3 Naming Conventions

The naming conventions are important because they make programs more understandable and easier

to read. They also give information about the function of the identifier. Regarding naming
conventions, each source file should include:

Custom-developed packages for FSA that utilize the gov.ed.fsa name convention

The prefix of a unique package name in all-lowercase

Class names that are nouns and their first letter is capitalized

Variables that are in mixed case with a lowercase first letter

Method names that are in proper case, with initial letter in lower-case

Constants that are all uppercase

Exception names that follow class-naming conventions, with the additional requirement
that the name end in “Exception”

Category Yes | No Comments

Are the naming

conventions correctly

utilized?

94.3.3 NSLDS Il Detailed Design 89 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
War Holpp Furk Americar Thronest Setrel Application Architecture

10.2.4 Programming Style

This section describes the layout and style of programming. Ensure that good programming styles
listed below are followed in each source file:

A method that is generally not more than 50 “real” lines of code

A method should generally do just one thing, and the method name should reflect this
Variables should be declared one line at a time, unless directly related to another variable
All variables should be declared explicitly

Numerical constants (literals) should not be explicitly coded

Use condition variables when necessary

Use a for loop whenever possible, instead of a while, do/while, or other type

Name all threads explicitly

Category Yes | No Comments

Is the programming
style clear and
understandable?

10.2.5 Comments

Comments are important for walking through the code, and especially for debugging. Each source file
should contain:

A single line comment, consisting of two front slashes //

A multiple line comment, consisting of a front slash followed by an asterisk to begin the
comment /*, and an asterisk and front slash to end the comment */

A JavaDoc comment, consisting of a front slash followed by an asterisk, /** to begin the
comment and an asterisk and front slash to end the comment */. A JavaDoc comment should
only be used if the user wants those comments extracted to the JavaDoc HTML file.

Category Yes | No Comments

Does the source file
have the correct
comments?

94.3.3 NSLDS Il Detailed Design 90 11/26/2002

FEDERAL FSA Modernization Program

STUDENT AID NSLDS Il Reengineering
Wi Hanlp Fiet Americar Theough School Application Architecture

11 Appendix F - NSLDSLogger Pseudo Code

import gov.ed.sfa.ita.logging.Syslog;

/**

* The NSLDSLogger is a wrapper around the Syslog class provided by the RCS Logging framework.
* This class provides NSLDS-specific implementations of methods to execute the logging for the 4
* desired logging levels. The ERROR and FATAL logging levels are both implemented by the

* logException method.

*/

public class NSLDSLogger

{
private NSLDSLogger logger;

private NSLDSLogger()
{
super();

}

public static synchronized NSLDSLogger getLogger()

{
if (logger == null)
{

logger = new NSLDSLogger();
}

return logger;

}

// Log a short message and detailed message to the DEBUG level.
public void logDebug(Object shortMsg, Object detailedMsg)

{
Syslog.log(getCallingclass(), LOG_CHANNEL, shortMsg, detailedMsg, Syslog.DEBUG);

/I Log a short message and detailed message to the INFO level.
public void loginfo(Object shortMsg, Object detailedMsg)

{
Syslog.log(getCallingClass(), LOG_CHANNEL, shortMsg, detailedMsg, Syslog.INFO);

}

/I Logs a Java Exception. If it is an SFAException, the method checks to see if it is an Application Exception
/I or a System exception to determine the level of logging. Application Exceptions are logged as ERROR
while
/I System exceptions are FATAL.
public void logException(Object customMsg, Throwable t)
{
/I retrieve the Class that called the NSLDSLogger
Class clazz = getCallingClass();

/l'if tis of type SFAException then use the Exception Handling framework to locate the desc
if (t instanceof SFAException)

{

94.3.3 NSLDS Il Detailed Design 91 11/26/2002

FEDERAL FSA Modernization Program
STUDENT AID NSLDS Il Reengineering
Wir Fioly Fhel Aemericas Through Schuel Application Architecture

/I use the SFAExceptionFactory to get the log message associated with this exception code
shortMsg = SFAExceptionFactory.getMessage(((SFAException)t).getCode());

/I check to see if the Throwable t is an Application Exception by determining it's exception code
if (t is an ApplicationException)

/l'if tis an Application Exception, log it at the ERROR level
Syslog.log(clazz, LOG_CHANNEL, shortMsg, customMsg, Syslog.ERROR);

else
{
/It is a System Exception so log at the FATAL level
Syslog.log(clazz, LOG_CHANNEL, shortMsg, customMsg, Syslog.FATAL);

}
/l'log Java Runtime exceptions as FATAL
else

Syslog.log(clazz, LOG_CHANNEL, t.toString(), customMsg, Syslog.FATAL);
}

/I Determines the calling class of the NSLDSLogger by examining the stack trace.
private Class getCallingClass() {

/I Record stack trace

/I Find class name of the class calling the NSLDSLogger

/I Create a new class using this class name

/I Return the new Class object

}

94.3.3 NSLDS Il Detailed Design 92 11/26/2002

